JOURNAL OF ELECTRICAL ENGINEERING AND INFORMATION SCIENCE, VOL. 1, No. 1, 1936. 129

A Dynamic Processor Allocation Strategy tor
Mesh-Connected Multicomputers

Geunmo Kim and Hymﬁs«»@ Yoon

Abstract

The processor allocation problem in mesh multicomputers is to recognize and locate a free submesh that can accommodate
a request for a submesh of a specified size. An efficient submesh allocation strategy is required for achieving high performance
on mesh multicomputers. In this paper, we propose a new best-fit submesh allocation strategy for mesh multicomputers. The
proposed strategy maintains and uses a free submesh list to get global information for free submeshes. For an allocation request,
the proposed strategy tries to allocate a best-fit submesh which causes the least amount of potential processor fragmentation
so as to preserve the large free submeshes as many as possible for later requests. For this purpose, we introduce a novel function
for quantifying the degree of potential fragmentation of submeshes. The proposed strategy has the complete submesh recognition
capability. Extensive simulation is carried out to compare the proposed strategy with the previous strategies and experimental
results indicate that the proposed strategy exhibits the best performance along with about 10% to 30% average improvement

over the best previous strategy.

I. Introduction

Multicomputer architectures have been expected as the
most promising way to construct massively parailel
computers based on the interconnection of hundreds or
thousands of microprocessors. Recently, the mesh has been
drawing considerable attention as a topology of multicomputer
due to its simple, regular, and scalable structure. Based on
this topology, several prototypes and commercial systems
have been built or marketed, such as Intel Touchstone Delta
[1], Intel Paragon XP/S [2], Tera Computer System (3],
Fujitsu AP-100 [4], Sanyo Edden/Cyberflow System [4],
Parsytec GC [5], and PASM [6].

A mesh multicomputer can support multitasking
environment efficiently due to its partitionable structure. For
instance, the Intel Touchstone Delta [1] and Paragon XP/S
[2] support a multitasking environment, and the PASM [6]
provides a dynamic reconfiguration to operate one or more
independent submachines of various sizes. In a multitasking
environment, numerous tasks, each of which consists of a
number of parallel modules, can be assigned to independent
submeshes and executed simultaneously. Since tasks request

Manucript received July 31, 1995; accepted October 6, 1995.
The authors are with Center for Artificial Intelligence Research, Korea

Advanced Institute of Science and Technology (KAIST), Daejeon, Korea.

the submeshes of various sizes, efficient submesh allocation,
in order to make a mesh system to accommodate as many
tasks as possible, is an important issue for achieving high
performance on a mesh multicomputer.

The goal of submesh allocation in a mesh system is to
maximize system utilization by minimizing fragmentation —
internal and external fragmentation. Internal fragmentation
occurs if a larger submesh is allocated to a task than that is
required. Externa! fragmentation occurs when even if a
sufficient number of processors are available, they do not
form a submesh large enough to accommodate the incoming
request because they are scattered. Such fragmentation results
in the degradation of system utilization.

In the last few years, several submesh allocation strategies
have been reported in the literature [7,8,9,10,11,12]. Most of
them can successfully eliminate internal fragmentation by
allocating the submesh of the exact size requested. These
strategies, however, quite suffer from external fragmentation,
resulted from the characteristics of their allocation policies —
incomplete (submesh) recognition capability andfor first-fit
behavior. To solve this problem, a best-fit strategy with
complete recognition capability is proposed recently [2], and
this strategy shows better performance than all the previous
strategies. This strategy, however, has the drawback that it is
only applicable to somewhat specific situations owing to the
limitation of its heuristic.

In this paper, we propose a new best-fit submesh

130 YOON AND KIM : A DYNAMIC PROCESSOR ALLOCATION STRATEGY FOR MESH-CONNECTED MULTICOMPUTERS

allocation strategy, called Free Submesh List(FSL) strategy.
The proposed strategy maintains and uses a free submesh list
keeping all of the different free submeshes available in the
system to get global information for free submeshes. The
basic idea of our approach is to allocate a submesh which
can preserve the large free submeshes as many as possible
and to maintain the high availability of the wide range of
submeshes, for later tasks. This approach would be able to
reduce the external fragmentation, especially prevent the
‘unnecessary’ external fragmentation occurring by an
inefficient allocation. Simulation study demonstrates that the
proposed strategy outperforms the previous strategies, under
meshes of various sizes and various loads. The experimental
results indicate that the proposed strategy achieves about
30% and 10% average improvements over the best previous
strategy under First Come First Served (FCFS) and
Modified-FCFS job scheduling disciplines, respectively.
While the proposed strategy can be easily extended to the
meshes of higher dimensions, our discussion here is limited
to the two-dimensional meshes, for simplicity.

The rest of this paper is organized as follows. Section 2
presents basic notations and briefly reviews the previous
work on submesh allocation. Section 3 introduces the
proposed allocation strategy, and provides the comparison
with other strategies. Presented and discussed in Section 4
are the simulation results of the allocation strategies
measured under various load distributions. Conclusion is
given in Section 5.

II. Preliminaries and Related Work

A two dimensional mesh M(L,,L,)is an LyxLy
rectangular grid which consists of L. L, nodes. A node in
a mesh system refers to a processor. So the terms node and
processor are used interchangeably in this paper. A node in
a mesh is identified by its coordinate <x,y> from the
lower-leftmost position <0, 0> of the mesh, where
0<x<Ly-1 and 0<y<L,—1. A node <x,y> except the
boundary node is connected to four adjacent nodes
<x—1, >, <x+1,», <x,y—1>, and <x,y+1>. Each
boundary node has two or three of the above adjacent nodes
depending on their positions. Fig. 1 presents a 7x5 mesh
with all the addresses of its nodes.

