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Abstract

This paper derives the two-dimensional probability distribution and density functions of morphological dilation and erosion
of a one-dimensional memoryless source and reports numerical results for a uniform source, thus providing methodology for
joint distributions for other morphological operations. The joint density functions expressed in closed forms contain the Dirac

delta functions due to the joint discontinuity within the dilation and erosion. They also exhibit symmetry between these two

morphological operations. Applications of the result can be found in the computation of the autocorrelation and the power
spectral density functions of dilated andfor eroded sources, in the computation of other higher moments thereof, and in

multidimensional quantization.

[, Imtroduction

This paper considers the morphological dilation and
erosion of an independent identically-distributed (iid)
random sequence X={X,° by a structuring element
G={Gy* of size L, which is assumed to only select,
as opposed to adding a bias and selecting, appropriate
samples X, Then for a given source sequence X and a

kom0

k=-o0

structuring element sequence ¢, the dilation U={U)?
and the erosion V={V}, _. are expressed as
Upy=( XD G)( k)= max j;, { X 4-}} and Vi=( X0 Gk =
min ,;, (X}, Where G denotes the support of ¢, ie.,
the set of k such that

considered herein has the property that G is a set of
contiguous integers, i.e., G,=0 for all k, except for

G##0. The structuring element

!<k<k for some integers / and h. This type of structuring
element will be called a contiguous structuring element or
a contiguous window of size h-1+1. It is also assumed in
this paper that G={-L+1,,—1,0}. This assumption is
made for convenience, but not necessary because the
dilation and the erosion of a stationary source are stationary
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[1]. Note that it does not matter what values G, assumes
on G

This paper derives the two-dimensional probability
distribution and density functions, and applies them to a
source uniformly-distributed over (0,1).

The reason for this study is that two dimensional
probability  distributions, specifically two dimensional
probability density functions, are necessary in order that
statistical properties of dilated andfor eroded sources may
be considered. For example, to find out the correlation
between dilated andfor eroded source output samples that
are continuous-valued, their two dimensional density
function must be known. Therefore, the result of the paper
will be valuable in computing the autocorrelation function
and hence the power spectral density function of the
dilated andfor eroded sources. The latter will show the
power profile as a function of frequency when a source is
dilated or eroded as done in [2,3]. Another application of
the result of this paper is found .in quantization of the
dilated or eroded source: the multidimensional probability
distribution or density functions are essential for efficient
quantization.

The probabilistic aspects of morphological operations on
a stationary memoryless source (iid random sequence)
have been investigated, e.g.,[4,5,6]. However, they focused
on the one-dimensional distribution. In case of the
two-dimensional distribution Xuhlmann and Wise [2], in
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their study on statistical properties of median filters,
obtained an expression for the two-dimensional probability
distribution function of, what is known in morphology,
dilation and numerically computed the autocorrelation and
power spectral density functions of iid discrete random
sequences, i.e., quantized Gaussian sources.

However, this paper differs from Kuhlmann and Wise’s
work in that (1) the results in this -paper are for
continuous sources, and (2) it presents elegant closed form
expressions for the two-dimensional density functions as
well. This paper shows that the dilation and erosion of a
memoryless source by a contiguous structuring element
result in jointly discontinuous neighboring random
variables and therefore the joint density functions contain
singularity functions. These density functions also exhibit
symmetry between the dilation and the erosion.

The rest of the paper is organized as follows: in
Section 2 the joint distribution and density functions of
the dilated and eroded sequences are presented;in Section
3 the numerical results for a uniform source are given;
and in Section 4 the conclusions are drawn.

M. Two-Dimensional Probability
Functions

Let {x,} be an iid random sequence with a common
probability distribution F(x) and density F(x). We wish to
find the two-dimensional probability density functions of
{uy and (V). Toward this goal, the probability
distribution function F (%, u,) will be computed and the
density function £, .(u,,u,) will be obtained by taking the
partial derivative of F;(«u,,u) with respect to # and
u,. Then the joint density of {v,} will be derived from
that of {U,}.

Theorem 1 below states the result for the joint
distribution function of (uU,}.

Theorem 1: For an iid source {X,} the dilated sequence
{Uy) has the two-dimensional probability distribution

FYmin(u, us)), ifi=k,
Foaluy, u)={F ™" )F """ *(min(u,, u))F ""*(u,), if0<|I—H<L—1,
FNu)FHuy), iflI~H>L—1.

