98 JOURNAL OF ELECTRICAL ENGINEERING AND INFORMATION SCIENCE, VOL. 1, No. 1, 1983,

Realizing TDNN for Word Recognition on a
Wavetront Toroidal Mesh-array |
Neurocomputer

Hong Jeong, Cha-Gyun Jeong, and Myung-Won Kim

Abstract

In this paper, we propose a scheme that maps the time-delay neural network(TDNN) into the neurocomputer called EMIND-II
which has the wavefront toroidal mesh-array structure. This neurocomputer is scalable, consists of many timeshared virtual
neurons, is equipped with programmable on-chip learning, and is versatile for building many types of neural networks. Also
we define the programming model of this array and derive the parallel algorithms about TDNN for the proposed neurocomputer
EMIND-II. In addition, the computational complexities for the parallel and serial algorithms are compared. Finally, we introduce

an application of this neurocomputer to word recognition.

I. Introduction

Attempts have been made to implement digital
neurocomputer by means of the network of processors each
of which performs basic functions such as multiplication,
addition for synapse computation and inter-processor
communication for signal transfer between neurons [1], [2],
[3], [4], [5]. Since late 1980’s, lots of neural networks
have appeared in the market. Many products are, however,
issued in the form of more or less software packages
simulating the mathematical functions of artificial neural
networks. Others have appeared as board-level products built
out of conventional DSP chips. In fact, only a few genuine
neural chips have been actually produced. Because of its
difficulty in usage and limited capabilities, these chips are
not widely spread. Some hardware products may be found in
the survey [6].

In light of this, early in 1992, we implemented a digital
neurocomputer called ETRI Machine Imitating Neuro
Dynamics (EMIND), which was built from Digital Neural
Processor (DNP) as a unit processor [7], [8]. In 1994, we
have fabricated an improved neural chip called DNP-II and
thereby built the EMIND-II neurocomputer [9].

Basically, the neurocomputer is a scalable parallel

Manuscript received September 12, 1995; accepted October 11, 1995,
H. Jeong and C.G.Jeong are with Department of Electrical Engineering,
Postech, Pohang, Korea.

M.W. Kim is with School of Computing, Soongsil Univ., Seoul, Korea.

architecture based on asynchronous inter-processor
communication for simulating large scale neural networks.
The EMIND-II is considered a systolic array incorporated
with data-driven computing. In the network each PE is
independently programmed and it communicates with its
neighbors in an asynchronous manner. Unlike the SIMD the
wavefront array needs no global clock for controlling the
entire network of processors and each PE can be clocked
differently. Thus, it is possible to construct massive parallel
network consisting of many PEs. In addition, each processor
can deal with multiple neurons due to the time-sharing
capability, and therefore the machine can emulate very large
virtual networks. The digital VLSI circuit makes it easy to
interface with a host computer via the conventional
parallel/serial ports. Additionally, the on-chip learning
capability and torus connection between boundary neurons
allow the implementation of many types of neural networks
such as Multilayer Perceptron MLP [10], Time Delay
Neural Network(TDNN) [11], Hopfield networks [12], and
Self-organizing Map (SOFM) [13]. In this paper, we shall
focus only on the TDNN.

The purpose of this paper is to develop a possibly general
scheme that drives the neurocomputer to emulate a TDNN
such that a simple change of TDNN parameters such as
weights, number of layers and neurons, and learning
parameters may lead to a variety of applications. Mainly, the
scheme explains how to load the initial parameters from the
host, how to drive the neurocomputer to execute the forward
and backward passes for classification and learning purposes,

JOURNAL OF ELECTRICAL ENGINEERING AND INFORMATION SCIENCE, VOL. 1, No. 1, 1988.

and how to store the result back to the host.

To achieve this goal, we must first define a programming
model of the neurocomputer and the TDNN structure. Based
upon these models, we can then investigate how to program
the network to behave like TDNN. In this context, this paper
addresses the following topics. First, as a minimal knowledge
for the development of TDNN scheme, section 11 introduces
the internal structure of the machine viewed by the
programmer. The TDNN structure and the serial algorithm
are discussed in the following section section III. After then,
section IV derives parallel algorithms of the neurocomputer
for executing the TDNN recognition and leaming procedures.
This parallel algorithm is compared with the serial algorithm
for TDNN in terms of the computational complexities in
section V. Also, an application to word recognition is
discussed.