A submesh S(i.. 1) in the mesh M(Ly,L,), 1</.<Ly
and 1</,<L,, is an [x/ rectangular grid which belongs to
M(Ly, Ly with [-1, nodes. The address of a submesh is
denoted by a quadruple (Kx, »>,<x',y>), where <x,y>
indicates its lower-leftmost coordinate and <(x', y'> its
upper-rightmost one. For convenience’ sake, we will use the
terms both S(/., /) and S((x,y>.<x',y¥>) to denote a
submesh. A free submesh is a submesh in which all the

processors are currently free, and an allocated submesh is a
submesh in which all the processors are currently allocated
to a task. As an example, a free submesh S(<0.2>,<3, 4
and an allocated submesh $'(<4, 0>,¢6, 3>) in Fig. 1 denote
submeshes of 4x3 and 3x4, respectively. We specify an
incoming request’ (task) for a rectangular submesh of size
axb or bxa by (a, b.

Fig. 1. Example of a 7x5 mesh M(7, 5).

The submesh allocation problem is to recognize and locate
a free submesh accommodating a request for a submesh of
an arbitrary size. An allocation strategy is said to be
complete recognition if it can recognize and allocate all the
possible submeshes of any size. In the last few years, several
submesh allocation strategies have been reported in the
literature [7,8,9,10,11,12], with/without complete recognition
capability. These strategies are classified into two appro-
aches, first-fit and best-fir. In the (first-fit approach,
submeshes are searched in a fixed sequence and the first free
submesh is allocated. On the other hand, the best-fit approach
is intended to allocate an appropriate submesh by considering
the contributions of submeshes to the external fragmentation
for the mesh system. In the hypercube, due to the symmetric
property of topology, the processor (subcube) allocation
strategies show the fairly similar performance regardless of
their allocation approach, first-fit or best-fit with/without
complete recognition capability [13]. However, in the
submesh allocation, as observed in the previous works, the
performances of allocation strategies are subject to their
recognition capabilities and allocation properties.

In what follows, we briefly review previous allocation
strategies. The details of each strategy can be found in the
references [7,8,9,10,11,12].

1. Two-Dimensional Buddy Strategy

The Buddy strategy [7,8] was proposed for a square mesh
with side lengths being exactly powers of 2. This strategy
can recognize and allocate the specific square submeshes
whose side length is a power of 2. For a request of arbitrary
side lengths, it allocates the smallest square submesh
accommodating the request, and hence serious internal

JOURNAL OF ELECTRICAL ENGINEERING AND INFORMATION SCIENCE, VOL. 1, No. 1, 1996." ' 131

fragmentation can be involved owing to over-allocated nodes.
Thus, this strategy cannot be incorporated in general meshes
with arbitrary side lengths.

2. Frame Sliding (FS) Strategy

To solve the internal fragmentation of the Buddy strategy
and to improve flexibility in identifying free submeshes, the
FS strategy was proposed in [9]. This strategy allocates a
submesh of the size identical to a request and can be applied
to meshes with arbitrary side lengths. This strategy, however,
still cannot completely recognize all the submeshes because
of its fixed orientation along with horizontal and vertical
strides. That is, for a request (a, b), it searches a first free
submesh of &x#& but not sxe with horizontal stride o and
vertical stride » from the first (lower-leftmost) free
processor.

3. First-Fit (FF) and Best-Fit (BF) Strategies

To solve the problem associated with fixed strides in the
FS strategy, two strategies were proposed in [10]. For a
request (a,), the FF strategy allocates the first free
submesh of 4xp without fixed strides. Hence, this strategy
recognizes all available x5 submeshes. However, the FF
strategy still has the problem of fixed orientation, that is, this
strategy can not recognize bxq submeshes like the FS
strategy. On the other hand, the BF strategy tries to allocate
a submesh in the smallest region of free processors, reserving
the large regions for later tasks. For the best-fit submesh, the
BF strategy selects a submesh whose base node, the
lower-leftmost node of the submesh, has the largest number
of busy (allocated) neighbors (a boundary node of mesh is
considered as having a busy neighbor beyond that boundary).
Like the FF strategy, the BF strategy does not have complete
recognition capability. Moreover, the BF strategy did not
show clear performance improvement over the FF strategy on
simulation. '

4. Adaptive Scan (AS) Strategy

The AS strategy [11] is the first one providing the
complete recognition capability. For an allocation request
(a, b), this strategy first finds an axs free submesh from
the coordinate <0,0> to <Ly—1,L,~1> by increasing «
-coordinate prior to y-coordinate. If an oxb free submesh
does not exist, the strategy tries to find a sxa free submesh
by the same way as the above. Although this strategy has the
complete recognition capability, it may suffer from the
significant external fragmentation because of its first-fit
behavior.

5. Busy-List Strategy

The Busy-List strategy [12] is the first best-fit strategy
with the complete recognition capability. This strategy
allocates a submesh with the largest boundary value either

adjacent to allocated submeshes or on one of the four corners
of mesh to reduce the external fragmentation occurred in the
first-fit approach. The boundary value of a submesh is the
sum of the number of busy neighbors of its nodes, where a
boundary node of mesh is considered as having a busy
neighbor beyond that boundary. For example, the boundary
value of a submesh S shown in Fig. 1 is 9 since the node
<0,4> has two busy neighbors beyond upper and left
boundaries, each of nodes <0, 2>, <0.3» <1,4>, <2,4>,
and <3,4> has one busy neighbor beyond the associated
boundary, and each of nodes <3,2> and <3, 3> has one
busy neighbor which belongs to the allocated submesh §'.
For an allocation request, this strategy generates candidate
submeshes on the boundary of allocated submeshes and the
corners of the mesh, if possible. Then, this strategy evaluates
the boundary values of the candidate submeshes and allocates
one which has the largest boundary value. This heuristic is
similar to that of the BF strategy which considers only the
boundary value of base node. Although this strategy provides
the better performance than the other strategies, its heuristic
using boundary value is only applicable to somewhat specific
situations because of its own limitation of selecting best-fit
submesh, and so this strategy does not fully resolve the
unnecessary external fragmentation (described in Section 3).