@
We note that the first two cases can be merged. Also
note that the joint distribution function depends only on
l-k, as it should because U, is strict sense stationary [1].
Marginals are found when # =0 or w,=c and agree

with the results previously reported, for example, in [5].
Proof From the definition of the distribution function, we

have

Fyulur, ) = PU<u) U=<u,)
= Pmax{Xy, . X prp-}<ug max{X,.. x,, J<uy)
=PX Sy X g Sy XSt o, X poro1S tg),

@
where the second equality follows from the definitions of
U, and U, and the third from a set equality. Depending
on the values of the indices k,| and the window size L,
we may have (1) /=% (2) 0<li-H=<L-1, and (3)
|iI-4>L—1 . Each case is separately dealt with in the
following.

Case 1: If /=4, the joint distribution
Fyulu,u) = PX<minu,, #p),+, X pep-1 S min(uy, #,))

(&)

= F(min (e, up)),
where the first equality follows from the set equality
{X<a,X<bl={X<min(e, 4} and the second from X, being
iid.
Case 2: If o<l/-H<L-1, assume that /% for the
moment. Then
Fuulu, w) = PXpSuy, X g <uy, -, X 1 Suy,

X,Smin(u,, ug),--',XHL_lSmin(u], uz).

XprrSup, o, X 1S uy)
@

=PX<u, X g Suy, 0 X S u)
» (X <min(uy, up), X pep 1S min(uy, #,))
C (X g Sup e, X ppr 1S ),
where the first equality follows from combining constraints
on the common X, and the second from the independence
of X, Since the roles of / and ¥ can be interchanged,
we obtain
Fuolu, u) = F' 4 u)F " (min(uy, un))F"*(u).  (§)
Case 3: If |/-H>L—1, we have
Fuulu,u) = AKXy X g Suy, -, X popiSuy,
XSuy X p1<ug, -, X prp1Su) @
=FL(u1)FL(u2).
where the second equality follows from the independence
and stationarity of X,
We note that the joint distribution function in Theorem
1 is symmetric about ux =u, i.e., the change of variables
w, for u, and vice versa will result in the same

distribution function.

Once the joint distribution function is obtained, the joint
density function can be found by taking its partial
derivative with respect to #, and w, However, care must
be taken in so doing because, for |/-H<L-1,U, and U,
are not jointly continuous and hence the usual type of
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joint density function does not exist. Nevertheless, using
the singularity functions, such as the Dirac delta function
&) (e.g.[7, pp. 25-26] and the indicator function X -),
Lemma 1 is obtained. The indicator function I(x,<u,) is
defined to take on 1 if u,<u, and O otherwise. Then
Ku,<u,) can be related to the delta function as

K<) = [__da—w),de. 7

Lemma 1: For a continuous x) the joint distribution
function F(min(x,, x,)) can be expressed as follows:

Fmin(u,, u)) = f_':_ﬂa)l(a( us)da
= j_t_ﬂﬁ)[(ﬁ(ul)dﬂ ®
= fa‘:-—oc fdl:_xf(a)a(ﬁ‘a)dﬂ da,

Corollary 1 foltows from Lemma 1.
Corollary 1: A continuous density function A -) and the
distribution F(min(x,, »,)) are related as follows:

—af(;—uz F(min(uy, #)) = Lu)8(us—uy),

aiulF(min(u,. u)) =Ru)Kui < us), )]

8;34-: F(min{u,, u,)) = RupKus< ).

Using(9) and the fact that  &(u —us) = uy—uy) and
Buy, w2)8Cuy—u)) = Wy, u)8 2y —u) for a continuous
function A(x,, u:), the joint density function, stated as
Theorem 2, follows from Lemma L.

