An Investigation of Perceived and Performed Sound Durations

*Jin Yong Jeon

Abstract

The aims of this study were to describe the way in which sound durations are perceived, and to attempt to explain the hidden mechanisms of the duration perceplion in music performances. Threc experiments were carsied out to determine the difference limen for the perception of sound duration and to find the effects of frequency and intensity on duration discrimination. For short duration tones ranging from 25 to 100 msec , dincar improvement in discrimination judgements was found with increasing duration of signal. The JND was conslant for durations between 100 msec and 2 sec. However, for extended stimulus durations (more that 2 sec) the JND was again linearly improved. Subjects were also presented with a pair of stamuli, composed of high and low frequency pure lones, and asked to discriminate differences in duration of the two tones and ignore differences in the frequency of the tones. It was found that subjects perceived the higher frequency to be longer in duration. When ath experiment was varsicd out to investigate the effect of intensity on duration discrimination it was found that a 20 phon difference makes subjects perceive the louder stimulus as longer than the quieter stimelus. Finally, in a performance study, an analysis of nusical performances tevealed the effeet of frequency. It was found that the musicians played the higher notes shorter than the lower notes. This agrees with what was previously found in the work on the perception of lones.

1. Introduction

Most measurcments of discrimination have focused on the smallest difference between two sounds that a subject call detect. Having examined the lower and upper bounds of thearing. the smallest perceivable difference between two sounds could be sought. This quantity is calied either the jusi noliceable difference (JND) or the difference limen (DL). Tine JND) is the smallest perceivable dilference in dB between two intensitics or the smallest perceivable change in H_{z} between two frequencies or the smatlest perweivable difference in msec between two durations. The IND for a given continuum varies with the stimulus condition and with factors unrelated to the basic resolving power of the anditory system. Some of these factors [I] are: (i) the percentage of correct responses required to call the difference just noliceable, and (ii) the method by which the stimulus difference is introduced c.g. by modulating a contimtous sound or by presenting separate, slightly different sounds.

In this context. studies of auditory perception have been carried out with an overwhelming concern for the

[^0]frequency and intensity discrimination. For frequency discrimination in parlicular we know, fairly well, the factors concerning the limits of discrimination with respect to the method of slimulas presentalion, the dependence on intensity, the masking effect, and even the duration effect. Although much work has been undertaken on factors affecting pitch and intensity perception, litile work las been undertaken on the factors affecting duration perceplion. In particular there is a paucity of information on whether or not there is any effect of frequency difference on sound duration judgements. In this study, an experiment was first undertaken to confirm the previous sludies of duration discrimination. Then, is the second and third experiments, the effects of frequency and intensity on duration discrimination were investigated.

Music is described as a "language" \{2] whose acoustic perception usually is prescribed mote precisely than is the case with other auditory signals, including specch. Actually, the frequencies of musical tones and the time signatures in which they are realized are most important factors for carrying information. However, it is not the physical sound parameters as such (e.g., frequency and temporal envelope of tones) that are the decisive criteria of musical performance, but the corresponding auditory qualities fe.g., subjective duration, rhythm, timbre, roughness, pitch, harmony) to the human auditory system.

Hence, the quantitative relations belween stimulus parameters and auditory sensations are of particular importance in the theory as well as the realization of music. When an interpretation is made as a compact coding of expressive forms [3]. the only parameter variable over which the performer has almost complete control, regardless of which instrument he uses, is the duration of the sound events [4]. The manipulation of various durations might be the most important tool available to the performer. As Gabritesson [4] mentioned, it is evident that timing has a connection with rhythm and also with melody, harmony and even a single chord. Actually, timing, in one way or another, influences every aspect of the music. Therefore, a sense of time is one of the most valuable determinants of what a person can hear in music and hence of a persons ability to perform. Based on the theorctical development. the last experiment reported in this stedy was planned to investigate whether there is a link between the duration perception and music performances.

