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Abstract

This paper considers robust stability and transient behavior of the Two — Degree - of - Free-

dom(2DOF') servosystem. A class of uncertainties allowed in the plant model is obtained, to

which the servosystem is robustly stable for any gain of the integral compensator. This result

implies that if the plant uncertainty is the allowable set defined by the condition, a high - gain

compensation can be carried out preserving stability to achieve a high - speed tracking

response. The transient behavior attainable by the limit of the high — gain compensation is cal-

culated using the singular perturbation approach.

1. Introduction

One of the most basic problems occurring in
control engineering is the design problem asso-
ciated with finding realistic controllers to solve
the robust servosystems problem. In this type
of problem, it is well known to associate inte-
gral compensators in servosystems for constant
reference signals in order to reject the steady -
state tracking error”.

However, if we have an exact mathematical
model of the plant and there is no disturbance
to the plant, the integral compensation is not

necessary. From this point of view, a two -

degree - of -~ freedom(2DOF) servosystem has
been proposed in the recent literature*®. The
present paper considers robust stability and
transient behavior of the 2DOF servosystem. A
class of uncertainties allowed in the plant
model is obtained, to which the servosystem is
robustly stable for any gain of the integral com-
pensator. This result implies that the high -
gain compensation can be carried out preserv-
ing stability to achieve a high - speed tracking
response.

In general, a high — gain compensation can
not be carried out in the 1DOF servosystem

because it can act to cause the system to be
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unstable. In this context, under the robust
properties which we propose, the transient
behavior attain able by the limit of the high -
gain compensation is calculated using the sin-

gular perturbation approach.

2. Two —~ Degree — of - Freedom
Servosystem

In the development to follow, the plant to be
controlled is assumed to be described by the fol-

lowing linear time invariant model :

x(t)=Ax(t)+Bult)
y(t)=Cx(t) (1)

where x&R" is the state vector of the system, u
E€R" are the inputs, yER™ are the outputs to
be regulated, and A, B and C represent real
constant matrices of appropriate dimensions.
For this system, consider the step type refer-

ence signals as follows :

£20
=129 2)
r.(t<0)

and r_ are given at t=0. So far, it is required
that the plant outputs y track the reference sig-
nals r. For this purpose, assume that pair(A, B)
is stabilizable and

A B
rank =n+m (3)
cC 0

Based on these assumptions, a 2DOF ser-
vosystem described in Fig. 1 has been proposed
by Fujisaki and Tkeda®. In Fig. 1, it is consid-
ered that there exists F, such that A+ BF| is
stable, but, in Reference 2), an optimal regula-

tor gain is used as F\,. And F|, H, are

F,=C(A+BF,)
H,={-C@A+BF, 'B] " (4)

Fig.1. Two - Degree - of - Freedom Servosystem

In this context, for simplicity, assume step
changes in the reference inputs take place only
when the system is at steady state. Therefore,

the servosystem shown in Fig. 1 is given by

x(t) A+ B(Fo+GF) BG||x(@® N BH, -
= r
wlt) -C 0 ||w® I

(t
yr=[C 0] B}“ﬂ (5)

The system derived above should be stable
for working well as a 2DOF servosystem. To
verify the stability of this system, we note the

system matrix of (4) given by

-C 0
_{ I OMAHBFO BG I 0 ‘(6)
N 0 F\BG||-F, I

and assume that there exists G such that F\BG

is a negative definite matrix. As an example,

[A +B(Fo+GFY BG}

let a gain G be denoted as follows :
G= - R "(F\BYW (7

where it is considered that F\B is nonsingular
and R, W are arbitrary positive definite matri-
ces. In this case, a negative definite matrix
F,BG for the system (4) to be stable can be
derived using the similar transformation of

negative matrix as follows :
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F\BG=W [ - W"F,BR (F,By'W'*] W (8)

From this fact, it is concluded that the sys-
tem (4) is stable.

3. Robust stability Independent of
Integral Compensation

In the previous chapter, it has been shown
that if there are no modeling error of the sys-
tem and disturbance to the plant, the 2DOF
system given in Fig. 1 is stable for the arbi-
trary positive matrices R, W in which the gain
G given in (7) is used.

But, if there are uncertainties as linear
parameter variations of A, B and C, by select-
ing a gain G, the system may become unstable.