Theorem 2 For an iid source {X, with a continuous
density function Ax), the dilated sequence (U} has the
two-dimensional probability density function 7. (a1, u2)

given as follows.
Case L: IfI=k,

FoCuy, up) = LF " (u)Ru) 8wz —uy). (16)

Case 2: If o<l/—H<L-1,
Fockuy, u)= (L=lU—M—RF"* Q)R FE7707
(minuy, u)) ety Ca) V') ) +
(L—11—H) I~ HF" ()R u)F 74
(min(ey, w Ny < u)F " ) )+ (11)
/= H2F A ()R w) F 27 * (min (uy, %))
FU R )R ) +
(L—|I—B)F 4 ) ) R ) 8o — ),

where the following identity is used
52 Ftmin(u, )2 Flmin(a, 1)) =0, (12)

For further simplification we note that for the first term

F(min(z, ) Kus€ ) = Flu) {u< y), similarly for the second
term  F(min{a,, #:)) Ko, < uz) = Fla) K2, o), gnd for the third
term  F(min ey, #2)) = F(u) Kty uy) + Flup L ug) - €XCEPL for
negligible u,= u,.

Then we have

Feolup, u) =LII-A FUH Yy ) R MK ey ) F -7 () Rag)
F LI~ BF P ) Rud) Ko un) P47 ) ) (L3)
+(L_|/“H)FL+”—H_1(H1)K Zl])a( ug—ul).

Case 3: IflI-H>L-1,
foolu, u) =L F u)R w)F 7 ) K ). (14)

Note that fo(u,u,) is symmetric about the line
u=us, as it should due to the symmetry of the
distribution  function. The marginal densities are
Felw=F(w=LF"" (10fx) and agree with the previously
reported results.

The joint density of eroded sequence V, can be found
from that of the dilation U, through transformations.
Basically, fy.,(v,») is obtained from fyu(u, ) by
replacing F(uy), Fluy), Kay<wy)  &nd Kuppuy) — with
1=F(u),1—-F(py), Kvpdvg)  and Koy <vo)s respectively. The
result is stated as Theorem, in which the joint distribution
function is also presented without proof due to virtual
triviality. We also note the symmetry of the distribution
an¢ density functions just as with dilation. A furiher
symmetry property must be noticed between dilation and
erosion. This symmetry comes from the fact that erosion
is essentially a shift of the related dilation, that is

XO G= a shift of {—((— X)D G)}.

Theorems 3: For an iid source (X,} with a continuous

density function Ax), the eroded sequence {V,} has the

two-dimensional probability distripbution function

Fiv(v,v;) and density function fvv(vi,v2) given as

follows:

Cease 1: for |/—-H<L-1,
Foy(o,0) =1—(1—Fo) =1 -F(o)"’
+ (1= F(o) "1 = F(w2)) "1 = F(max (oy, o)) “ 7%,

s

Frwlo, o= Ll—H(1=Fo)) " Ao Ko< o)1 = Flop) "Ry

+L~H(1 = F(0)) " R o) Koo)X (1= Flop) ™7 vy

+(L—1—B) (1 —F(u)) " R o) (vy — o).

(18)

Case 2: for |I-H>L~1,
Fywlon, v) = (1= 1 =Flo)H(1— QA —Fo)"), an
Fowlo, v) = LA =F(0) " Ko)(1= F(vp) * 7' Ao, 1)

Procf: Note that V is obtzined by shifting —((- X806
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to the left by -1, where L is the size of the contiguous
structuring element G. Since the strict sense stationarity of
U implies the strict sense stationarity of V, the shifting
does not affect the distribution. Therefore, letting
S=—X and T=(S® G), we conclude that V has the same
joint probability functions as -7. Since X, is iid, S, is
iid. Then, the joint density s, (t,t) is expressed in
terms of the density and distribution functions of S, and
S, by transformation
(Ve V)=(=Ty~T,) is Frg oy 0=
fr.r{—v,.—vy), where it is used that the Jacobian involved

Theorem 1. Since the
one-to-one,

in the transformation is 1. The use of fis)=AR-s and
Fs(s)=1—-F(—s) yields the conclusion, where § stands for
any of s, and S,

. Numerical Results

Consider an iid X, uniformly distributed over the unit
interval (0,1). The joint density functions f,,.(u,,u,) and
fvwvlv,v,) from Theorems 2 and 3 assume O outside the
unit square (0, 1)X (0, 1), on which they assume

Lll—-kiul"_“"ugL_lI(m(ul)

+ L= Ko ey R K g )

fU‘Ul(u], uz) =
+(L=H=a V1 Sy~ ), iflI—H<L—1,
Lt ud if[i~H>L—1,
19)
LU-H(— o) "7 0~ 00) F (0, )
+ L= H(1=) N0 —0y) TR R 00< )
fV.V;(Uh Uz) =
F(L—H—H)Q—v) " 8y —0)),  ifli—H<L—I,
L1-v) "1 =vy) 7Y, ifli-H>L—1.
20)