[IT. The Proposed Strategy

In the following, we propose a new recognition-complete
allocation strategy based on the free submesh list, termed the
FSL strategy. The proposed strategy offers the best solution
to date which can effectively reduce the external
fragmentation. In the various environment, the proposed
strategy exhibits the best performance and the least run-time
overhead.

1. Free Submesh List

The free submesh list (FSL) consists of the dominant free
submeshes covering all possible free submeshes. A free
submesh is said to be dominant if it is not covered by (i.e.,
not a submesh of) any other free submeshes. Those dominant
submeshes may not be disjoint each other, that is, they may
share common regions (said to be overlapping).

Definition 1. The FSL is a sorted list of dominant free
submeshes in non-increasing order of size, i.e., the number of
nodes. If two free submeshes are of the same size, one of
them closer to the square submesh is prior to the other.

For example, in a 10x10 mesh as shown in Fig. 2, there
are three dominant free submeshes, $,(<0, 0>,¢6,4)),
Sy(<4,0>,<6,9>), and S3(<4,5>,¢9, 7>) of sizes 35(7x5),
30(3x10), and 18(6x3), respectively. In this case, FSL is
sorted in sequence S, S,, and S;, from the largest free
submesh to the smallest one.

132 ' YOON AND KIM : A DYNAMIC PROCESSOR ALLOCATION STRATEGY FOR MESH-CONNECTED MULTICOMPUTERS

Fig. 2. Dominant Free Submeshes.

Definition 2. The reservation factor of a submesh
S(<xy . 3mY.<xa . y0>) against a submesh S(<x), 0. <y wo)) 18
referred to AS.S) and is defined as the size of the largest
submesh formed from S except the overlapping region as
follows (see Fig. 3):

max { (x,—x) L, (xo—x) » Los e =y, Loe (=),

rAS.SH)= if Sand S are overlapping,

I - ['\. (= size of §'), otherwise.

where /,=x.—-x+1, L=w—y +1, and max{*} is a
function that returns the largest non-negative value.

e ——— e =
I H 1 . |I
I P ,
i ! o g = hx (%Y
I -{:j)llj Ig_ 1]
I ~ |
(4e)) x Iy —= E oI !
1 | Lo (ogr25) x1y
t | S | {
| ! | 1
I : II |
- |
» ! 1 T
LRI O iy & < I M W— 1
1
s'

Fig. 3. Reservation Factor : Submeshes reserved by S.

In Fig. 2, the »7 of the submesh S$,(<4,0>,<6,9>) against
the submesh S,(<0,0>.<6.4», AS,.Sp, is 20 (=
max{4-5.0,0, —5-7}), since the largest submesh constructed
from S, except the overlapping region (<4,0>,<6,4>) is
(0. 0>.<3. 4> of size 4x5. Also, rAS,, S,)=15, i.e., the
size of submesh (<4,0>,¢6,4>) which is larger than the
submesh (<4, 8>,¢6, 9.

Definition 3. For a request (a, 5), a candidate submesh is
a free submesh of size axb or bxa.

Definition 4. A candidate submesh is said to be dominant

against a free submesh S if it has the largest »f against S
than any other candidates.

2. Allocation Algorithm

For an allocation request («,#), first, the proposed
allocation algorithm generates candidates of the size either
axb or bxg from free submeshes in FSL. Consider a free
submesh S(<x,, ¥;>,<x, , »>) in FSL accommodating the
request. Candidate submeshes are generated from four
corners of free submesh S, <, , yl>, <x1, vds {xy ., y1>, and
(x> . y,>. As shown in Fig. 4, candidate submesh(es) of types
axb andfor pxq can be generated at each corner. When
candidates of both types can be generated, one approach, we
adopt, is to consider only the candidates of a type with the
larger s value against S, i.e., dominant candidates against
S. Then, the algorithm evaluates the »f's of candidates of
both types against S and chooses the candidates (of a type)
which are dominant against S. Although many other
candidates may be possible, considering only the dominant
candidates is sufficient because, with regard to the submesh
S, they have the largest »f value and reserve the largest
submeshes than any other candidates. This approach is
expected to cause less external fragmentation in the choice of
candidate submeshes by preventing the large free submesh
from being fragmented to several smaller submeshes. Fig. 5
presents all candidate submeshes for the request (3,2) on the
case of Fig. 2, where (; denote candidate submeshes
originated from the free submesh s, in Fig. 2.

jé_rlﬁ

Fig. 4. Candidate submeshes from a free submesh for
the request (a. b).

On the completion of generating candidate submeshes, the
algorithm evaluates the »f of each candidate submesh against
the first free submesh of FSL and then rejects candidate
submeshes except those which have the largest s value, and,
evaluates candidate submeshes not rejected against the
second free submesh of FSL and then rejects candidate
submeshes except those which have the largest »f value, and,
so on. The s is used for evaluating the potential external
fragmentation of candidate submeshes. The candidate
submesh with large s values can conserve larger free

JOURNAL OF ELECTRICAL ENGINEERING AND INFORMATION SCIENCE, VOL. 1, No. 1, 1996. 133

submeshes than the one with small ,7 values. Since the free
submeshes in FSL are sorted in non-increasing order of size,
the above evaluation process using »f chooses the dominant
candidate against all the free submeshes which can reserve
large free submeshes as many as possible for later requests.
This may prevent ‘unnecessary’ external fragmentation and
alleviate the overall external fragmentation. For example,
suppose in Fig. 5 that the two tasks #=(3,2) and #=(7.5)
are submitted to the system in that order. If either one of Cy
or ¢} is allocated to the task ¢, the subsequent task #
cannot be allocated due to the external fragmentation. This is
an instance of ‘unnecessary’ external fragmentation arising
because of an inefficient allocation. On the other hand,
allocating one of C} or C; to the task ¢ can accommodate
the task # in the submesh (<0, 0>.<6, 4>). In this case, the
proposed algorithm allocates ¢} to the task ¢, since C; has
the largest s/ values against all the free submeshes (see
Example 1).

ort— L

Fig. 5. Candidate Submeshes for the request (3,2).

