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Abstract

In this paper, convergence properties of the LMS, LMF, and LVCMS algorithms are investigated under the assumption 
of the uncorrelated Gaussian input data. By treating these algorithms as special cases of more general algorithm family, 
unified results on these algori나ims are obtained. First the upper bound on the step size parameter is obtained. Second, an 
expression for misadjustment is obtained. These theoretical res비ts confirm earlier LMS works. Further, the resets explain 
why the LMF and LVCMS algorithms are experiencing difficulties with plant noise having heavier tailed densities. Simu
lation results agree with theoretical expectation closely for various plant noise statistics.

I . Introduction

The least variance subject to a constraint on the mean 

square error (LVCMS) adaptive filtering algorithm was 

introduced by Gibson and Gray in [5]. The LVCMS al

gorithm is motivated by the steepest descent method like 

the LMS and LMF algorithms [3, 4]. In [5], the conver

gence in the mean coefficient error of the LVCMS algor

ithm was analyzed without assumptions on the density 

function of the input data as in [2, 3] for the LMS algor

ithm and in [4] for the LMF algorithm. The resulting up

per bound on the step size parameter is quite loose and 

the actual step size should be chosen much smaller than 

the upper bound to ensure the convergence of the MSE 

in practice. In [7], however, the convergence in the covari

ance matrix of the coefficient error vector was studied for 

the complex and real LMS algorithms using the Gaussian 

assumption on the input data vector. The resulting upper 

bound on the step size is much tighter than the previous 

bound in [3]. Further, Feuer and Weinstein showed the 

same result using a different approach, and derived new 

expressions for the misadjustment and the rate of conver
gence [8].

In this 아udy, the LMS, LMF, and LVCMS algorithms 

are considered as special cases of a more general adaptive 

algorithm [6], and the convergence analysis of the general 

algorithm is given using a Gaussian assumption on the in

put data vector. The tighter upper bounds so obtained ex

plain earlier simulation results on the LMF and LVCMS 

algorithms in [5], which indicate that these algorithms are 

sensitive to noise with a heavier-tailed density. Further

more, a new expression on the misadjustment is obtained. 

Simulations for the system identification problem are 

given to support the theoretical results.

H. The Generalized Error Criterion

The adaptive signal processing configuration of interest 

is depicted in Fig. 1. The input data vector at time k is 

given by XQ)니*皿),  …, 孙(期气 and the XQ), k

=0, 1, 2,…，are assumed to be uncorrelated. The error 

signal at time k is given by

e(k) = d(k)-Wr(k)X(k)

=n(k) - Vr(A) X(A) (1)

where W*  is the vector of optimal coefficients, WQ) is the 

coefficient vector at time k so that

VQ) = WQ) — W*  (2)

is the coefficient error vector at time k, and n(k) is the 

noise such that

n(k) = d(k)~XT(k)^.

The noise n(k) is assumed to be white and to have a sym

metrical probability density function with zero mean and 

finite higher order moments. Further, the noise n(k) is 

assumed to be independent of the input data vector X(k).
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Figure 1. Adaptive Signal Processing Configuration.

The method of steepest descent uses gradients of a 

function of the error e(k) to find the optimum coefficient 

vector W*.  The flinction or error criterion characterizes 

the adaptive algorithm. In [6], a general error criterion

%(W, a, b、c, d) = aE{\€2(k)-E(€2(k))\2} +6[£(€2(^)}]2

+cE 住漑)}+d (4)

is considered. This admits the LMS|2, 3], LMF[4], and 

LVCMS[5] criteria for appropriate selections of a、b, c, 

and d. That is,

払(W, 0, 0, 1, 0) 드 £■{』(&)}, (5)

Hg(W, 1, 1, 0, 0)=研 €堆)}, (6)

and

Hg(W, 1,0,—人,{住2(切一研€2(册)]2}

+ A{—£(e2(^)}. (7)

Taking partial derivative of Hg(W, a、b, c, d) with respect 

to W yi 이 ds

2Hg(W,; b, c, d)= 一物畠#伉)*伏)}  一彳。一^已隹气册}

E{e(k)X(k)} +4€£{eU)YU)}. (8)

Thus, the instantaneous gradient-based coefficient adap

tation rule which approximately minimizes Hg in (4) is 

given by

WQ +1) 그 WQ) +4fibe3(k)X(k) +2“£(0X(切. (9)

We should note that only b and c are included in the 

generalized algorithm (9) since the instantaneous estimate 

of the gradient is used. The generalized algorithm in (9) 

corresponds to the LMS algorithm if 0, c) = (0, 1), the 

LMF algorithm if (b, c) = (l, 0), and the LVCMS 지gor- 

ithm if (b, c) = (l, 一(2西 +A))・ In the sequel, 다general 

adaptation rule (9) will be used in the analysis, and the 

results could be applied to the LMS, LMF, and LVCMS 

algorithms.