From this point of view, in this chater, a con-
ditions for the system to be robustly stable
independent of the gain G will be obtained.

Now, suppose there are uncertainties
described as linear parameter variations of A,
B and C, and disturbance inputs to the plant,
then the system (1) is

) =(Ag+aA (@) +(By+ABu(t)+ Dd(t)
y(t)=(Cy+ACKk(t) (9)

where A,, B, and C, are nominal variables of A,
B and C, and AA, AB and AC denote uncertain-
ties.

In this case, the 2DOF servosystem described

in (4) is represented as follows :

{:xm} _ [Aw AA +(By + ABXFy+ GF)

wit) —(Co + AC)
(Bo + AB)GJ {x(t):l
0 w(t)
+ {(BO " L;B)H“}rm + [ﬂd(z)
Y =[Co + AC 0][“”} (10)
w(t)

where Fy, F'; and H, are calculated using the
nominal variables A, By and C,. That is, there
exists F, such that A;+ B, F, is stable and

Fy=CyAg+ByFy)
Hy= [~ CyA;+ByFy) 'By] ™ (11)

are obtained. Futhermore, assume the gain G
given in (7) is obtained from the nominal value
of By, and let R be fixed, such that

G=G,W, G,= - R '(F,B,)T (12)

here, consider the positive definite matrix W is
adjustable.

Now, let the nominal part of the system
matrix(10) be denoted by AO(W) and the uncer-
tain part be denoted by AA(W), then they are

given as follow :

A(W):{AoJrBoFo*’BoGoWFl BoGoW}
—Co 0
AA(W)z AAo+ABo Fo+ ABoGoWF, ABoGoW
~AC 0
(13)

Based on these assumptions, to show the sta-
bility of the system, we consider the following

positive definite matrix :

- e o1 o
P(W)= I'r (14)
o (|0 W|IF I
where P is a solution to the following Lyapunov
inequality :
PA,+ByF)+(A,+ByFY’P<0 (15)

The existence of p>0 is guaranteed by the
stability of Aj+ByF,. From these results, the
following Theorem is obtained.

Theorem 1 Assume that
PO A D+ AT(DP(DH<0 (16)

holds, and
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PyDALD+AAD] + [AdD +8AD]T PN 0
an

is satisfied for the arbitrary AA, AB and AC,
then the system denoted in (10) is stable for the
arbitrarily adjustable gain W.

Proof : From (13) and (14),

Ao (W) + AAW) =
[” (1)+A/i(1>] ! 0 (18)
Ao Pt WE, W
I 5T TW .
pwy=|. “FITEIY 5 (19)
0 w

hold. Using (18), (19) and the condition (17),
PO, (W) + AAW)] +] 4, (W)r+ AAW)) POW)

_{I “F{+FTW}
“lo

W
AP LA, (D + AWM +[ 4, (D+aA)) P

I 0}
. <0
LF&WFl w

is obtained for the arbitrary W>0, such that
the system (10) is robustly stable. Thus, it is
concluded that Theorem 1 holds.

Now, it will be shown that there always exits

(20

a positive matrix P for which the assumption

(16) in Theorem 1 holds. For this we rewrite

Q= {PIDALD+PT(DP)) (21)
where
~ p T 7]
puy=| PHFTF R (22)
P I
i D{ANBUF(); BoGo F, BO(‘ 93)
-0

and decmpose Q@ into four blocks as

Q = [Qll Qlei (24)

QZ] Q22

Qu= ~ P(Ay+ByFy) — (Ay+BoFo)'P — PB\GF,
- (PByGF )"~ FiF \BGF,
—(FIF\B G
Q2= — PByGy ~ FIF\ByGo - (F1BoGol,)"
Q1= ~ (PByGo)" ~ (FIF1BGo)" - F\ByGoF\
Qo= — F\B,G, — (F\B,Gy)* (25)

In this case, in order to show that @ is posi-
tive definite, consider G, given in (12). Since
F.B, is nonsingulér, we can see that @, is posi-
tive definite. Therefore, @>0 is equivalent to
that

Qu - leQz‘;Qzl: *P(Ao*‘BoFo)

—(Ay+BoF,)'P—(1/2)PB,R 'BIP  (26)

is positive definite.