After the evaluation for the candidates, if two or more
candidates are remained, the algorithm performs the
evaluation for the candidates against the entire mesh
(0,0, <Ly—1, Ly—1>). The »f value of a candidate against
the entire mesh indicates the size of a potential free submesh
reserved by the candidate. The aigorithm chooses the
dominant candidate against the entire mesh, so that the
already allocated submeshes on being released may be
merged each other or together with free submeshes into large
free submesh(es). The formal allocation algorithm is
presented in Fig. 6. The symbols used by the algorithm mean
that: cand_list denotes the list of candidate submeshes being
considered; free_list denotes FSL, the list of free submeshes;
alloc_list denotes the list of allocated submeshes; best
denotes the best candidate submesh.

Alloc{ a, b) /* Request (a, b) */

{
/* Step 1%/
cand.list = &:
for all free submesh S € free.list do
if (S can accommodate the request a x bor b x a)
Generate candidate submeshes from the four corners of S and
store them to cand_list;
if (cand list == ¢)
Stop and wait until a submesh is released;
/* Step 2 */
for all free submesh S € freelist do {
Evaluate the rf of each candidate submesh in cand.list against S;
Reject candidate submeshes except those which have the largest rf value;
if (There is only one candidate submesh in cand.list)
Assign it to best and goto Step 3;
Select the candidate submesh which has the largest rf value against the mesh
(<0,0>.<Lx —1,Ly ~1>) and assign it to best;
/* Step 3%/
for all free submesh S € freeldist do
if (S is overlapping with best) {
Delete S from free list;
Generate new submeshes by decomposing S and
insert them into free_list if they are dominant submeshes;
Allocate submesh best to the request and insert it into alloc.list;
}

Fig. 6. Allocation Algorithm.

The following example illustrates allocation process for a
request (3,2) in the situation of Fig. 2.

Example 1. [Initially, FSL = {5/(0.0>.<6,4>,
S.(<4, 05,46, 9%, Si<4.5,¢9. 7} The algorithm, from
free submeshes S, S., and S, generates candidate
submeshes { C!, C?. C!. Cl,Ch, G, CL, ¢ | as shown in
Fig. 5. Then, the algorithm evaluates the »/’s of candidate
submeshes against the first free submesh S
PRC . S) = mC. Sy =2 (= size of (<2,05.¢6.4 of
5-5), rACH. S) = rACtH, S) =25 (= size of (<0, 0.<4.4>)
of 5-5), #Ch, S) =21 (= size of (<0.2>.¢6,4» of 7-3),
and, »AC.S) = #Ch, S) = rAC;i. S) =35 (= size of §)).
Excepting dominant candidates C; and ¢/ with the largest
+f value of 35, the algorithm rejects all other candidates ¢y
and .. Again, the algorithm evaluates the »'s of candidates
c¢: and (¢; against the second free submesh S
WRC, Sy =24 (= size of (<4,0>,¢6.7» of 3-8),
HACh, S) =15 (= size of (<4,0><6,4>) of 3-5), and,
HACL. Sy) = 30 (= size of S,). Then, the algorithm rejects C;
and cl. Now that only one candidate submesh (3 remains
(which is the best under the current situation), the algorithm
does not perform evaluation for free submesh S;,. In step 3,
because S, is overlapping with the best candidate submesh
¢2, the algorithm decomposes S, into free region(s) and an
allocated one, and generates a submesh (<4,5>,<7,7)
(denoted as §). Since S is a dominant submesh which is
not covered by existing free submeshes S, and S,, S is
inserted into FSL. The final FSL is { $,(<0,0>.<6, 4>),
S.(<4,0>,¢6,9>), SK4,5 <7, (IR

The main advantage of the proposed strategy is that it can
conserve the large free submeshes of the wide range of size

134 YOON AND KIM : A DYNAMIC PROCESSOR ALLOCATION STRATEGY FOR MESH-CONNECTED MULTICOMPUTERS

as many as possible after allocation, and thus, prevent
available processors from being fragmented. Moreover, the
proposed strategy can successfully resolve the external
fragmentation occurred by allocating from a large free
submesh although a smaller free submesh can accommodate
a request. The previous strategies have the difficulty to
resolve this type of fragmentation effectively, on account of
the first-fit behaviors of the AS strategy and the un-robust
heuristic of the Busy-List strategy which cannot discriminate
between a candidate submesh located at a large free region
and one at a small free region if they have the same
boundary value. On the above example, the AS strategy
allocates submesh either (<0, 0>.<2,1>) of 3x2 or (] of
2x3 in Fig. 5, since those are the first free ones of size 3x2
and 2x3, respectively.

(b

Fig. 7. The best candidate submeshes (S and §') and
the worst (S and S').