II. Architecture of the Toroidal Mesh
Array

To begin with, we introduce the architecture of EMIND-II
and the neural chip, DNP-II in a top down order. A detailed
discussion on the architecture is dealt in [9].

1. The EMIND-II Architecture

The EMIND-II is a slave processor that must be supervised
by the host computer. It is the role of the host to load the
programs and data into the internal memory of the slave
processor and read the result from the slave processor. One
of the useful features of our architecture is the capability of
parallel memory loading. When the data is loaded into the
array, it is written into columns (rows) of Processor Elements
(PEs) in parallel, like high bandwidth memory with multiple
buses. Once initiated, the machine simply repeats the
sequential execution of the stored programs, possibly reading
the input data, processing it, and sending the results to the
host.

The actual EMIND-II is a single board processor that
consists of 8 x 8 DNP-Ils. Since each DNP-II contains 4
PEs, it is equivalent to 16 x 16 PEs. Notwithstanding the
particular size and parameters of the actual implementation,
the algorithm is developed in a general setting. Let us
assume that EMIND-II consists of M x M processors, where
M is an integer greater than 2. Fig. 1 illustrates this array
processor for the case of M = 16.

For convenience’s sake, each PE;; is identified by its site
(i,j) in the grid plane and thus the architecture of the machine
can be conveniently represented by the matrix {PE;; | i <
[0, M-1], j = [0, M-1]1}.

It is convenient to partition PEs into four separate blocks
according to their roles: {PE;; |i = [0, M-1],j = [0, M-2

g9

1}, {PEoj | je [0, M-2}}, {PEima | i & (1, M-1]}, and
PEom.1. The central role of the first block is to compute the
sum-of-products. The next two blocks are used as either
parallel inputs or outputs of the neural network. The last
block can be used as an interface with the host whenever a
serial communication is needed.

&

fry
1]

T

CHOCHCH CHOH HOH

14.0) 14,18)

13.0)

0

L O o

HCHCHCH L HEHC R,

o]

©2)

CHCHCHCH CHOHC BTy

T T

CHCHCHE TR R

sl il sl wl gl csl 3
R A T 3

Fig. 1. Network structure- of EMIND-II with M=16.

The elements on the opposite boundaries are connected
one-to-one configuring a toroidal structure. The
2-dimensional toroidal grid is a convenient architecture for
mapping many artificial neural networks. If the processors
are equipped with handshaking protocols, the size of this
array will be easily expanded without danger of clock
skewing along the long mismatched data paths. Also the
digital circuit allows an easy interface to the digital
computer. Therefore, the parallel interface for loading and
storing data fromfto the host computer can be easily
accomplished. Finally, the capability of time-sharing amounts
to a huge network which contains many multiples of M’ PEs.

2. The DNP-II Architecture

Many Digital Signal Processors (DSPs) and TRAN-
SPUTERS have been used as the PEs for neural network
simulators. Such processors should not necessarily be
cost-effective for computing neural networks because they
are originally designed for different types of computational
tasks from neural computation. It is highly desirable to
design a processor well tailored to neural processing.
Processor architectures for digital neural processing have
been implemented or proposed including the X1 of Adaptive
Solutions [1], the MA16 of Siemens [14], and the SPERT
of the University of California at Berkeley [15]. However,

100 JEONG ET AL : REALIZING TDNN FOR WORD RECOGNITION ON A WAVEFRONT TOROIDAL MESH-ARRAY NEUROCOMPUTER

they are processors having SIMD (or systolic) architecture.

The DNP-II is a unit processor for our EMIND-II
neurocomputer; it is the second generation of the DNP (71,
[8] which has been designed for our first neurocomputer
EMIND. The DNP-II is considered similar to the DSP in
architecture and function, however, its functions are simpler
and more tailored to neural computation than the DSP. It also
facilitates efficient asynchronous communication exploiting
the regularity and locality of neural computation. Its key
features include 0.8 , CMOS standard technology, 40 MHz
operating clock, a 16x16 bit parallel pipelined multiplier,
four-way 16 bit parallelasynchronous communication, 256
words (16 bit a word) of program memory, 128 words of
input memory, and 512 words of weight memory. It is also
devised with instru¢tion prefetch and subroutine call
capability.

Actually, the chip contains 4 PEs, each having identical
structures as shown in Fig. 2.