Because detection test results for the smallest difference between two sounds are not typically stated in lerms of objective correct or incorrect responses, subjective evaluation methods are generally used in experiments that require duration comparisons, loudness balances, pitch matches, or other judgments that are inherenlly subjective, i.e., for which there is no objective criterion for the "correctness" of a response. This is unfortunale, since tasks that involve subjective judgments often have greater problems concerning signal detection tasks and subject training than those that involve objective judgmends. They are difficult for both the experimenter and the suhjoct and could benelit greally from the advantages associated with forced-choice adaptive procedures. This paper describes one approach to the use of such procedures in subjective judgment tasks.

II . Perception of Sound Duration

Studies of duration discrimination [e.g., 5-7] have been reported which employed a forced-choice procedure. In these studies, the durations used were less than 2 sec . In contrast, temporal intervals ranging from 25 msec to 8 sec have been used in this experiment. The experiment reported here employed a recognition paradigm;it pair of the different-duration signals was presented on each irial and the subject attempted to discern which one was the longer in the pair.

If a person is asked to compare the durations of stimuli which are several seconds long, he may subdivide the
interval into a sequence of short dutations which he can count rhythmically. This type of counting strategy has been frequently attempted in duration experiments and, as Gelty [8] indicated, it is to a subjects advantage, when perceiving a long duration, to subdivide into a number of shorter durations. The subjects in this experiment were not given any instruction about using a counling strategy.

A. Experimental Method

There were two female subjects (N.J. and K.C.) and two mate subjects (H.J. and S.K.), all of whom had normal audiograms. The subject N.J. had had experience in other experiments on auditory duration assessments. The other subjects were experimentally naive. The subjects ranged in age from $20-30$ years, with most being universily students. The subjects were paid for their serviees.

The subjects were tested individually in an anchoic room. Each receiveal the schedule of stimulus presentations via at microcomputer (KAYPRO 286i) speaker. Computer cosle, written in C latnguage, was written for this work. Fach pair of sounds was comprised of two pure tones. The experiment was programmed to starl presenting signal pairs of 10% difference in length and then vary this value depending on the suhjeets responses. The JNI) was determined as the ability to discriminate between the dutation of the fwo signals in the pair using 75% correct scores. Responses of the subjects were interpolated to produce the JNI) for each standard duration.

The subjects were assessed by the two-alternative adaptive staircase procedure in this experiment. The subjects were required to select the sound they belicved to be the longer one. The interstimulus interval (ISJ) for each pair of sounds was one second and the next pair of sounds was followed one second after answering on a keyboard. The subjects listened to pairs of sounts which had standard durations ranging from 25 msec to 8 sec . The experiment was repeated three times and the average value was taken as a JND for the standard duration.

The frequency and intensity of the bursts were lixed al 1 kHz and 70 dB SPL, respectively. The rise and decaty of the stimulus were steep so that a 'click' occurred at the beginning and the end of the signal. The clicks were about 1 to 1.5 msec . which is in total around 10% of the shortest (25 msec) stimulus. The cljcks might help the subjects perceive the beginning and the end of the stimelus (and hence the duration of the signal).

8. Results and Discussion

The results of the experiment are presented in Fig. 1,
which presents the Just Noticeable Differences (JND), obtained from four subjects, using standard stimuli durations from 25 to $8,000 \mathrm{msec}$, as a function of standard stimulus duration. Ts. From Fig. 1, the JND, for the whole range of stimuli durations, can be seen to vary from 2.7 to 28.7%.

Figure 1. Just Noticeable Differences, JND (\%), obtained for four sobjects, as a function of standard stimulus duration. Ts (msec).

From the results of the experiment it is ohvious that, for short duration tones ranging from 25 to 100 msec, a linear improvement in discrimination judgements was found with increasing duration of signal. The JND was constant for durations between 100 nnsec and 2 see. However, for extended stimulus durations (2 1o 8 sec) the JND was again linearly improved. All the subjects reported that they counted to belp them discriminate between stimuti of longer durations. The results show that the subjects appear to accutately perceive the dilference in duration between the two sounds when the standard stimuli durations are above 2 sec.