On the other hand, the Busy-List strategy allocates one of
submeshes ¢ and ¢} since these two submeshes have the
largest boundary value of 7. The Busy-List strategy has two
main disadvantages: (1) Many candidate submeshes have the
same boundary values; (2) To choose the candidate
submesh(es) with the largest boundary value may be the
worst choice on a situation. For example, consider two
situations for a 10x10 mesh shown in Fig. 7. For a request
(4,3) on the situation of Fig. 7 (a), there exist 11 candidate
submeshes having the same boundary value of 7 (but we
present four submeshes among them). In this case, although
both submeshes S (or S') and S (or §'') have the same
boundary value, the submesh S (or §') is the best choice
because it can reserve submeshes of 5x7 and 10x3, but the
submesh §'' (or §'') is the worst choice. On the other hand,
on the situation of Fig. 7 (b), only two submeshes S and
S have the largest boundary value of 9. However, selecting
one of them is the worst choice because it cannot conserve
the largest free submesh of size 10x5 and may cause more
external fragmentation than other candidates, S and §‘, with
the smaller boundary value of 7. In the above two situations,
our strategy allocates either S or &', which are the best
choice since they conserve the largest free submesh after
allocation. As another advantage of our strategy, our
allocation algorithm can quickly determine whether a request
can be accommodated by searching FSL, and hence, can
avoid exhaustive search unlike most of the previous strategies
basically using the frame-sliding method.

3. Deallocation Algorithm

Once a submesh is released after the corresponding task is
completed, the deallocation algorithm starts from the initial
mesh (<0, 0>,<Ly—1, Ly—1>) and generates a new set of
dominant free submeshes by decomposing the initial mesh
for the allocated submeshes. Fig. 8 describes the deallocation
algorithm. For a released submesh R, first (step 1), if FSL
(free_list) is empty, the released submesh is inserted into
FSL; otherwise, if the allocation list (alloc_list) is empty, all
the submeshes in FSL are removed and FSL is set to the
initial list (<0, 0>,<Ly—1, Ly~1>) because all the nodes of
mesh system are free. Otherwise, that is, if both FSL and the
allocation list are not empty, FSL is set to the initial list
{ (<0,0>.<Ly~1, Ly-1>}, and the algorithm decomposes
submesh(es) in FSL for all the allocated submeshes in the
allocation list with the same way as in step 3 of allocation
algorithm. After completion of step 2, FSL is set to the
dominant free submeshes including all the nodes of the
released submesh R.

Example 2. Consider the situation of Fig. 2. Initially, FSL
= {S,.S,,S) and alloc_list = {A,(7,0549,4,
AT, 85,49, 9), A3(<0,55,¢3,9)}. When the allocated
submesh A, is released, A, is removed from alloc_list, and
alloc_list = { A, A,}. In step 2, FSL is reset to the initial

JOURNAL OF ELECTRICAL ENGINEERING AND INFORMATION SCIENCE, VOL. 1, No. 1, 1996, 135

state { S(<0, 0>,<9, 9>)}. For the allocated submesh A,, S is
decomposed into two submeshes §, and S, as shown in Fig.
9, and so FSL = { $1(<0, 0>.¢6, 9>, Sx(<0,5>¢9,9»]}. For
the allocated submesh A,, since S, is overlapping with A,,
S, is removed from FSL and is decomposed into two free
submeshes S5(<0, 55,<9, 7>) and S,(<0, 5>,<6, 97). Since S,
is dominant and S, is covered by S,, S, is inserted into FSL
and finally FSL = { S,(<0, 0>.<6,9%), S5(<0.55,<9, ™)}

Dealloc(R) /* R is a released submesh #/
{

/? Step 1%/

if (freelist == ¢) {
freelist = {R};
return;

}

if (alloc list == ¢) {
free list = {(<0,0>,<Lx-1,Ly —1>)};
return;

}
/% Step 2 %/
free_list = {{<0,0>,<Lx-1,Ly -1>)};
for all allocated submesh S € alloc_list do
for all free submesh §’ € free_list do
if (S is overlapping with S') {
Delete S’ from free_list and generate new submeshes by decomposing S';
Insert the new submeshes into free_list if they are currently dominant;

}

Fig. 8. Deallocation Algorithm.

Fig. 9. Example of Deallocation Algorithm.

4. Algorithm Analysis

In the following, we analyze the theoretical time
complexity of the proposed strategy in the worst case. We
first analyze the time complexity of the allocation algorithm.
In step 1 of the allocation algorithm, at most N, free
submeshes each of which accommodates a request are
considered to generate the candidate submeshes, where w; is
the number of free submeshes in FSL. Thus, the time
complexity of step 1 is O(n). In step 2, at most 4- N,

candidate submeshes are evaluated for ~, submeshes in FSL.
Hence, step 2 has the time complexity of O(A?). In step 3,
at most N, submeshes in FSL may be overlapping with the
best submesh, and they are decomposed into at most four
free submeshes which are inserted into FSL if they are
dominant. Thus, the time complexity of step 3 in the worst
case is O(N7), too. Therefore, the allocation algorithm takes
O(N?) time complexity in the worst case.

Let us analyze the time complexity of the deallocation
algorithm in the worst case. The time complexity of step 1
is 0(1) when either FSL or the allocation list is empty. In
step 2, if we assume that the number of allocated submeshes
in alloc_list is N,, then from the following theorem, the
maximum number of (dominant) free submeshes (N)) is less
than 4-n, Since the time complexity of the body of
if-statement of step 2 is O(N), that of step 2 in the worst
case is O(N,-N) = O(N)). Therefore, the deatlocation
algorithm takes O(N}) time complexity.

Theorem 1. If there exist k(= 1) allocated submeshes in
a mesh, then the maximum number of dominant free
Submeshes is less than or equal to 4 - k.

Proof. If # allocated submeshes exist in a mesh, the mesh
can be divided into # arbitrary independent (i.e.,
non-overlapped) regions (submeshes), each of which must
include only one allocated submesh. Then, each region
includes at most four free submeshes, each of which may not
be really a dominant free submesh. If a free submesh in a
region is not a dominant free submesh, it is a part (submesh)
of a dominant free submesh. Since there exist at most 4- &
free submeshes in # regions and a dominant free submesh
may be counted more than once if it is divided into the parts
of one or more regions, the maximum number of dominant
free submeshes is less than or equal to 4- &[]

Table 1 summarizes the time complexities of the strategies
described in Section 2 and the proposed strategy along with the
other characteristics, where N~ is the number of nodes in a mesh.