Progeem memory
(256 word

X eddress o Registerfile d W eddress = |
Xtinpat) i N Wiweight)
memory memory
(128 words)
(512 words)

Fig. 2. Internal structure of DNP-IIL

It consists of four major functional building blocks: memory
block, control block, arithmetic block,and I/O interface block.
The memory block consists of 512 words of data memory
and 128 words of input memory. The data memory is used
for storing weights, intermediate results, tables, and initial
parameters. It also has an adder for address gemeration
aiming at flexible data access. There are four sets of
increment/decrement counters for address generation. Each
instruction involving memory access needs to specify one of
these registers. The input memory is used to temporarily
store data read in through the communication channel for
recycling them.

The control block consists of a separate program memory
of 256 words of 16 bits and an instruction decoder. It
contains a counter which specifies the number of repetitions
to execute instructions. The arithmetic block consists of a
multiplier, an arithmetic/logic unit (ALU), and general
purpose registers. The ALU performs addition, subtraction,

shifting, and bitwise logic functions. The communication
block consists of four asynchronous parallel I/O
communication units. The block also has a special register
(IOPR) which contains four pair of I/O port numbers. Each
instruction involving I/O communication should specify one
of these pairs.

The DNP-II takes a single clock cycle for executing most
instructions but two clock cycles for I/O communication. The
instruction set of the DNP-II is optimized for various neural
network models and learning algorithms. The DNP-II
operates basically in 16 bit, fixed-point integers. It also has
a three-stage pipelined instruction of “multiply and
accumulate” which multiplies an input value from the input
memory and a weight from the weight memory, then
accumulates the result into the accumulator.

1M1, The TDNN

As is well known, this network is a multi-layer
feed-forward neural network that can be trained to classify
specific spectral structures within consecutive frames of
speech [11] into some disjoint classes. To meet the need of
an extensive computational load for executing the recognition
and training, one has to rely on a hardware solution.

1. The TDNN architecture
Fig. 3 outlines the typical TDNN architecture.

L=3
)
—_— =[]
L=2 —e
_—
F2 N
—_—
RN
1 ~
! W1 T~ T
L=1
F "
T~
1 ~o
e %
L=0
o

Fig. 3. A typical paradigm for TDNN structure.

JOURNAL OF ELECTRICAL ENGINEERING AND INFORMATION SCIENCE, VOL. 1, No. 1, 1996. 101

It conmsists of 4 layers labeled as L = 0,...,3. The input
frame consists of an Fg x To matrix. Each time the first layer
takes a small matrix of the Fy x Wo window from the Fo x
To input frame and produces an F; x 1 output vector.
Consequently, the Fo x To input frame generates the F; x T,
output frame. This output frame is further supplied as an
input of the next layer. In this manner, the F, x T input
frame is transformed to the N x T, output frame. As a final
stage, the output layer yields the N x 1 vector as a result of
this network. It is expected that the output vector contains
some normalized scores that indicate how the input pattern is
similar to the reference patterns. It is well known that this
score is in fact a posteriori probability [16]. Also one of the
best known learning algorithms for this network is the Error
Back Propagation (EBP) algorithm {10].

Some parameters depend upon others. For example, T =
To- Wo + 1, and T> = To - Wo - W, + 2. Therefore, there
are only 6 independent variables, Fo, Fi, Wo, Wi, To, and N.

2. Serial Algorithms for Recognition and Training

Let x([)i,j denote the output of (i,j) neuron at level / « [0,
3]. Fig. 4 illustrates an example.

W ()
X a-n) ki ~ ()
ij+ ~ X kt

Fig. 4. A neuron x‘? is connected to x{/;}) by an weight
wili s,

Note that the weight is translation invariant. It follows that
the output of layer / = [0, 3] is represented by the matrix,
{x%ji e [0, F-1],j e [0, T+1]}. Also assume that wy;;
is the connection strength between the (i,j) neuron at level /
- 1 and the k neuron at level L Finally, assume that ¢(’)k is
the threshold of this neuron.

The notations allow the following equations for the
recognition phase of TDNN.