In the present experiment the untrained subjects, H.J., K.C. and S.K., produced low correctness scores in their duration judgements. For durations from 100 to 2,000 msec, their JNDs are approximately 10% and nearly independent of the stimulus duration. Fig. I also shows the individual differences of duration discrimination ability to judge relatively small duration differences. The trained subjects attain low thresholds for shotler stimuli durations ($T s=25-50 \mathrm{msec}$).

However, the two breakpoints of 100 msec and 2,000 msec were common for all the subjects. These breakpoints are likely to be important in understanding how people
perceive dilferences of sound duration. The reason fot the first breakpoint is considered to be because of a change of auditory discrimination lechnique/mechanism in short duration stimuli. It appears that subjects use an "energy' or "loudness' stategy below 100 msec 151 . The second breakpoint is again thought to be due to a change in auditory discriminalion lechnique (a counting strategy seems to be inslinctively used above $2,000 \mathrm{msec}$. In the duration range between 100 and 2,000 msec the JND was approximately constant.

III. The Effect of Frequency on Duration Discrimination

In one of Burghardts $\mid 9]$ experiments, a 1 kHz tone and a 200 Hz lone were presented in succession. and the subjects were made to adjust the physical duration of one of the tones in such a way that successive lones were perceived as having the same apparent duration. The retation between the physical durations of the two tones under the condition of equal subjective durations was investigated and it was found that the 200 Hz tone has to be presented with a greater physical duration than the 1000 Hz tone to be perceived with the same apparent duration. In another cxperiment, Burghardi matched in duration a 1000 Hz tone with a 3200 Hz tone in the same way and lound that the subjective duration of pure tones depends not only on physical duration but also on frequency. Burghardt also found that when the physical duration of a pure tone is held constant its subjective duration is distinctly diminished by decreasing frequency. In Burghardts experimental results the range of duration in which the eflieet is significant is almost identical with the range of durations covered by the majotity of musical lones (durations less than about 800 msec). The present work extends Burghardts experiments: different psychoacoustical methodologies are used, the range of frequencies extended (up to $\mathrm{RO}(\mathrm{N}) \mathrm{Hz}$), closer frequency intervals than a 1000 Hz tone and a 200 Hz tone used, and varied frequency in a pair of stimulus signals investigated.

In the current experiment musician subjects were presented with pairs ol equal frequency stimuli and pairs of stimuli composed of high and low frequency pure lones. The task of the subjects was to discriminate differences in duration of the two tones. It is to investigate how duration discrimination depended on the difference of tone frequencies in each pair of stimuli. As the loudness of the generated sound could be controlled by the amplitude of the sound in the computer system and
as equal amplitude tones, with different frequencies, would not sound equally loud [10], the subjects were given a control to adjust the amplitude of a second tone, of different frequency, 10 match the stardard lone in loudness. This process continued until the range of frequencies ($250 \mathrm{~Hz}-8 \mathrm{kHz}$) was covered for each subject. The equal loudness settings of the standard and comparison stimuli for each subject, as determined in the pre-test. were fixed for the experiment.

A. Experimental Method

There were two female subjects. Subjects N.J. and S.L. had had 15 and 13 years of musical experience, respectively. N.J. had previously taken part in other experiments on auditory duration assessments. The subjects were paid for their services.

A Macintosh IIci computer controlled the experiments The MacRecorder sound system with its application. SoundEdit, cnabled the recording, editing, playing and storing of sounds. The generated pure tone slimuli were saved in a range of file formats and presented by the other application, MacroMind Director. MacroMind Director was originally used as computer animation and presentation package, but the control for presentation of audio only was used in this experiment. Stimuli were presented through headphones and responses of the subjects were recorded on answer sheets by the subjects themselves who were located in a separate room. The rise/fall time for each stimulus was 5 msec which prevented audible clicks.

Pairs of standard (S) and comparison (C) tones (where S was $50.100,200,400$ or 800 msec and the values of $\mathrm{C} /$ S were $1.04,1.08,1.12,1.16$, and I.2) were presented. The interstimulus interval (ISI) for each pair of sounds was $1,040-1,600 \mathrm{msec}$ while the time between pairs of sounds was fixed at 4 sec . The data for the experiment were collected using a iwo-alternative forced-choice procedure (2AFC).