Table 1. Characteristics of submesh allocation strategies.

Strategies Allocalio.n Dea]]ocalif)n Com[f)lle(e Imemfil Type ;
Complexity | Complexity | Recognition | fragmentation
Buddy o(N) O(N) No : Yes Besi-Fit j
FS O(N) o No l No First-Fit '
FF (N Oo(N) No ‘ No First-Fit |
BF A(N) N No No Best-Fit |
AS ON) (1) Yes No First-Fit
Busy-List O(N%) o) Yes No Best-Fit
Proposed O(NY (N Yes No Best-Fit

IV, Simulation Study

A simulation study is conducted to evaluate the per-

136 YOON AND KIM : A DYNAMIC PROCESSOR ALLOCATION STRATEGY FOR MESH-CONNECTED MULTICOMPUTERS

formance of the proposed strategy and for the comparison
with other strategies. Two previous strategies, the Busy-ListD)
and AS strategies, are compared with our FSL strategy, since
they show the better performance than any other strategies [
11,12].

1. Workload and Job Scheduling

The workload considered on simulation is characterized by
the job arrival distribution, distribution of the job size
(submesh size), and distribution of the job residence (service)
time. The job arrival pattern is assumed to follow Poisson
distribution [14] with an arrival rate 2. The job residence
time is assumed to follow exponential distribution [15] with
a given mean residence time. The job size (the side lengths
of submesh) is assumed to follow a given distribution:
uniform, normal, and exponential distribution [15]. Under
normal distribution, the mean of each side length distribution
was selected as (1+L,)/2 and (1+L,)/2, and the variance as
half of the mean, ie., (1+Ly/4 and (1+L,)/4 for LyxL,
mesh. The exponential distribution has the same mean as the
normal distribution. Values drawn from the distributions
outside of the range were ignored. Under a given system load
o (0.0 ¢ p=<1.0) and residence time, the job arrival rate ()
is determined as follows:

N

job arrival rate (1) = —fﬁ

where ~ is the number of processors contained in the
mesh (N=Ly-L,), m is the mean number of processors in
a submesh request, and » is the mean residence time.

We consider the two job scheduling disciplines, the
First-Come-First-Served (FCFS) and Modified FCFS
(M-FCFS). In the FCFS scheduling, only the job at the head
of queue (head job) has the chance to be allocated. In the
M-FCFS scheduling, when the head job is blocked, that is,
it is failed to be allocated, subsequent jobs are considered in
arrived sequence and allocated if suitable submeshes are
found. The head job may suffer indefinite postponement
under certain distribution of workload. To eliminate indefinite
postponement, we impose a threshold value to the blocked
head job, which is maximum queuing delay that a job can
tolerate at the head of queue. The threshold could be
predefined or computed dynamically. A dynamic threshold is
derived by d,-4, where 4, is average queueing delay for
allocated jobs until now. The average queueing delay and the
arrival rate are monitored by the scheduler. The scheduler
updates the threshold value everytime a task is allocated to
the system. When the threshold of the head job is reached,
it gets priority over all other jobs. No jobs are allocated until
the head job is allocated.

1) The source code of the busy-list strategy was provided by
D.D.Sharma and D. K. Pradhan [12].

2. Simulation Result

The simulator was developed in C and compiled with the
highest level of optimization on a SUN SPARCStation
10/514 multiprocessor system. The performance of strategies
is measured in terms of ‘the mean waiting delay, allocation
miss, and mean search time for 100,000 requests per run of
simulation under 95% confidence level with the error range
of +3%, which are defined as follow:

° waiting delay, the time that elapses from the moment a
job initially arrives to the system until it is
allocated to a submesh.

o allocation miss, the percentage of allocation miss for
valid requests, where a request is
valid if there are enough nodes available.

= mean search time, the average cpu time elapsed on

allocation(s) and deallocation per job
(the allocation attempt for a job may be done more than
once).

We have assumed the mesh system to be a square one,
done for simplicity to plot curves, though the trends should
remain the same for any arbitrary mesh systems.

We first present the simulation results based on FCFS
scheduling. The first experiment was performed to measure
the mean waiting delay by changing the size of mesh from
16x16 to 512x512. The offered load and the mean residence
time were given 0.47 and 10 seconds, respectively. Fig. 10
gives the results of experiment for the uniform and
exponential distributions. The experimental result for the
normal distribution exhibited similar trend as that for
exponential distribution and therefore, is omitted. For the
exponential distribution, the result of the AS strategy for over
64x64 mesh is eliminated to obtain better scaling factors,
since the AS strategy is saturated at the load 0.47. As can
be seen in the figures, the proposed strategy outperforms the
other strategies. As the mesh size increases, the performance
difference between our strategy and the other strategies
increases. Moreover, the proposed strategy shows the nearly
similar performance for both uniform and exponential
distributions, while the Busy-List and AS strategies show the
more or less dependent results on the type of load. For the
uniform distribution, the proposed strategy improves the
mean waiting delay about 31% to 56% over the AS strategy
and 14% to 26% over the Busy-List strategy. For the
exponential distribution, the proposed strategy achieves 46%
to 91% and 16% to 39% improvements over the AS and the
Busy-List strategies, respectively. Also, under the normal
distribution, the proposed strategy achieves 41% to 83% and
19% to 36% improvements over the AS and the Busy-List
strategies, respectively. These results are due to relative
efficiency of the heuristic of the proposed strategy over the
first-fit policy of the AS strategy and the heuristic of the
Busy-List strategy.