W1 F.—1

wl =R 2 B wdiple— e for ksl 0.F =11 <[0,711,
Wl Fml R

LIV O WD wi = for ke[0,.N-11 t=[0, Ty-1] ,
j=0 i=

T.-1
Lo S oy ; -
0, /;u 223, for il 0,N—1])

where O denotes output. One can easily derive that the
number of neurons, free weights, and multiplications are
respectively

F\T\+NT., 2)
FI(FyWy+1) + NCF W +1), &)]
FyW,F, T, +F,WNT,. @

In the learning phase, we must first compute
&% =(0=R)xi%f (=D,
suy =ak 00l bnn W,
gl =a% :?-018,‘,2,)+7;A vél_(m'
(ie[0,N-1] .jel 0.F, 1] ke[0. T,—11 ,¢s[0. T,—1]).
®

Here 7°(-) denotes the derivative, R is the target output
for learning. Also 5 and o are constants. s Wand a4 are
the weight incremental values at the previous step. Following
these operations, one must compute

N-1
o =D wl 87
) 1 Eaooo m
Aw;e =ag r}=:0 Sl nn W .
apd = 1 %_]6(1) A 40
oEaer & il 7N TR
(il 0,F,—1] .jel 0,F,—1] kel 0, T,—1] ,t€[0, Th—1]).

©®
As a result, the forward pass, delta and weight update take

(FyWF,\ T\ +F\WNTy) + (NTo+ F, T\N) + (NF, T, Ty + F\Fy T, T)
)]

multiplications. Here the first term is the quantity required by
the forward pass. On the other hand, the second and the third
terms denote the amount of multiplications needed by the
delta and weight update, respectively. The relationships are
summarized in Table 1. This with other properties will be
discussed in section V in detail.

IV. Parallel Algorithms for Emulating
TDNN by the EMIND-II

Having established the hardware and TDNN models, we
are faced with the question of what scheme to realize TDNN
on the hardware. In this section, we first derive the
recognition algorithm and then the learning algorithm.

1. Parallel Recognition Algorithm

Rules (1), (5) and (6) are serial algorithms that completely
describe the recognition and learning phases of the model
TDNN. From now on, these rules are further converted in
accordance with the hardware structures of EMIND-II
Without loss of generality, let us assume Fy = 15, F, = 15,
Wy =8, W; =7, To = 20, and N = 20 for simplicity.

Some of the snapshot view is illustrated in Fig. 5.

As we see in Fig. 5(a), the input data is loaded into PE,;.
Next in Fig. 5(b), the inputs propagate unaltered in the upper
direction. Simultaneously the partial sum-of-products are
propagated in the right direction. As a result, the final result
of the first layer is accumulated in PE;;s. The second layer
is realized in Fig. 5(c) with the result stored in PEo;.

102 JEONG ET AL : REALIZING TDNN FOR WORD RECOGNITION ON A WAVEFRONT TOROIDAL MESH-ARRAY NEUROCOMPUTER

According to this algorithm, PE;¢ and PEo; must contain the
look-up-table for 7’(-). All the other PEs except PE;s,s
must contain the connection strengths and thresholds for the

two layers.
iyl
L

J
J
:

g

| S

—J

To—o,

el

© @

Fig. 5. Forward data flow for the recognition phase of
TDNN: (a) the input, (b) the Ist layer, (c) the
2nd layer, and (d) the output.

The operations can be described as follows. The first step
is to initialize PEoj. Let X% denote the data stored at PE;;
representing the data at t = [0, T;-1] at level . Then PE;
must be loaded with the input data:

Step1: X% =29, for t[0, Ty—1] ,icl 0, F—11 . (8)

Likewise X' denotes the output of level 1 to be stored
in PE;)s. Then, we have for the Ist layer

#io1
(L _ 3.0) 3 (0,6+0
X" =Xiht 2wl

X0 =AXND, for il 1F)] ,jel 0,F—1] 6l 0, T\-1} .
®

In the next phase, the result in PE;;s becomes the input of
the next layer. In Fig. 5(b), the input and output propagate
respectively in the right and upper directions in PEs. The
results of this layer accumulate in PEo;.

Step 2 - {

wW-1

XG50 =X+ 2 w0

XBY =AXED, for isl 1L,F) jel 0,N-1] e 0, Ty—1] .
10)

Step 3 : {

Finally in Fig. 5(c), vector sum must be performed for the
data in PEo; to produce a vector featuring pattern class and
store the results there to be transferred to the host computer.

Ta—1
—_ S 2.0
X, = Z:O Xo3"

. (1)
0; =X0‘j, for je[0,N—1] .

Step 4 :

2. Parallel Learning Algorithms

Some of the snapshot views of the backward data flow are
shown in Fig. 6.

— — — —

a4 M

| I~

=
Y T
e O

(@ ®

| —
]

Fig. 6. Backward data flow for the learning phase of
TDNN: (a) the error, (b) updating A.

