전자력 발사기의 최적 구조 설계

Optimal Structural Design for the Electro-magnectic Launcher

  • 이영신 (충남대학교 공과대학 기계설계공학과) ;
  • 안충호 (국방과학연구소)
  • 발행 : 1996.06.01

초록

구조 및 전기적 제약조건을 고려한 전자력 발사기의 최적설계에 대해 연구하였다. 펄스형 대전류가 흐르는 발사기의 단면적이 최소화되었으며 각 요소(레일, 측면벽, 세라믹 및 강철)의 허용응력과 예하중을 고려하였다. 전기적 제약조건은 발사기의 성능을 저하시키는 와전류 효과를 방지하기 위한 세라믹의 두께로 정하였다. 90mm발사기의 설계에서 응력해석과 최적화는 ANSYS코드를 사용하여 수행되었다. 예하중을 받는 최적설계에서는 예하중을 받지 않는 최적설계보다 53%의 단면적이 감소되었다. 레일의 원호각이 45.deg.일때 발사기의 성능이 가장 양호하다. 레일의 원호각이 45.deg.일때 Fahrenthold 연구결과와 비교하여 9%의 변형량 감소와 10.4%의 변형량 감소를 얻었고, 예하중도 186Mpa에서 59.8Mpa로 감소되었다. 연구결과는 설계 요구조건을 충분히 만족시켜 주고 있음을 보여 주었다.

The optimal design for Electro-magnetic Launcher (EML : Rail Gun) considering structural and electrical constraints are presented. For the structure of EML under high pulsed currency, the cross section is minimized subject to maximum stress of each element(rail, side wall, ceramic, and steel) within allowable stress and preload limits. The electrical constraint is the effective ceramic thickness which prevents the eddy current effect reducing the performance of EML. The stress analysis and optimization procedure of 90mm EML is conducted with ANSYS Code. The optimal design under preload is reduced to 53% of area compared with optimal design without preload. In case of rail with arc angle .theta.=45.deg., the performance of EML is the best among the other rail arc angles. The optimal design for rail with arc angle .theta.=45.deg., results in the reduction of 9% of area and 10.4% of deformation compared with Fahrenthold's design. The optimal preload 59.8MPa is much lower than Fahrenthold's design(186MPa). The results show that the optimal design of EML meets the design requirements.

키워드

참고문헌

  1. Gun Propulsion Technology Stiefel, L.
  2. Journal of Applied Physics v.49 no.4 Electromagnetic Acceleration of Macroparticles to High Velocities Rashleigh, S.C.;Marshall, R.A.
  3. IEEE Transactions on Magnetics v.25 no.1 Electromagnetic Space Launch Palmer, M.R.;Daboro. A.
  4. Lawrence Livermore Laboratory, Paper UCRL-82762 Railgun Accelerators for Launching 0.1g Payloads at Velocities Greater than 150Km/s Hawke, R.S.
  5. IEEE Transactions on Magnetics v.25 no.1 Results of Railgun Experiments Powered by Magnetic Flux Compression Generators Hawke, R.S.;Brooks, A.L.;Deadrick,F.J.;Scudder, J.K.;fowler, C.M.;Caird, R. S.;Pterson, D.R.
  6. National Aeronautics and Space Adminitraion, N83-35412 The Structural Response of a Rail Accelerator Wang, S.Y.
  7. IEEE Transactions on Magnetics v.MAG-22 no.6 Predicting Bore Deformation and Launcher Stresses in Railguns Davidson, R.F.;Cook, W.A.;Rabern, D.A.;Schnurr, N.M.
  8. Trans. of ASME, Journal of vibration, Acoustics, Stress and Reliability in Design v.110 no.3 Stress Analysis for Design of Electromagnetic Launchers Fahrenthold, E.P.;Peterson, D.R.;Price, J. H.;Wu, A.Y.
  9. IEEE transactions on Magnetics v.25 no.1 Design and Testing of Large-Bore, Ultra-Stiff Railguns Price, J.H.;Fahrenthold, E.P.;Fulcher, C.W.G.;Peterson, D.R.;Weldon, W.F.;Zowarka, R.C.
  10. trans. of ASME, Journal of Pressure Vessel Technology v.113 Mechanical Design of Small-Bore Electromagnetic Launchers Thakore, A.K.;Fahrenthold, E.P.