As implied by Theorems 1 and 2, notice that these
functions are symmetric about the line wu =uw, or v;=u0,
ie., Fuulu,u)=Ffu, Cuy, ) and  fo, (v, 0)=f i 0y, 0)),
and that they are point-symmetric to each other about the

point (L. 1), ie, suulmw)=fui-m.i-w). It
follows from these two kinds of symmetry that
fowlw, u)=fvv(l—uy,1—u;) and vice versa. Fig. 1 and 2
show the joint density functions for L=5 and various
values for |/—#4. For |/—#=0 the joint densities take on
the value O, depicted as a mesh in the figures, except
u,-u; or vy;=uv,, on which they consist only of the Dirac
delta functions, depicted as a transparent wall whose
height curves according to the marginal density function
Fulw)=Lul""or Fylv)=L{1-v)*'. As |/-H increases to

L—1, the maximum height of the delta functions decreases

and a corner of the mesh (the point (1,1) for the dilation
and the point (0,0) for the erosion) is drawn up higher
and higher. This phenomenon reflects the fact that, as the
window size L gets bigger, the maximum of the L
contiguous source samples— dilation— will get larger too
and this in turn causes the shift of the density away from
0 toward 1. Fig. 1 vividly shows the phenomenon
described. When [/-#=2, the maximum height of the
wall of the delta functions is 3, which occurs at
u;=u,=1, while the jointly continuous part, represented
by the mesh, now is drawn up higher to 10 at u, =u,=1.

5
o 1
o 0.5 05
pn-ky=0 19 jl-kp=2 10
40
2
0 1
0s
‘05
pekg=a 10 -kj=6 10

Fig. 1. The joint probability density £ .(«,,u,)for
L=5 and various values for |/—4.

40

20

o 1

0 05 08
-kp=¢ 19

Fig. 2. The joint probability density £, (v, v,) for
L=5 and various values for |/—A.

When |/—H=4, the maximum height of the wall of the
delta functions gets lowered to 1 at u,=u,=1, while the
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mesh is drawn up higher to 20 at « =u,=1. All these
represent well the fact that the maximum height of the
delta functions is L—|/—H and hence must decreases as
l/I—4 grows and the fact that the jointly continuous part
of the density function is drawn up according to L|/-4
and hence increase as |/—H increases. This mutually
complementary relationship between the maximum heights
of the delta functions and the mesh continues until [/—#
reaches L. Once |/—4 reaches L, the contiguous samples
of the dilated source become independent, which causes
the delta functions to disappear and only the smooth mesh
surface to remain, and consequently the density function
stays the same for all values of |/~#=>L with one comer
drawn up to a constant height L®. One such example is
shown in Fig. 1 for the case of |/-H=6.

The exact opposite phenomenon is observed in the
erosion as can be seen in Fig. 2. This qualitative
argument is clearly substantiated by the figures and the
closed form expressions, which provides the quantitative
aspect of the shift.

1V, Conclusions

A pair of random variables from a dilated or eroded iid
source may not be jointly continuous. However, the closed
form joint density functions can be expressed in terms of
the distribution and density functions of the given source
using the delta and indicator functions. These joint
probability functions depend on the difference of the
indices, but not on both, as a consequence of the strict
sense stationarity of the dilated and eroded iid sequence
and show symmetry between the dilation and the erosion.
The method herein can be used for the joint probability
functions for other morphological operations such as
closing and opening. The result of this paper will play an

Samgsin Na was born in Illo, Chunnam,
in 1959. He received the B.S. degree in
electronics engineering from Seoul
National University in 1982, and the
M.S. and Ph.D. degrees in electrical
engineering from the University of
Michigan, Ann Arbor, in 1985 and

; , 1989, respectively. From 1989 to 1991,
he was at the Department of Electrical Engineering, the
University of Nebraska, Lincoln. Since 1991, he has been
with Ajou University and is currently an Associate Professor
of Electronics Engineering. His research interests are in the
area of information theory, data compression, digital
communications, and signal processing.

RS

\

essential role in quantitative study of dilated and/or eroded
sources. For example, the computation of the
autocorrelation function and the power spectral density
function, the computation of other higher moments, and
muliidimensional quantization are a few applications.
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