In the present work, stimulus pairs were used with frequencies; $0.25,0.5,1,2,4$ and 8 kHz . It was designed to investigate the duration discrimination only when the comparison signal, C (which was of an equal or lower frequency than the standard stimulus) was the longer duration stimulus. Therefore, if S was 50 mscc at $8 \mathrm{kHz}, \mathrm{C}$ would be $52(C / S=1.04)$ to $60 \mathrm{msec}(C / S=1.2)$ at frequencies of $0.25,0.5,1,2,4$ and 8 kHz . If S was 100 msec at 4 kHz , C woutd be $104(\mathrm{C} / \mathrm{S}=\mathrm{I} .04)$ to 120 msec $(C / S=I .2)$ at frequencies of $250,500 \mathrm{~Hz}, I, 2$ and 4 kHz , and so forth.

All the stimuli pairs were presented 20 times. The order ol the fonger and shorter duration stimuli was equally distributed. Each subject served two hours a day and completed the experiment over two weeks.

B. Results and Discussion

The proportion of correct responses obtained in an investigation of frequency difference effects on duration judgemenls is shown in Fig. 2. The standard stimulus durations are from 50 to 800 msec and the slandard stimulus frequencies are from 0.25108 kHz . The 1 rend of the frequency effect was similar for all the durations. Thercfore, the results from each stimulus datation were averaged and compared at each stimulus frequency.

As shown in Fig. 2, when the tone frequencies were the same, duration discrimination performance was described well by a simple model of duration discrimination. When the frequency was varied for the comparison tone of each sound pair, but fixed for the standard stimulus within a pair, duration discrimination performance was poorer Itanl for equal frequencies in most cases. The larger the frequency difference between the two tones within a pair, the worse the duralion judgements.

Both subjects showed that frequency affected duration judgements except in the case of the 8 kHz tone pairs (not shown in Fig. 2). The effect of lrequency on duration discrimination is strong in the case of a large frequency difference pair, but an 8 kHz tone does not seem to have an effect on duration judgements when compa-

COMPARISON STMIIIIS

Figure 2. Comparison of proportions of correct responses, $\mathbf{P (C)}$, obtained from two subjects, in nine cases of frequency difference in sound pairs, using standard stimulus durations of $50,100,200,400$ and 800 msec . The standard stimulus lrequencies (S) are from 1 kHz to 4 kH \% and the comparison stimulus frequencies (C) are from 0.5 kHz to 4 kHz
risons are made with lower tones from 250 Hz to 4 kliz . This is possibly because 8 kHz is outside the music and speech trequency range, and large pitch changes made a more disruptive effect on timing discrimination than did small ones |11|.

A lurther explanation for the observed fallure of the frequency eflect in the 8 kHz tones is as follows: Above 6 kHz . the ability to dislinguish between two tones on the basis of frequency becomes very poor. In facl, above 6 kHz , the sense that tones have a musical pitch is rather weak, and this may explain why the musical scale does not go above $4-5 \mathrm{kHz}|10|$. It is prohably the reason why the two subjects, in the 8 kHz . ease, did not apparently respond to the frequency difference in the way lbey responded to the $0.5-4 \mathrm{kHz}$ cases.

IV. The Effect of Intensity on Duration Discrimination

It has been known that both absolute thresholds and the loutiness of sounds depend on duration $|12-|4|$. Fior durations exceeding about 500 msec the threshold is independent of duration, however, for durations less than about 200 msec the sound intensity necessary for delection increases as duration decreases |15]. This means that absolute sensitivity decreases when the daration of a stimulus becomes much shorter than a second. The nature of this phenomenon reveals an interesting property of the auditory system, called temporal integration. Over a certain range of durations (about $15-150$ msec) the eat appears to integrate sound encrgy for the purpose of detection. The additional energy contributed by signals of mose than 200 mscc in duration does not help in the detection of the sorund so that the threshold does mot change |16].