Before we proceed further, let us first define the notations:
for each PE;; we define aw!:® ¢! {3 In the learning
process, the first phase occurs in PEg;:

{Aé?;” = (0~ R)X{5"F "(X35™, - 12)
8% =a83 (el 0,.N-1] .t To-1] .

o flows upwards and X in the right direction in the array
to compute

e — LY oo W @R
aWT =ao 2 A0 X Thaa W
T.—1
: @
80P =afe 3 a4 0,7, 13

2 =
(iel 1,N] ,jel 0, T,—1] k=l 0, W —11).

@8 and ~ ¢,9 are

Here 7 and o are constants » W,
the previous incremental values, respectively. For the next

lower layer, the delta becomes

A'{‘lj.l) — Af.l;'—”l'*'W,g_li")Aé.z} f
{Ai(.lfs') =f (28D, Gel 1,R) el 0,N-11 ,tel 0, T1—11).

(14)
Using this delta, we can compute the weights:
T,-1
A WL :a% Z‘o A PO L pn I/Vi.i(l'k):
a@® =zrv717 [Tg"olAé‘l;_,)_'_ﬂA ¢i<1>’ 15)

1
(el 1,F] ,j=l 0,F,—1] k=l 0, Wg—11).

JOURNAL OF ELECTRICAL ENGINEERING AND INFORMATION SCIENCE, VOL. 1, No. 1, 1986. 103

3. Overall Description

Putting the results together, one gets the overall program
consisting of the three parts: initializationrecognition, and
learning algorithms. The initialization algorithm consists of
the three steps:

Initialization Algorithm: _
1. Download programs into {PE;; |i < [0, 15],j = [0,
15]}.
2. Download 5, and ¢ into {PE;; |i = [1; 15],j = [0,
14]}.
3. Download look-up-tables for s°(-) into {PEo; | j e [
0, 14]} and {PEio | i « [1, 15]}.

It is up to the host computer that downloads the programs,
parameters, and look-up-tables into the EMIND-II hardware.
Consequently, the recognition algorithm is summarized as

Recognition Algorithm:
1. Download: X{%"=x for tel 0, Ty~11 .i=[0, Ty—17 .
2. 1st layer:
W1

X5 =X+ Z wilaXi

X =AXEM, for el 1LF\] el 0,.F,—1] .tel 0.Ty-11 .
3. 2nd layer:

Y woto .
X'(L; n =Xl(:.ll.)j+ Eﬂ w/(_,)kX’(lBk I)'
X3 = AXEN. for ie 1.F\] .jel 0.N-1] .t 0. T>-1] .

-1
4. Output: X, = % X5, for jel 0,N-1] .

5. Store: o, =X, for je[0,N—1] .
6. Go to Step 1.

Similarly one gets the learning algorithm:

Learning Algorithm:
1. Compute Steps 1-4 of the recognition algorithm.
2. Update delta:
AEY =(0;—RIXEF (X", for jel 0,N-1) e[Ty—1] .
3. Update weights:
& WEP =”% EIA&?"X}.'{{“”MJA W, ",
NS =a% Elaéf;"+qa 0.\,
(el LM ,jel 0, T,—1]1 ,k=[0, W —1]).
4. Update delta:
s =l BT W s
{A.‘.‘fs” =7(afih.Gel 1LF] el 0,N-1] .t 0, T, —11).

5. Update weights:
Ti-1
AL =a%‘] A UKD 1 W,
it
(iel[1,Fy jel 0,F,—1] k=l 0, W—11).
6. Go to Step 1.

Whereas the recognition phase computes only the forward

pass, the learning phase consists of the forward pass as well
as the backward pass.

V. Discussion

Having derived how to implement TDNN, we are ready to
analyze the algorithms. As an application,a word recognition
is introduced. Finally, the parallel algorithms are compared
with the serial algorithm in relation with computational
complexity.

1. Fabrication

Figures 7 and 8 respectively are the photographs of the
neurocomputer board and the die.

Fig. 7. Photograph of the EMIND_II neurocomputer.

As can be seen in the figure, the board consists of 16
DNP-IIs together with some driving circuits. Also, the board
is connected to the host via flat cables. Figure 8 is the
photograph of the DNP-II die. It is fabricated by 0.8 4
CMOS standard cell technology. The design goal was 40
MHz but the hardware test shows that it can operate as fast
as 50 MHz clock speed.