Ill. Convergence Analysis of the Generalized 
Algorithm

We now assume that the input data X(&) is Gaussian, 

so that it is also independent. Therefore, we can apply the 

independence assumptions widely used in stochastic an

alyses of the LMS type 지gorithm [?].

Subtract W*  from both sides of (9) to obtain the recur

sion for V(仞，

VQ +1) = VQ) +4fibe3(k) XU) +2q£Q)X(秋 (10)

and then use (1) for e(k) to obtain

V(^+1) = VU) +0X(舫 E ( "(册(一X「Q)、弗))e

+ 2^(n(k) 一 XT(k) V統))XU). (11)

Since R is symmetric, one can define the unitary matrix U 
as

E{ UXQ) Xr(«【卩} =「= diag^x，方，…，刑). (12)

Then
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uvq +1)vr(k +i)ur=uv。) \T(k)u「

+16“勺2 住(”祯)(-X，Q)VQ))i「UXQ)X「Q)Ur

+4"*  [ W(«-Xra)VQ)]2 UXQ) X「(舫 U「

+W [.吏(：)，心)(-X「Q)VQ))I I

{UXQ) VT(k) Ur+ UVQ) XT(k) Ur}

+4g3Q)-X7Q)VQ)] {UXQ)WQ)Ur +UV(«XrU)Ur}

+1卽勺4 £ (；)耸，。)(-X«)VQ))3t I

3(舫一X「Q)VQ)] UXQ)xrQ)U「. (13)

Taking the expectation of both sides of (13) and assuming 

that the noise has a symmetric density function with zero 

mean and finite higher order moments, one finds

E{UVQ +1) VT(k +1) Ur} = F {UV(^) VT(k) VT}

- 2函 E {X，。) \(k)[ VX(k) VT(k) U『 + UV(^) XT(k) U 기}

+4”bE{(XT(k) VQ))2 UXQ)X唯)Ur}
+4『"{UXQ) X「Q) U「}

+16^dE{ (X『Q) VQ))4 UX㈤ X«) U「}

+16辱"{(X「Q) VU))6 UXQ) VT}

一 4 时 E{ (X『侬)VQ))3 [ UXQ) WQ) Vr + UVU) Xr(k) VT]}

(14)

where

a = 6Z»£(m2(^)) (15)

b = 60*刖泌(舫)+24/>c£,(nW) +c2 (16)

c = 452£(w6(^)) +4Z>cf(w4(^)) +c2E(m2(^)) (17)

d-=]5b2E(n2(k)) + 阮. (18)

From the independence theory (see [12]), the noise n(k) is 

independent of X(为)and V(左).Further, if we assume that 

V(^) is small enough, then we can neglect the terms of 

power greater than 2 in (14). A more general proof that 

includes all the higher order terms is omitted here for 

space. But the analysis shows that the higher order terms 

can be considered as an additional constant term to the 
recursion for C(k) below. The constant term does not af

fect the upper bound on 卩"

Define

CQ) = E {UVQ) Vr(k)侦}. (19)

It can be shown that

E{ XT(k) V(Ai)[UXQ) VT(k) VT + UVQ) Xr(k) VT]}

=m幻 +cq)「 (20)

and using the fourth moment expansion for Gaussian ran

dom variables, that

E{ (X『Q) VQ))2 uv(舫 WQ) U「} = 2「CQ)「+切[「CQ) I
(21)

Therefore, combining (12), (20), and (21), the recursion

(14) is simplified to

cq +1)= c(k)- 2庭{rc(k)4- c(^)r)
+4r2 方{2「CQ)「+ 切[ECQ)]「} +4卩2爾r. (22)

Following Feuer and Weinstein's LMS work [8], decom

pose the recursion for C아/) to obtain

_ N
Cdk +1) = PiiCM +4m2bYi E YpCppik) ±4^2c7t, (23)

t>--1

and

Ci)(.k + \) = pijCijik) for j (24)

where

Pij = 1 一 2函。七 +y» +8画ym. (25)

Since the matrix CQ) is symmetric and positive definite, it 

is diagonally dominant [ll|；that is, C^(k) Ca(k)

Therefore, the convergence of the diagonal elements of C 

(k) ensures the convergence of the off-diagonal elements.