How then is intensity related to the threshold of duration? From Abels study [7] it can be seen that, for signals of 3.5 kHz frequency, a change in intensity lrom 85 to 65 dB did not affect discrimination performance when the standard stimulus duration, T, was $\leq, 40$ and 320 msec. Creelman $|5|$ also examined the efleet of signal level on duration discrimination in the presence of moise. In his firs1 experiment (Effects of signal vollage on duration discrimination), he found duration discrimination improved with an increase in signal voltage only at low signal-to-noise ratios. the dependence becoming wegligible as the signals were made loud and clear above the noise background. In another study Creclman used two levels and varied 'T from 40 to 640 msec (Experiment 4: Dis-
crimination as a function of standard daration and signal wolfage). He found an interaction between signal level and 7. The difference in duration discrimination, as a function of tone level, was greater as the value of 7 became shorter. Carbotic and Kristofferson [17] showed that for T equal to 50,200 and 250 msec , changing the inlensily hy 37 dB (which was larger than the 17 dB in Abels study) resulted in the same smatl change in performance at 50 msee as that ohtained al 250 msec, i.e., there is a discrepancy between the results of Creelman arkd Carbotte and Kristofferson.

A. Experimental Design

There were two female subjects (N.J. and K.C.) and two male subjects (H.J. and S.K.), all with normal audiograms. The subjects ranged in age from 20-30 years, wilh most being universily students. They had previously laken part in other experiments on auditory duration assessments, for al least 20 hours. The subjects were lested individually in an anechoic roum. Each received the same sehedule of stimulus presentations from the Macintosh compuler through headphones. The rise/fall time for each stimulus was 5 msec .

Stimulus pairs were used with four different intensities. For the condition in which pairs had $0,3,6$ and 10 dB diflerences in intensity. the amplitudes of stimuli were mantained at $100,71,50$ and 32%, respectively. The 1 kHz Irequency and 200 msee tone was maintained for the four sound pressure levels.

The subject N.J. was presented with $\mathrm{C} / \mathrm{S}=1.025,1.075$ and 1.125 , and, for the other subjects, the values were 1.05. 1.1 and 1.15. The ISI and the time between pairs of sounds were the same as in the sccond experiment. The 2AFC method was employed in this experiment. Subjects were presented with a pair of stimuli composed of high and low intensity pure iones and asked to discriminate dillerences in duration between the two tones, ignoring diflerences in the intensity of the tones. All the stimuli pairs were presented 40 times. The order of the longer and shorter duration slimuli was equally distributed. Responses of the subjects were recorded on answer sheets by the subjects themselves.

B. Results and Discussion

As shown in Fig. 3, when C was lower intensity than S (Cases II, IV and VI), duration judgements were poorer than for equal intensities (Cases I and VIII). In cases II and III there was little difference in the correct responses beenuse the sound tevel difference of two signals was only
jusl perceptible (3 dB). When comparing Case VI with Case I, the difference of correct responses, with a 10 dB difference in intensity, was as large as 0.15 . However, even though the intensity of S became lower than C (from Case I to Cases III, V and VII), the proportion of correct responses was almost constant at 0.79 to 0.82 .

Figure 3. Proportions of correct responses, $P(C)$, iveraged from four subjects, in eight cases of amplitude differences from 32 to $\mathbf{1 0 0 \%}$ of the standard stimulus amplitude (As) and the comparison stimulus amplitude (Ac), using a standard stimulus duration of 200 msec . Case I $\mathrm{As}: \mathrm{Ac}=\mathbf{1 0 0 \%}$: 100%, Case II $\mathrm{As}: \mathrm{Ac}=100 \%: 71 \%$, Case III $\mathrm{As}: \mathrm{Ac}=$ $71 \%: 100 \%$, Case IV As: Ac $=100 \%: 50 \%$. Citse V As: $\mathrm{Ac}=50 \%: 100 \%$. Case VI As:Ac $=100 \%: 32 \%$, Case VII As: $\mathrm{Ac}=32 \%: 100 \%$ and Casc VIII As: $\mathrm{Ac}=\mathbf{3 2 \%}$: 32%.