JOURNAL OF ELECTRICAL ENGINEERING AND INFORMATION SCIENCE, VOL. 1, No. 1, 1988. 137

100.0 7
FCFS: Unifom": & Exponential Dist. Locd = 0.47
0.0 4’
FSL(Unj) 0—o

~ gpo| BUSY(Usi)o—o
q AS(Uni.) >—o
9 FSL(Exp.) 0---©
< BUSY(Exp.) o-—8
a / ‘
e 60.0 /
g
B osoof/ 0 e 4
A
2 w0l

300 ’

20.0

16 32 64 128 256 512
Size of Mesh (Each Side)

Fig. 10. Mean Waiting Delay vs. Size of Mesh.

The second experiment was performed to measure the
mean waiting delay by changing the offered load from 0.1 to
1.0 for 64x64 mesh. Fig. 11 gives the results of experiment
for the uniform and normal distributions with the range of
the load from 0.3 to 0.55, to obtain better scaling factor
because all the strategies are saturated over the load 0.55.
The proposed strategy performs the best under all the loads.
As the load increases, the AS and Busy-List strategies are
saturated more rapidly than the proposed strategy and also
the performance difference grows. Only the proposed strategy
can sustain the load over 0.5, nearly up to 0.55, for both
uniform and normal distributions. Similar result was observed
for the exponential distribution, and therefore, the results are
not presented.

1000
FCFS: Unifmn&Nmnal Dist. 64 x 64 Mesh
800
@ FSL(Uni.) o—o
3 BUSY(Uni)) o—o
S Fg&gni.; a—a
07.) @-—©
2 600 - ByUSY(Nor) oo
A AS(Nor) &4
oo
g
= 400
=
200
) SRS
03 035 0.4 045 05 055

Fig. 11. Mean Waiting Delay vs. Load.

To observe a picture of the optimality of the strategies, the
third experiment was performed to gauge the percentage of
the allocation miss for valid requests. Figs. 12 and 13 present
the results of experiment for the uniform and normal

distributions for the load 0.47 and 64x64 mesh, respectively.
The proposed strategy exhibits the lowest miss percentage
compared to the other strategies. The allocation miss for a
valid request is due to the external fragmentation including
the unnecessary external fragmentation resulted from the
decision in the previous allocation step, as already explained
in the previous section. Therefore, the experimental results
demonstrate that our strategy provides more optimal
allocation than the other strategies.

4290 .
FCFS: Uniform & Exponenticl Dist. Locd = 0.47
40.0 : , . . e
FSL(Uni)o—o .- e
38.0 } - BUSY(Uni.) 0—=0 ... o=
AS(Uni) 6—0-"
16.0 FSL(Exp,)-e---©

R
BUSY(Exp.) o---o
AS(

Miss (%)

64 128 256 512
Size of Mesh (Each Side)

Fig. 12. Allocation Miss vs. Size of Mesh.

eyl Syl Ol

400 -

FCFS: Uniform & Normal Dist. 64 x 64 Mesh A-'” o8GO
38.0 S -8 -4

FSL(Uni.) o—o s a? o7
360 | BUSY(Uni)o—o = e
AS(Uni.) =—a & - —2—

340 FSt(Nor.) o---© e H,."

BUSY(Nor.) a---o A e o

320 AS(Nor) a7 @7 g7

Miss (%)

03 0.35 04 045 0.5 0.55
Load

Fig. 13. Allocation Miss vs. Load.

The fourth experiment was performed to compare the
run-time overhead, i.e., the mean séarch time, of strategies.
The experimental results are given in Fig. 14 for the
exponential and normal distributions. Fig. 14 shows that the
Busy-List and our strategy give the nearly constant mean
search times, regardless of the size of mesh, while our
strategy exhibits slightly lower than the Busy-List strategy.
The AS strategy, however, provides the mean search time
increasing in proportion to the size of mesh.

138 YOON AND KIM : A DYNAMIC PROCESSOR ALLOCATION STRATEGY FOR MESH-CONNECTED MULTICOMPUTERS

14 700
Normal & Exponential Dist. Lozd =0.47 / M-FCPS: Uniform & Neree~t Dint. 64 x 64 Mesh
12 . : /! . 600 .
BUSYNo) s S 4 BUSY(Un) o
7 10 AS@or) o S 4 gm o Do
3 Pt / X3 BUSY(Nor) oo
£ o s 3 AS(or) o
& 0.8 gaoo :
: [
§ 06 -'§ 300
; 3
s = 20
160 B
0 bt
16 2 64 128 256 512 03 04 0s 06 01 o8
Size of Mesh (Each Side) Load'
Fig. 14. Mean Search Time vs. Size of Mesh. Fig. 16. Mean Waiting Delay vs. Load under M-FCFS
Scheduling.
Next, we present the experimental results based on
M-FCFS scheduling. The experimental results are given Figs. 70
15, 16, and 17. Figs. 15 and 16 show that the M-FCFS M-FCFS: Nomal & Exponentisl Dist. Locd = 0.57 : A
discipline gives better performance compared to the FCFS 60 FSL(Non:.)O-—O ' Coe ’,/7-
scheduling of Figs. 10 and 11. The proposed strategy shows - Bumgg:;g:g i o/
better performance than the other two strategies. As shown in é 50 ""'“'ﬁg{;ggg'ggjg N 4
Fig. 15, the proposed strategy improves mean waiting delay v p.) &--a -/
about 16% to 28% over the AS strategy and 7% to 13% over E 40 ' V, /
the Busy-List strategy under uniform distribution at load 'g
0.57. For the exponential distribution, the proposed strategy ‘g '
achieves 15% to 25% improvement over the AS strategy and £
5% to 11% over the Busy-List strategy. Fig. 16 shows that
the proposed strategy performs the best under all the loads.
Fig. 17 presents mean search times of strategies. The
proposed strategy shows the lowest mean search time which 16 . 128 256 312
is nearly constant regardless of both the size of mesh and . Size of Mesh (Bech Side)
distribution.
650 Fig. 17. Mean Search Time vs. Size of Mesh under
M-FCFS: uﬁlfm&zxmﬁmoin. Lozd =0.57 M-FCFS Scheduling.
6901 Fsiauni)o—o '
550 BUi‘sffgzgg o—=a From the simulation study, it should be noted that, on both
'g JS#EES:’ o FCFS and M-FCFS scheduling, the proposed strategy exhibits
: 500 ASEsS. the best performance compared to the other strategies and
X 450 obvious improvement for all the performance measures under
g 00 : various distributions, regardless of both the size of mesh and -
g o O) the load.
§ _—
=
V. Conclusion
o " " — P a1z The performance of mesh multicomputer possessing
Size of Mesh (Ezch Side) hundreds or thousands of processors is subject to the efficient
use of its processors. Therefore, an efficient submesh
Fig. 15. Mean Waiting Delay vs. Size of Mesh under allocation strategy is essential for achieving the high