Define

&切니Cu侬) G点) … CNN(k)r (26)

and

F 드 diag(pi p2 … Pn) +4/F方 LL『 (27)

where pi = pa and

L 니… ZvK (28)

Then the diagonal term (23) can be rewritten as

CQ+D = fW)+4“3L. (29) 
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Hence, CQ) converges if and only if all of the eigenvalues 

of F lie inside the unit circle.

Following Foley and Boland's LMS work [9], we use 

the property of nonnegative matrices stated by Gantma- 

cher (10] as follows. (For an alternative approach, see [8].)

Theorem [9]: A necessary and sufficient condition that 

the real number q be greater than the dominant eigenvalue 

of the nonnegative matrix F is that all the leading princi

pal minors of the characteristic matrix

FqSF

be positive. □

From (25) and (27), we can see that, if

a2 < 3b (30)

all the elements of F are nonnegative. Further, F is irre

ducible for b WO since R is assumed to be positive defi

nite. Hence, there exists a dominant real eigenvalue by 

the Perron-Frobenius theorem |10], 111], and the theorem 

given above can be applied.

With q= 1, we investigate the principal minors of

卩|=4/1五「一叩方「2一4卩2方117. (31)

First, consider the principal minor of order N. Let

D = 血zg(di,』2, 』n) 드 4卩云r — 8卩(32)

so that the principal minor of order N is

An = d이 (D — 方 LL「)

=FI …~4irb(di y\ds …d。)
「= I

di ••• £九-1以)+血(4卩2片1丄广). (33)

But detilAJ) = 0, therefore,

母=仙 D — 4诚(L4LL)daD. (34)

Then using the definition of D and L in (32) and (28), re

spectively, we obtain

&n=0时‘I n y,G-2”所,)|[i-E =쁘느r ). ⑴) 
(i=\ J ( i = I a—2卩bYi j

Since ">0, the necessary conditions for Ajv > 0 are given 

by

衅余 (36)

and

E <i- (37)
iI d ~ 2/zoyj

Also we can see that the principal minor of order less 

than N will give the conditions that is identical to (37) ex

cept the upper limit on summation.

To find an explicit bound on 卩 from (37), we f이low 

Feuer and Weinstein's LMS work [8]. The new bound on 

p is then given by

卩M

___________________________ N_______________________
J, ( N I N NN —-"

(—)3E /,+< 9W-1)2(E E ”J

(38)

which can be simplified to

“M _ n — = 3btr(H) °9)

3b L Vi
i = I

where Zr(R) is the trace of the autocorrelation matrix for 

the input X(k).

Now, we need to check if (30) is satisfied. For noise 

with zero mean, symmetric probability density,

그 g[ E(n2(k))]2 (40)

holds for some g. For example, g = 이5, 3, 6 for unifonn, 

Gaussian, and Laplacian densities, respectively. Then we 

may rewrite (16) as

b 顼 +(605-108) (41)

For the LMS, LMF, LVCMS algorithms, 2 느0 with the 

choices of b、c mentioned earlier since A.^0. Hence, (30) 

holds for uniform, Gaussian, and Laplacian densities.

If we substitute the choices of b、c, we may have

顽 (42)
a 切(R)

as an alternative expression for the previous upper bounds 

[2, 4, 5| obtained without

Gaussian assumption on input data. Comparing (39) 

and (42), we can see that the new bound is tighter than 

the previou one if the condition (30) holds.
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Table I. Upper bounds on the step size parameter with and 
without Gaussian assumption.

algorithm without Gaussian 
assumption

with Gaussian 
assumption

LMS
1 1

Zr(R) 3Zr(R)

LMF
1 I

6£(M2U))/r(R) 30£(«4(^))/r(R)

LVCMS
1 a

a Zr(R) 3^/r(R)

a 그 6E(/Q)) -(2 赤 +A.)
片=60E(?"(舫)一24(2爲 +A)£(w2(^)) +(2赤 +A.)2

The upper bounds, with and without the Gaussian as

sumption, on 卩 for the LMS, LMF, and LVCMS algor

ithms are compared in Table I. For the LMS algorithm, 

(39) corresponds to the earlier result by Feure and Wein

stein in [8]. Both the new and previous bounds for the 

LMS algorithm depend only on the trace of the autocor

relation matrix of the input data vector. On the other 

hand, the new bounds for the LMF and LVCMS algor

ithms depend on the second and fourth order moments of 

the noise whereas the previous bounds depend only on 

the second moment. This explains the reason why it is 

difficult to get convergence in the error covariance of the 

coefTicients in the LMF and LVCMS algorithms when 

the noise has a heavier-tailed density.