From the comparison of Case I with Case VIII, it can be seen that the difference in performance as a function of tone amplitude is not great, even though there is large variation in amplitude ($100-32 \%, 10 \mathrm{~dB}$ difference). There is a difference (as small as 0.05 in the $\mathbf{P (C)}$ value) between Case I and Case VIII which suggests that detectability has little importance. The result again supports Abels [7] data and does not support Creelmans [5] or Carbotte and Kristofferson [17] researches. The subjects discriminations were more likely to be alfected by the amplitude of signals than detectability or intensity bias. If the subjects mainly based their judgements on detectability (i.e., a high intensity), Case VIII should have had much lower P(C)s than Case VII.

The result suggests that duration discrimination of tone pairs is affected by variations in amplitude as by the apparent duration difference in the signals, even though reducing the duration of a tone burst has been believed to reduce sensitivity of intensity to some degrec [13-14,

18-20]. This hypothesis might be further lested by investigating the thresholds on duration judgements (the duration $\mathrm{JND}_{\mathrm{s}}$) but for the same infensity range in the variable intensity case.

V. An Analysis of The Duration of Notes in Recorded Musical Performances

It has been known that music sounds unacceplable when performed by a digital compuler in agreement with what is wrilten in the music score. This diserepancy constitules an essential part of music communication [2!|. As Sundberg $[21\}$ mentioned, the discrepancy is not random and must be meaningful. that is, it carries intormation which the listener aceds to enjoy the periormance. What is this information? How is lise acoustic code chosen when used by the musician for conveying il? Is this code used in music only or is part of it borrowed from extramusical communication? It seems a reasonable hypothesis that variations in the length of notes may contribute to the musicality of performances. What is being investigated in this section of the present work is whether the length of performed notes depends on the pitch of the notes i.e., whether there is a link between the results of the previous experiments and music performances. More specifically the hypothesis is that higher pitched notes, of a given nominal length, will be played shorter than lower pitched notes of the same nominal length.

Despite the high accuracy of the computerized equipment there are still problems in certain cases, especially regarding physicat and perceptual tone onsets as well as decays. The registered acoustical events are often complex. Tones appearing after another in the score overlap each other in the acouslical reality. This is why performance studies have to be supplemented by studies of the experimenter's (listener's) experience. Accordingly most of the present performance study was carried out by a musician N.J. having 15 years of musical experience, who has absolute pitch and served as a volunteer subject showing lower JNDs than the other subjects. For most ol the experiments the performances were stored on sound files in the Macintosh computer. They were analysed by means of the sound system used in the previous experiments, which simultaneously displays the variations of total amplitude (intensity) and fundamental frequency or lapse of time (duration). By adequate fittering (low/high band pass filter) and calibrations it was possible to get very accurate representations of monophonic performances and in many cases also of polyphonic music.

A. Experimental Method

The performances of four contemporary flutists, Baron, Blan, Schulz and Beaucoudray, were analysed and compared by measuring durations (the llute part only) of tbeir tone inkepretations. The lirst three artists' recordings of the Mozarl Flute Quartet in A-mijor, K. 298 and the Beaucoudray recording of the Bach Filute Sonata in E-minor were analysed. For the Quartel first three repeated lines in Andante), the crotchets, which were pertormed at least six limes for each note, were selected and their durations measured. The periormance durations of semiquavers were measured in the sonala (first 10 lines in Adagio ma non tanto), to compare the duration interpretation in a piece of music.

The duration-measured notes for the Mozart and the Bach were R.4, F44, G4, G\#4. A4, A/4, B4, C5, C45, D5, D\#5, E5, F\#5, G5, G\#5 and A5. The duration of each tone was measured from its onsel to the onsel of the next nole with an accuracy of $\mathrm{msec}[4]$. The very lasi noles, the very lirst notes in an incomplete bar, and the noles followed by a rest were omitted, since their durations could not be measured accurately. Each duration measurement of the noles was normalized as a proportion of performance duration of the bar to which the crotchet or the semiquaver belonged. The normalized duration for each performance was averaged and compared by pitch to lind any trend which depended on pitch. Both the normalized and zaw datio were presented for comparison (See Figs. 4 and 5).