M-FCFS Scheduling. performance on mesh multicomputers. In this paper, we

JOURNAL OF ELECTRICAL ENGINEERING AND INFORMATION SCIENCE, VOL. 1, No. 1, 1986. 139

introduced a best-fit submesh allocation strategy for the mesh
multicomputers. The proposed strategy allocates a best-fit
submesh which can preserve the large free submeshes of
wide range of size as many as possible and thus causes the
minimal fragmentation by using reservation factor
quantifying the potential fragmentation of candidate
submeshes. To evaluate the quality of the proposed strategy,
we compared with the other two complete recognition
strategies by simulation. Simulation results show that the
proposed strategy leads to the lowest waiting delay and
allocation miss compared to other strategies for meshes of
various sizes under various kinds of system loads. The
proposed strategy achieves about 30% and 10% average
improvements over the best previous strategy under the FCFS
and Modified FCFS job scheduling disciplines, respectively.
As the size of meshes and the loads increase, the
performance difference becomes more obvious. Moreover,
our strategy shows the least run-time overhead which is fairly
constant regardless of both the size of mesh and the load.
Therefore, the proposed strategy offers the most efficient and
practical solution for mesh multicomputers.

References

[1] Intel Cotp., A Touchstone DELTA System Description,
1991.
[2] Intel Corp., Paragon XP/S Product Overview, 1991.
{3] R. Alverson et al., “The Tera computer system,” Proc.
1990 Int’l Conf. on Supercomputing, pp.1-6, 1990.
(4] D. K. Kahaner and U. Wattenberg, “Japan: a
competitive assessment,” IEEE Spectrum, pp.42-47,
Sept. 1992.

[5] G. Zorpette, “The power of parallelism,” IEEE
Spectrum, pp.28-33, Sept. 1992,

Geunmo Kim received the B.S. degree
in computer science from Yonsei
University, Korea, in 1989, and the
M.S. degree in computer science from
the Korea Advanced Institute of Science
and Technology (KAIST), Korea, in
1991. Since 1991, he has been working
towards the PhD. degree in the
Department of Computer Science, KAIST, Korea. His major
research areas are parallel and distributed proecssing,
multiprocessor systems, and interconnection network.

[6] T. E. Bell, “Beyond today’s supercomputers,” IEEE
Spectrum, pp.72-75, Sept. 1992,

[7] K. Li and K. H. Cheng, “A Two Dimensional Buddy
System for Dynamic Resource Allocation in A
Partitionable Mesh Connected System,” Proc. ACM
Computer Science Conf., pp.22-28, Feb. 1990.

[8] K. Li and K. H. Cheng, “A Two Dimensional Buddy
System for Dynamic Resource Allocation in A
Partitionable Mesh Connected System,” J. Parallel and
Distributed Computing, pp.79-83, 1991.

[9] P. Chuang and N. Tzeng, “An Efficient Submesh
Allocation Strategy for Mesh Computer Systems,”
Proc. 11th Int’l Conf on Distributed Computing
Systems, pp.256-262, 1991.

[10] Y. Zhu, “Efficient Processor Allocation Strategies for
Mesh-Connected Parallel Computers,” J. Parallel and
Distributed Computing, vol.16, pp.328-337, Dec. 1992.

- [11] J. Ding and L. N. Bhuyan, “An Adaptive Submesh

Allocation Strategy for Two-Dimensional Mesh
Connected Systems,” Proc. 1993 Int’l Conf on
Parallel Processing, vol.Il, pp.193-200, 1993.

{12] D. D. Sharma and D. K. Pradhan, “A Fast and
Efficient Strategy for Submesh Allocation in
Mesh-Connected Parallel Computers,” IEEE Symp. on
Parallel and Distributed Processing, pp.682-689, Dec.

- 1993,

[13] P. Krueger, T.-H. Lai, and V. A. Radiya, “Processor
Allocation vs. Job Scheduling on Hypercube
Computers,” Proc. 11th Int’l Conf. on Distributed
Computing Systems, pp.394-401, 1991,

[14] S. M. Ross, Introduction to Probability Models: Third
Edition, Orlando, Florida:Academic Press, Inc., 1985.

[15] W. H. Press et al., “Numerical Recipes in C: The Art
of Scientific Computing,” Cambridge: Cambridge
University Press, 1988.

" ~~-.._ Hyumsoo Yoonm received the B.S.
/ . degree in electronics engineering from

. ‘ the Seoul National University, Korea,
' in 1979, the M.S. degree in computer
science from the Korea Advanced

;)) .- Institute of Science and Technology, in
’1 \ 7N 1981, and the Ph.D. degree in computer
VA S and information science from the Ohio

State University, Columbus, Ohio, in 1988. From 1978 to
1980, he was with the Tongyang Broadcasting Company,
Korea, from 1980 to 1984, with the Samsung Electronics
company, Korea, and from 1988 to 1989, with the AT & Bell
Labs. as a Member of Technical Staff. He joined the faculty
of KAIST in 1989. His research interests include parallel
computer architecture, parallel computing, interconnection
network, protocol engineering, and neural network.