IV. Steady State Performance of The 
Generalized Algorithm

In [2], the misadjustment of the LMS algorithm was 

found using the assumption that the coefficient vector W 

(k) of the adaptive filter is very close the true coefficient 

vector W*.  On the other hand, Horowitz and Senne [7] 

(and Feuer and Weinstein [8] later) obtained the rnisadju- 

stement for the LMS algorithm without using the assump

tion when the input data is Gaussian. In this study, how

ever, we assumed that W(Z) Q W*  in obtaining the recur

sion (22) due to the terms of higher power (greater than 

2) in V(^). As pointed out earlier, this assumption is fic

titious for the LMS algori나】m as demonstrated in [7, 8].

Define

农 = EB間)=E{[d(k) - WrU) XQ)]2) (43) 

as the MSE at time k. Then 나ic misadjustment is given by

丿慕（册
(44) 

where 丿嬴 is the minimum MSE and 丿姫(3)is the steady 

state MSE. Then

Jr^eCk) = £{ €")}=硏 EQ) — x«) W(砌2 }
= £{XrU)W*  +，zQ)-X")W(砌 2}

= E{ln(k)-XT(k)V(k)]2}

= E {那妁 }~2E{ n(k) X7야》V(k)}

+ E{VT(k) X(k) XT(k) V(k)}. (45)

However, n(k) has zero mean and is independent of X(^) 

and VQ). Furthermore, XQ) and V(^) are independent 

since X냐s) is Gaussian and is uncorrelated in time. Thus, 

(45) becomes

丿g3)=丿為 +行[E{VU) Vr(«} E{X(k)XT(k)}]
=Jmse +17。侬) (46)

where £( w2(^)} and L and C(k) are defined in (28) 

and (26), respectively.

As C(^) converges to a steady state value, 나/ MSE be

comes

Jwse( CO ) — / mse +L『C(°O). (47)

From (29)

C(co)^4m2c(I-F)-1 L, (48)

and hence, substituting (47) and (48) into (44) yi미ds

M =
4“LL「(I-F)t L

(49)

Substitute응 (27) and (28) into (49) and using 가】e matrix 

inversion lemma [12] to invert 나le matrix will yield

M =

N
r 一 

a~2^ibVi
(50)

\~b E
i — I 成一“方y,

As mentioned in Section HI, (22) 아lould contain a con

stant term associated with 卩2 which comes from higher 

order terms. Although the constant term does not affect 

the upper bound on the step size but affect the misadju- 

어ment value for the LMF and LVCMS algorithms. How

ever, the effect of the constant term will be reduced as the 

step size 卩，becomes smaller since it is of second order in 卩.

For the LMS algorithm(2 = » = 1), the misadjustment in 

(50) corresponds to 나此 earlier result by Feuer and Wein

stein in [8], For the special case of X： = , i # /, (50) 

simplifies to
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Table U. Misadjustment values with and without Gaussian assumption.
algorithm without Gaussian assumption

心(R)

with Gaussian assumption

LMS
_______心(R)______

1 顼1 +2/A/(R)

LMF
2心渺侬)*(R)  

3[E(n2(k))]2
_________________幻)# (R)_____________________

3E(nHk))[E(n2(k))-\0^E(n4(k))(\ +2〃V)质 R)

LVCMS
/icir(R)

a E(n2(k)) E(n2(k))[a-^b(\ +2〃V)fr(R)]

a — 6E(〃2( 初 — (2 사 + 入)

片 =6OE0/( 切)一24(2 시 +A.) E(n2(k)) +(2& +Q?
c =任(护統))—4(2爲 +Q E(n4(k)) +(2赤 +A,)2/■ (m2U))

M= —:— • 
J mse

fitrR
d~lib(\ +2/N)trR

(51)

The misadjustment expressions with and without the 

Gaussian assumption for the LMS, LMF, and LVCMS 

algorithms are compared in Table II. Clearly, the misad

justment values with the Gaussian assumption arc larger 

than those without the assumption in all three algorithms.