B. Results and Discussion

In Fig. 4. Figs. 5(a) and (b), the order of the polynomial regression was five. From the results shown in Fig. 5(a), the (normatized) mean durations of the crotchets show that the musicians performed the higher tone with shorter duration. The polynomial regression

Figure 4. Comparison of the performed note durations obtained from three performances (Baron. Blau. Schubg) of the Mozart Flute Quartet in A-major, K. 298.
lines also reveal that there are periodical variations with a period of approximately one octave, although, in Fig. 5 (b). the correlations are pour and the polynomial fil is hardly justilied.

The durations of the crotchets in the Mozarl quartet and the semiquavers in the Bach sonata were 500-700 msec and $380-450 \mathrm{msec}$, respectively. In the Bach piece, the trend wats observed in the perionmers duration interpretation of the semiquavers. As shown in Fig. 5(b), the nornalized durations of the semiquavers in the Bach piece were mostly below ' 1 ', whereas, the normalized durations of the crotchets in the Mozart piece were evenly spread around "I'.

The reason for the latger variation in duration performances of the Bach than in the Mozart is probatbly becaruse signilicant changes in music expression are led by the flute in the Sonata, which could be interpreted as the musician Itying to make the music less "mechanical'. In sonata music like the Bach it seems to be the flutist or the pianisl who varies the expressive parameters \{22] when they are in the leading part of the Sonata. Therefore there

Figure 5. Comparison of the normalized mote performance durations oblained from three performances (Baron, Blan, Schulz) of the Mosart Ftute Quartet in A-major, $K .298$ (a) and Beaucoudray's recording of the Bach Flute Sonala in E-minor (b).
may be variation among different performers interpretations of a musical work and intra-individual variations as well. However, from the Mozart, the periodic trend was obvious for the three performers, i.e., it can at least be mentioned that the trend is not performer specific. The influence of instrument and key signature should be further investigated.

V. Conclusions

The result in the first experiment shows an interesting tendency in the variation of individual threshotd of sound duration. There are two breakpoints of 100 msec and 2 see. For short duration lones ranging from 25 to 100 msec, a linear improvement in discrimination judgements was found with increasing duration of signal. Then it is constant for durations between 100 msec and 2 sec . For extended stimulus durations (2 to 8 sec) the JND was again lincarly improved [23].

So far it has been found that duration discrimination is worse when there are frequency differences. For different frequency sound pairs subjects perceive the higher frequency sound to be tonger in duration [23]. The effect of frequency on duration discrimination is strong in cases where the pair of tones has a larger frequency difference. However, when the higher tone frequency was above 4 kHz , the effect of a large frequency difference (0.25 to 4 kHz) on duration judgements with lower tones disappeared. From the results of experiments to investigate the effect of intensity on duration discrimination, it was found that the duration discrimination tasks are affected by an intensity difference of 20 phons [24].
The last experiment reported in this paper attempt to account for duration fluctuation at the note level. It has been found that high tones are played shorter and such practice has been justified in terms of previous results which demonstrate that high tones are perceived as longer than lower tones of the same physical duration [23]. It seems that musicians change their performance deliberately and sometimes unconsciously:the musicians played the higher notes shorter than the lower notes. The performers perceive higher tones longer as a listener of their performance and they are likety to perform higher tones shorter. There is also some evidence for periodic variation over an octave in the duration of performed notes though this is not significant in most of the performances studied.
Possible applications of the present perception study might be areas like signalling codes or speech coding scheme for a speech processor, speeded up speech in
advertisements, safety devices and warning signals. Finally, it is worth commenting that duration diserimination testing is potentially a valuable took to investigate the perception of sound and hearing disorders. It is surprising that so little attention has been paid to it especially as it is fundamental to the performance and perception of music.