104 JEONG ET AL : REALIZING TDNN FOR WORD RECOGNITION. ON A WAVEFRONT TOROIDAL MESH-ARRAY NEUROCOMPUTER

W Easuetia e e

LI =

Y s

EE
e
s

HRalEg 4
] !
L Ed e tiieatis

4

e amag .

S

i

B
1]
i
DN S (e
T - it ¥
TR i By
B e

k|
T
D, s :mﬁ
AU ;H"(:wm%;w&‘!iﬂ
i U

J

P

T
|

|
I\
g

S tgg‘;'x:‘:
: 7 ,
=x3 ! v i i

L

#

PR b TOUSTUI U L v R e 2
e H
=y

Fig. 8. Photograph of the DNP-II die.

2. Application to Word Recognition

As an application, we built a speech recognition system
which consists of IBM PC486-DX2/66 and EMIND-II
simulator, Fig. 9 provides the software structure of the word
recognition system. '

Fig. 9. Overall flow diagram.

At first the host must initialize the array by downloading
parameters into the memory and input registers as the
initialization algorithm describes. After that either the
recognition algorithm or the learning algorithm must be
executed. For the recognition phase, the input speech signal
must undergo segmentation for end-point detection and
thereafter feature vector construction by FFT transformation.
This feature vector is loaded into the array, where estimated
score of word class is determined. This result is collected in
the computer by uploading and thereafter some
post-processing must be done for natural language

processing. The recognized sentence is utilized for further
application such as robot arm manipulation in our case.
For the actual experiment, we have chosen 50 words for
robotics control. From 30 men, we recorded 50 words for
each man one time in common laboratory environment.
Recording is done with 16 kHz sampling rate and 16 bit
quantization. For these words, we prepared a database
containing 2,100 learning patterns and 900 test patterns. The
final results showed that the system displayed 97.10 %
recognition rate for the learning patterns and 96.56 % for the
test patterns. The result is only for test purpose, and
comparison with others works has no meaning. Also although
small vocabularies are used in our experiments, the network
can be easily scaled up by modifying control parameters.

3. Computational Complexity

Let us now examine the computational complexity
pertaining to the number of neurons to be emulated, weights
to be stored, and multiplications as a sum of products. If we
assume that the program size is P, then obviously the
initialization takes O(P) clocks. The look-up-table is avoided
by executing a short program computing f(x) = f (x)}(I - f
(x)) for the sigmoid function.

Table 1. Serial algorithm vs. parallel algorithm.

Serial

Properties Parallel algorithm(per PE
P algorithm(total) & (pe)

Number of £ N
neurons FiT) + NT: (tota)| | =51 T+l gg—p 1 T

Fi(FoWo+1)+N(F,
Number of H(FoWor)+ N(F:

. W, +1)(free WotW,

weights .

weights)

Fy
Sum of products |WoT;FoF;+W ToFy | WTl 37271 L *L_'ll +
for recognition |N W T ML-ll” #5571
(KT G 50 +

(WoliFoF # WiTeF o | gy oy gy +

Sum of products [N)+(T.N+T,FN)+ N F N
X (Tol 71 +70 3271 0 7D+

for learmng (T/TzNF1+ToT1F1Fo

) (7L 20520 +

Tl 3251 0 3

Each row or column of the array plays a role of

F
(2T I T+ g 1 T 16)

neurons. Here [x1 denotes the smallest integer not less than
x. One can easily check that if M = 2, (16) is reduced to (2).
Table I compares the performanceof serial and parallel
algorithms in term of the number of neurons, weights, and
sum of products.

In addition to other parameters, each neuron must store

JOURNAL OF ELECTRICAL ENGINEERING AND INFORMATION SCIENCE, VOL. 1, No. 1, 1996. 105

W+ W an

weights.
The most time-consuming stage is the sum-of-products.
Therefore, the recognition requires

Fy F F N
yres iy e e I v e B 7 s B L)

WT 1

multiplications. This relation also becomes (4) for M = 2.

Let us examine the learning phase. One pass of the
learning consists of a forward pass and a backward pass as
given by

1000

" ot egorthm e

porolis] ggorithm ——
3 100 4
/ﬂPE
10 " " s " 2 P
2 4 8 12 16 20 24 28 R
Arrcy cizo M
(a)

: ©
Fig. 10. Computational complexity vs. M the array size(Fo=15, To=20, Wo=8, F1=15. W=7, and N=20): (a) number of
neurons, (b) number of weights, (c) number of products for recognition, and (d) number of products for learning.