V. Simulation Results

Simulations were performed on the system identifi

cation problem studied in [4, 5|. The transfer function of 

the system is given by

Rz) = 0.1 +0.2z~' +0.3/ +0.4"3 +0.5z-4 +0.4z 5 

+0.3 厂 6 +0.2/ +0.1

The value of the step size 卩 for each algorithm is chosen 

to give the same rate of convergence. The time constant is 

fixed at 555 samples. The input signal X(^) is white and 

Gaussian with zero mean and unit variance. The pkint 

noise n(k) is white with zero mean and variance 100. The 

noise is independent of the input signal. The adaptive fil

ter is initialized by adding to each of the coefficients a 

zero mean, Gaussian random variable with standard devi

ation 0.75.
Tables ID-V show the upper bounds on 卩 calculated 

with and without the Gaussian assumption for this system 

identification example. It is clear that the new bounds are 

much tighter than the original bounds for all three algor

ithm and for all noise densities.
The mean squared coefficient error for the LMS, LMF, 

and LVCMS algorithms are obtained by averaging 가0 in

dependent runs. Curves look very similar to those shown 

in [5] and are omitted here. Theoretical and actual misad
justments for three algorithms are shown in Tables VI-빼.

The actual misadjustment values are obtained by averag

ing the last 125 data samples out of 2000 samples. Note 

that the misadjustment values computed from the new 

expressions are slightly closer to the actual values than 

those from the original expressions for all cases.

Table DI. Upper bounds on the step size parameter with and 
without Gaussian assumption for the system identifi
cation problem: uniform noise density.

algorithm without Gaussian 
assumption

with Gaussian 
assumption

LMS 0.11 3.70X 10~2
LMF 1.85X HL 2.06 X 10~5

LVCMS 2.78〉시 (广 4 2.31 X 10~5

Table IV. Upper bounds on the step size parameter with and 
without Gaussian assumption for the system identifi
cation problem: Gaussian noise density.

algorithm without Gaussian 
assumption

with Gaussian 
assumption

LMS 0.11 3.70 x 10^2
LMF 1.85〉이 IL 1.23X10-4

LVCMS 8.55X 10~5 1.21 X 1(广5

Table V. Upper bounds on the step size parameter with and
without Gaussian assumption for the system identifi
cation problem: Laplace noise density.

algorithm without Gaussian 
assumption

with Gaussian 
assumption

LMS 0.11 3.70 X 10一2

LMF 1.85X 10~4 6.17X I0~6
LVCMS 7.94 X 10~5 8.42X 1(广 &

Ta비e VI. Misadjustment values with and without Gaussian as
sumption for the system identification problem: uni
form noise density.

algorithm
theory

sim 니 alionwithout Gaussian 
assumption

with Gaussian 
assumption

LMS 8.11 X 10-1 8.19X107 8.51 X10"3
丄MF 

LVCMS
3.47 X 10"5 3.49X IL 4.02X107
2.55 乂 ML 2.65X IM 3.05 X 10"3
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Ta이e W. Misadjustment values with and without Gaussian as
sumption for the system identification problem: 
Gaussian noise density.

theory
sim 니 ationwithout Gaussian 

assumption
with Gaussian 

assumption
LMS 8.11 X 10"5 8.19X 10~3 8.98X 10~3
LMF L35X 10~2 1.36X 10~2 1.54X 10~2

LVCMS 9.26X 10~3 9.48X107 1.02 X 10"2

Table Vfi. Misadjustment values with and without Gaussian as
sumption for the system identification problem: 
Laplacian noise density.

algorithm
theory

simulationwithout Gaussian 
assumption

with Gaussian 
assumption

J LMS 8.11 X 10"3 8.19X 10-3 8.20 X 10-3
LMF 8.11 X 10~2 8.13X 10-2 9.14X10"2

LVCMS 2.55X 10~2 2.63X107 2.83 X 10~2

VI. Conclusions

In this study, convergence properties of the LMS, LMF, 

and LVCMS algorithms under the uncorrelated Gaussian 

input data are investigated. This is carried out by employ

ing the generalized error criterion that admits all three 

algorithms. The analysis provides the unified res alts on 

the upper bound for the step size and the misadjustment 

expressions for all three algorithms under the uncorre

lated Gaussian assumption. The results also explains con

vergence characteristics of the LMF and LVCMS algor

ithms envountered in the previous simulation studies. A 

new resets also provide better accuracies to sim 니ation 

its 버 ts.
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