References

1. B. Schart and S. Buus, "Audition I:Stimulus. Physiology. Threshoids." in I/sndhook of Perciptuon and Ifuman Parformance, edited by K. R. Bolf el al. (John Wiley and Sons, New York), pp. I-71, 1986.
2. E. Teriardt, "Psychoacoustic evaluation of musical sounds," Percept. Psychophys. 23, pp. 48.3-492, 1978
3. L. II. Shaffer, "Timing in solo and duel piano performances," Q. J. Exp. Psychol. A36. pp. 577-595. 1984
4. A. Gabriclsson, "Timing in music performance and its relations to mosic experience," in Gemeration praces in music. edited by J. A. Stuboda (Clarendon Ptess, Oxford), pp. 27-51, 1988.
5. C. D. Creelman, "Human discrimination of auditory doration," J. Acoust. Soc. Am. 34, pp. 582-593, 1962.
6. D. J. Gelly, "discrimination of short temporal intervals-comparison of 2 models,* Percepl. Psychophys. I8, pp. 1-8, 1975.
7. S. M. Ahel, "Duration discrimination of noise and tone bursts," J. Acoust. Soc. Am. 51, pp. 1219-1223, 1972.
8. D. J. Getty, "Counting processes in human timing." Percept. Psychophys. 20. pp. 191-197, 1976.
9. H. Burghardt, "Die subjektive Dauer schmalbandiger Schalte bei verschiedenen Frequenzlagen," Acustica 28, pp. 278-284, 1973.
10. S. Handel. Listening : ant introduction to the perception of audiony events (The MIT Press, Cambridge, Massachuselts). 1989.
II. E. J. Hirsh, C. B. Monahan, K. W. Grant, and P. G. "Singh. Studies in auditory timing: 1 . Simple patterns," Percept. Pshchophys. 47, pp. 215-226, 1990.
11. W. R. Garner and G. A. Mitter, "The masked threshold of pure tones as a function of duration, ${ }^{\text {n }}$ J. Exp. Pisychol. 37. pp. 293-303. 1947.
12. R. Plomp and M. A. Douman. "Relation between hearing threshold and duration for tone pulses," J. Acoust. Soc. Am. 31, pp. 749-758. 1959.
13. C. S. Watson and R. W. Gengel, "Signal duration and signal frequency in retation to auditory sensitivity," I. Acoust. Soc. Am. 46, pp. 989-997, 1969.
14. B. C. J. Moore, An introduction to the psychology of hearing (Academic Press, London), 1982.
15. S. A. Gelland, Hearing (Marcel Dekker, New York), 1990.
16. R. M. Carbotte and A. B. Kristofferson, "On energy dependent cues in duration discrimination," Percept.

Psychophys. 14, pp. 501-505, 1973.
18. J. J. 7wislocki, "Theory of temporal auditory summation," J. Acoust. Soc. Am. 32, pp. 1046-1060, 1960.
19. A. M. Small, J. F. Brandı, and P. G. Cox, "Loudness as it function of signal duration." J. Acoust. Soc. Ams. 34, pp. 513-514, 1962.
20. R. A. Campbell, and S. A. Counter, "Temporal inlegration and periodicity pitch," J. Acoust. Soc. Ain. 45, pp. 691-693. 1969.
21. J. Sundberg, "Computer synthesis of music performance," in Generative process in music, ediled by 3. A. Sloboda (Clarendon Press, Oxford), pp. 52-69, 1988.
22. E. F. Clarke, "Generalive principles in music performance," in Generative process is music, edited by J. A. Sloboda (Clarendon Press, Oxford), pp. 1-26, 1988.
23. J. Y. Jeon and \mathfrak{r}. R. Fricke, "The Eflect of Frequency on Duration Judgements," ACUSTICA. Vol. 81, pp. 136-144. 1995.
24. J. Y. Jeon and F. R. Fricke. *A Preliminary Study for a 'Music Intelligibility' Test for Roons," Building Acoustics. Vol. 1. pp. 195-205, 1994.

A Jin Yong Jeon

Jin Yong Jeon completed his Bachelor of Archilectural Enginecring (1982) at Hanyang Universily and Mastet of Building Science (1991) and PhD in Architeclure (1994) al the Universily of Sydney, He worked for seven years (1991-88) in the area of building construction lechnology
al Daelim industrial Co. Currently he is undertaking posidoctoral research on people's annoyance and adaptation to noise. He is also developing an cualuation method in the acoustical quality of rooms for music.

[^0]: - Department of Architectural and Design Science University of Sydncy
 Manuscript Received August 14, 1996.