F, F F

KT 52 | T 327 1V AW g 1 3y D+
F

(Ty [AT 1+ Tl 327 1 T3 D+ a9)
F, F, F

(NI 3R 1 g2 VDT g 1 gy

This quantity consists of three terms: a forward pass, a
backward delta update, and a backward weight update. Check
that (7) is a special case of this equation with M = 2. This
time must be multiplied by the number of passes and the
number of patterns for each word. Notice that for the special
case of M = 2, the equations (16), (18), and (19) become (2),
(4), and (7), respectively. For a given network of size M, a
PE acts as many virtual neurons and the network is M’ times
faster than the serial system.

Putting it altogether, one can obtain Table L It is
immediately apparent that the potential power of this system

10000 ™

"

porelot Cgorthm —
—e
1000 | <4
B
i
100 |
/GPE
10 L " 2 L 1 P
4 o 12 18 20 24 28
Aoy czo M N
10408 T T T T
coral igorthm -----
poralol cigortihmn —

100 N " " N " " 2
16 20 24 28 R

Gy

resides in that each PE can be time-shared by many neurons.
However, owing to the limited size of weight memory, the
number of virtual neurons is quite limited. An approach to a
large system is using some batch processing technique. In
this case, it is not necessary to load all the weights in the

106 JEONG ET AL : REALIZING TDNN FOR WORD RECOGNITION ON A WAVEFRONT TOROIDAL MESH-ARRAY NEURCCOMPUTER

array. Instead, one partition of the weights that is utilized by
the array is downloaded and processed one by one. This
scheme requires a fast hardware of load and store operations.

Fig. 10 displays the computational complexity as a
function of the array size parameter M. The other parameter
values are Fg = 15, To = 20, Wo = 8, F; = 15, W, = 7, and
N = 20.

In this figure,. the coordinates are drawn in log scale.
Notice that the computational load for each PE is gradually
decreased as the network size increases.

V1. Conclusion

This paper introduces a versatile neurochip DNP-II and the
neurocomputer EMIND-II. Considering the particular nature
of the wavefront toroidal mesh-array, we developed efficient
algorithms for realizing TDNN by EMIND-IIL

Based on this algorithm, a speech recognition system is
built. Experimental results show that this speech recognition
system built on neural network hardware works well showing
advantages of fast computation speed and high recognition
rate.

As a conclusion, the major achievement of this system is
its on-chip learning capability, scalability for a large virtual
machine, fast speed for real-time applications, digital
interface, mesh-array structure suitable for
parallel/pipelined computation, and the possibility of building
a wide variety of neural networks.

wavefront

References
[1] D. Hammerstrom, “A VLSI architecture for
high-performance, low-cost, on-chip learning,”

Proceedings of the International Joint Conference on
Neural Networks, pp. 537-544, 1990.

[2] A. Hiraiwa et al, “A two level pipeline RISC
processor array for ANN,” Proceedings of the
International Joint Conference on Neural Networks, pp.
137-140, 1990.

[3] Kato et al, “A parallel neurocomputer architecture
towards billion connection updates per second,”
Proceedings of the International Joint Conference on
Neural Networks, pp. 47-50, 1990.

[4] J. R. Nicholls, “The design of the MasPar MP-1: A
cost effective massively parallel computer,” pro-

(5]

(6]

(7]

(8]

(9]

(10]

(11]

(12]

(13]

[14]

(15]

(16]

ceedings of the COMPCON 90, pp. 25-28, 1990.

T. Nordstrom and B. Svenson, “Using and designing
massively parallel computers for artificial neural
networks,” Journal of Parallel and Distributed
Computing, vol. 14, pp. 260-285, 1992.

D. Hammerstrom, “Neural networks at work,” IEEE
Spectrum, pp. 26-32, June 1993.

M. W. Kim, Y. J. Lee, H. B. Lee,]. S. Lee, J. M.
Kim, J. H. Kim, S. H. Oh, C. D. Lim, and H. K. Song,
“E-MIND: An implementation of a digital
neurocomputer and its application to handwritten digit
recognition,” Proceedings of the International Joint
Conference on Neural Networks, pp. 258-263, 1992,
M. W. Kim, Y. J. Lee, C. M. Kim, and Y. S. Song,
“A wavefront' array processing architecture for
real-time simulation of large scale neural networks,”
Proceedings of the International Joint Conference on
Neural Networks, pp. 1959-1962, 1993.