Here, the sum of the first and second term in
the right side is negative definite as seen from
(15). The third term is positive semidefinite,
but square in P. This shows that, by choosing a
appropriately small P satisfying (15) which
always exists, (26) is negative definite such
that @ of (21) is negative definite.

Above, it has been shown that there exists a
feedback gain F, such that the pair (A,, B,) is
stable. Here, consider the optimal regulator

gain as a F,, given as follows :

F,= - R 'BIP 27)

where P is a positive semidefinite solution of

the following Riccati equation,

PA,+AIP - PB,R 'BiP+Q=0 (28)

where R and @ are positive definite matrices.
In this case, since the right —side of (26)
becomes @ +(1/2)PB,R 'BJP, we can see that
(21) is positive definite so that (16) holds.
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4. High Gain Integral Compensation
and Transient Behavior

In the previous chapter, it has been shown
that if there are uncertainties which satisfy the
condition (17) then, the 2DOF servosystem (10)
is robustly stable for any arbitrary positive def-
inite matrix W. Thus, by the high gain integral
compensation, the steady state error can be
rejected and the high - speed tracking response
is expected.

In this chapter, it will be calculated the tran-
sient behavior attainable by the limit of high -
gain compensation using the singular pertur-
bation approach under the assumption (17).
For the system (10), deduce the coordinate

transformation

[x@)] [1 0]
lz0] (F: 1]{w@®)

then the system (10) is

(29)

[x(2) B

EoIn
Ao+ A +(Bo+ ABYF, (Bo+ABYG W
F(AA+ ABFo) - AC  F(By+ ABYGeW

¢ AB) D
| X0 Bot HO}MH }d(t)
0| | FiABH, F.D

x{t)
2(t)

Here, let the arbitrary matrix W be the posi-
tive definite and u be positive number, and

denote W as follows :
W=(1/ W (31)

For a fixed W, the decrease of u represents

the increase of W. Introducing
20)=(Vpwz(t) (32)

we rewrite (30)

FON
wst)|
{A0+AA+(BO+AB)F0 (Bo+AB) GoW
Fi(AA + ABF,) - AC  F.1(By+AB)G,W

t
F( )] + {(BO +AB) Ho}r(t) +[ b d(t)
2(t) F1ABH, F\D

x(t)
¥(t) = [Co+ AC 0]{ :|

33
z(8) (33)

To apply the singular perturbation approach
to the system (33), it is needed to confirm sta-
bility of the fast system, that is, the stability of
the (2, 2) block F,(B,+AB)G, W of the system
matrix. Now, note that the (2,2) block of the
condition (17)

Fy(By+AB)Go+ [F\(B,+ABYG,]7<0  (34)

Multiplying this inequality by W from the
right and left, a Lyapunov inequality is
obtained as follows :

WI[F,(By+AB)GW] + [F\(By+AB)G,W] TW <0
(35)

(35) can be considered as a Lyapunov inequ-
ality, where F (B, +AB)G, W is the system
matrix and W is the solution of the Lyapunov
inequality abovementioned. From this, it is
concluded that F((B,+AB)G, W is a stable
matrix under the assumption (17). Since the
fast subsystem of (33) is stable, in the limit of p
— 0, the behavior z(¢) is represented as

3 (ty= - [F(By+ABYG,W]
- {[F(AA +ABF ) ~ AC) x(t)

+F,ABHr(t)+ F,Dd(t)) (36)

Then the behavior of the slow subsystem of

(33) is given as follows :

)= [Ag+AA+(B,+ABIF,)x(t)
+(By+ABYG W) +(By+ABH A1)
+Dd()={A,+DA+(By+ABF,

- 63 .



Young - Bok Kim, Joo - Ho Yang, Jung - Hoan Byun and Chang - Hwa Kim

~(By+AB)G,W[F (B, +DB)G,W] !

- [FL(AA+DBF,) ~ AC] Jx(t)

+{(By+ABH, - (B, +AB)G,W

- [F(By+AB)G,W] ‘F,ABH,}r(t)

41D - (By+ABYG,W

- [F(By+ABYG,W] 'F,\DYd(t)
y()=(Cy+AC)x(t) (37)

From this, weprove the following Theorem.