M. W. Kim, J. M. Kim, Y. S. Song, Y. J. Lee, and H.
B. Lee, “An asynchronous inter-processor communi-
cation based, input recycling parallel architecture,”
Proceedings of the World Conference on Neural
Networks, pp. 576-583, 1994,

D. E. Rumelhart, G. E. Hinton, and R. J. Williams,
Parallel Distributed Processing: Explorations in the
Microstructures of Cognition, MIT Press, 1986.

K. J. Lang and A. H. Waibel, “A time-delay neural
network architecture for isolated word recognition,”
Neural Networks, vol. 3, pp. 32-43, 1990.

J. 1. Hopfield, “Neural network and physical systems
with emergent collective computational abilities,”
Proceedings of the National Academy of Sciences, pp.
2554-2558, 1982.

T. Kohonen, “Self-organized formation of topologically
correct feature map,” Biological Cybernetics, vol. 43,
pp. 59-69, 1982.

U. Ramacher, “SYNAPSE-a neurocomputer that
synthesizes neural algorithms on a. parallel systolic
engine,” Journal 'of Parallel and Distributed
Computing, vol. 14, pp. 306-318, 1992.

J. Wawrzynek, K. Asanovic, and N. Morgan, “The
design of a neuro-microprceessor,” IEEE Transactions
on Neural Networks, vol. 4, no. 3, pp. 394-399, 1993.
J. B. Hampshire and B. Pearlmutter, “Equivalence
proofs for multilayer perceptron classifiers and the
Bayesian discriminant function,” Proceedings of the
1990 connectionist models, pp. 159-172, 1991.

JOURNAL OF ELECTRICAL ENGINEERING AND INFORMATION SCIENCE, VOL. 1, No. 1, 1998. ‘ 107

Hong Jeeng was born in Seoul, Korea,
in 1953. He received the B.S. degree in
oy the Department of Electrical Eng-
| LT ineering from Seoul National University
B in 1977. In 1979, he received the M.S.
degree in the Department of Electrical
Engineering from Korea Advanced
Institute of Science and Technology. In
1984, 1986, and 1988, he received the S.M., E.E., and Ph.
D. degrees, respectively, all in the Department of Electrical
Enginnering and Computer Science at M.LT., Cambridge,
Massachusetts, U.S.A. During the period of 1979-1982, he
was a faculty staff at the Department of Electrical
Engineering at Electronics and Electrical Enginnering at the
Pohang University of Science and Technology, where he now
works as an Associate Professor. He is Sigma Xi member.
During 1994-1995, he worked as a vice-chairman in the
Special Interest Group on Neurocomputing in the Korea
Information Science Society. Also from 1991, he has worked
as a committee staff in the Neural Networks, Fuzzy and
Artificial Intelligence Group in the Korean Institute of
Telematics and Electronics. His research interests include
neural networks and speech recognition.

{ .

AR

/
AN

. Cha-Gyun Jeong was bomn in Jeon-Ju,
Jeon-Buk, Korea, in 1966. He graduated
from the Korea Advanced Institute of

(= A i ' Science and Technology with B.S.
degree in Electronics Engineering in

. 1990, and received an M.S. degree from

[// & . '\Q\» Pohang Institute of Science and

] Technology with B.S. degree in
Electronics Engineering in 1990, and received an M.S.
degree from Pohang Institute of Science and Technology
(POSTECH) in Electrical and Electronic Engineering in
1992, respectively. Since 1992, he has been working towards
the Ph. D. degree in the Electrical Engineering from
POSTECH. His research interests are speech recognition and
neural networks.

Myung-Won Kim graduated from
~ Seoul National University, Seoul Korea
" with B.S. in Applied Mathematics in
’ 1972. He received an M.S. and Ph.D.
in Computer Science from University
of Massachusetts at Amgerst in 1981

(\\ . and University of Texas at Austin in
— = 1986, respectively. He worked with
AT&T

Bell Laboratories from 1985 to 1987 and he also supervised
a neural network research group at Electronics and
Telecommunications Research Institute in Korea from 1987
to 1994. He is currently an associate professor in School of
Computing, Soongsil University, Korea. His research
interests include neural networks, pattern recognition,
knowledge representation, machine learning, and parallel
implementation of neural networks.