Theorem 2 Assume the condition given in
(17) holds for the uncertainties AA, AB and AC.
In this case, let W— o, then the behavior of

the 2DOF servosystem (10) approaches

£(t)=(Ay+BoFo)x(,)+ BoHr(t)
+{I - (By+AB)[F|(By+AB)] 'F 1
- (DA +ABFx(t)+ABH yr(t)+ Dd(¢)]
+(By+AB)[F(By+AB)] 'ACx(t)
y()=(Cy+AC)Kx(2) (38)

This theorem means that the limit of the
behavior depends generally on the plant uncer-
tainties and disturbance inputs. As the special
case, assume that the uncertainties AA, AB and
the matrix D which describes a type of distur-
bance satisfy the following matching condit-

ions®

RangeAACRange B,
RangeABCRange B,
RangeDCRange B, (39)

and AC=0. Then it is clear that (38) is reduced
to

£(1)=(Ay+ BoFyx(t) +BHyr(t)
y(B)=Cxlt) (40)

From this, it is verified that the behavior of
the system (10) coincides with that of the the
servosystem for the nominal system without
the integral compensator. Also, it is behavior of
the 2DOF servosystem in the abscence of the

uncertainties and disturbance imputs to the

plant.
5. A Numerical Example

In previous, it has been shown that if the
condition (17) holds for the modelling error of
the system, by high gain compensation, the
transient behavior of the servosystem appro-
aches that of (38). Now, these results are illus-
trated by numerical simulation. Consider the

following A, B, and C as the system matrices :

-0.04 0.02 0.020 -0.50
Ao 0.05 -1.01 0.002 -4.02
0.10 0.29+a; —-1.710 1.3+a:
0 0 1 0
[ 0.44 0.18
B= 305+b1 -7.6
-5.52 49+b:
L by 0
I 00 0
o= e 4D
0 100

where a,, ay, by, by, by, ¢; are uncertainties
which satisfy the condition (17) suppose that

these parameters are

a,=022, ay,=12,
b,=-11, by,=-15
by=-0.5, ¢,=0.5 (42)

In this case, we show the effective of the gain
W. Assume there is no disturbance input to the
plant, for simplicity. F, as the feedback gain
obtained from the optimal regulator theory is

used. Using the weighting matrices
R=diagl10, 15}, @ =diagi{10, 15, 10, 5} (43)

the positive definite solution to the Riccati

equation (28) is obtained as follows :

- 64 -
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19.088 0.316 0.034 -7.488
0316 2.380 1.083 -0.184

P= (44)
0.034 1.083 1994 1.459

-7.488 -0.184 1.459 14.417

From this, F is

_[-0.917 -0.142 0.767 1.191
’71-0.080 0.842 -0.115 -0.489

] (45)

F\ and H,, are given as follow, respectively :

[-2.006 -0.024 0.007 0.795
71 0.030 -0.179 -0.078 0.061

0.994 0.152
0= (46)
0.107 -1.003
and gain G is
0.099 0.011
G=G,W= (47)
0.010 -0.065

outputs y1,y2
o

10 15 20
t

Fig. 2. Step Response(a=1)

=}
s

outputs y1y2

(o} 5 10 15 20

Fig. 3. Step Response(a=10)

-

o
®

outputs y1,y2
© o
> )
il
il
|

o
N

o

10 15 20
t

(=)
ot

Fig. 4. Step Response(a=100)

Where r,=[0.6 1]7 as the reference signals
is considered, and let the initial state x, and
the initial value of integral compensator w, be
0. And, for simplicity, let the adjustable gain
W=al.

Fig. 2, Fig. 3 and Fig. 4 are simulation
results corresponding to the case of a=1, 10
and 100, respectively. The solid lines show the
behaviors of the controlled outputs, While the
dashdot lines indicate the nominal behaviors
and the dashed lines are the limit(eg.(38))
attainable by a sufficiently large «, respectively.

From these results, it is concluded that the
controlled outputs (solid) approach those
(dashed) of (38), not those (dashdot) of the nom-

inal system.
6. Concluding Remarks

In this paper, a robust stability condition has
been presented for a 2DOF servosystem, which
is independent of any size of the gain of inte-
gral compensation. And, based on the robust
stability condition, the transient behaviors are
obtained by high gain compensation. Using
high gain integral compensation, it has been
demonstrated that the high — speed tracking

responses are archived, as expected.
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