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Abstract

A real-time identifier for the nonstationary time-varying signals and systems was implemented using a low cost DSP(digi- 
tal signal processing) chip. The identifier is comprised of I/O units, a central processing unit, a control unit and its support­
ing software. In order to estimate the system accurately and to reduce quantization error during arithmetic operation, the 
firmware was programmed with 64-bit extended precision arithmetic. The performance of the identifier was verified by 
comparing with the simulation results. The implemented real-time identifier has negligible quantization errors and its 
real-time processing capability crresponds to 0.6 kHz for the nonstationary AR (autoregressive) model with n =4 and m = 1.

I. Introduction

In the field of time series an시ysis for system or signal 

identification, time series are often encountered in which 

the statistics of the data exhibit a nonstationary situation. 

In fact, the time series of the most physical system has 

nonstationary statistics. However, nonstationary time series 

analysis is very complex to compute in contrast to the 

analysis of stationary time series data. In addition, heavy 

amounts of data processing are burden in general purpose 

digital computer. Therefore, the nonstationary data 

processing has been tried by assuming that the data under 

consideration is piece-wise stationary [1-3].

Recently, due to advance in digital signal processing 

and VLSI 拍아】n이ogy, low cost DSP chips have been 

produced, which alleviate the heavy computational 

problems. Several algorithms for the analysis of signal 

processing have been suggested. Kitagawa and Gersch 

used the nonstationary time series analysis method in 

seismic data analysis [2], and Moser showed that this 

algorithm could be useful in real-time processing [3].

When used for real-time processing, however, Moser's 

algorithm was accompanied by the difficulty of requiring 

heavy amounts of computation. This difficulty may out­

weigh the algorithm's usefulness.

In this paper, the real-time identifier was realized using 

the nonstationary identification algorithm and a TMS320 

(Texas Instruments) DSP chip.

II. Formulation for the Identification of 
Nonstationary Time-varying Signal

Nonstationary time series are used to represent any 

class of data whose statistical properties change with 

time. The vast majority of physical data actually fall into 

this category. It is only for reasons of approximation and 

simplicity that many data are arbitrarily assumed to be 

stationary. Nonstationary data are obtained, for example, 

under transient operating conditions when an environ­

ment changes suddenly, or during long range operating 

periods when system properties change so that a given 

input will produce a variable output [4|.

Nonstationary time sequence, y(k), is as follows ；

丿侬)=*  + *(&),  k그0 1, 2,.,., (1)
i= I

where 角 is the smoothness prior nonstationary AR par­
ameter, and

m
di Q) = E bij (k)-务(k - j) + Vi (k) (2)

Here w(k) in Eq.(l) and v, (k) in Eq.(2) are orthogonal to 

each and the second order moment of the ergodic white 

gaussian process with zero mean is

Var\w(砌=W(A), Var[s(期-匕Q),

where k represents discrete time and 务 and b订 are 

nonstationary AR parameters. In the sense of bayesian, 

the most moderate choice of the smoothness prior is to 

model the mlh order difference equation as follows[2-3]:
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V 꺼%Q) = 00), (3)

where V is the difference operator. For example,

V a(k)三 a(k)-a{k~ 1). (4)

In the nonstationary sequence representation of Eq.(l) 

and (2), the AR parameter can be changed into the fol­

lowing state space equation.

x{k +1) = A(Jz)x(k) + 就 3)

= C(k) x(k) +w(k) 

(5)

(6)

where the estimated AR parameter is x(k):
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The covariance matrix v(k) of u(k) is represented by (11) 
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The nonstationary time-varying system model, which conve­

rted into the state equation, can be solved into an useful 

solution, and the Kalman filter algorithm (as nonstaGonary 

identfier algorithm) can be applied to estimate the 

nonstationary AR parameters at each time interval k. The 
procedure to estimate parameters is as f이low[5-7]：
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Here, x (k +1/^) is the estimate of x{k~V\) from given 

data a ^th sample time, and P(k^~l/k) is pridiction error 

covariance at that time. The stability of this algorithm is 

proved in 13].

III. Design of the Real-time Identifier

In order to implement the real-time identifier, as 

described in the previous sections, it is necessary to select 

a DSP chip with appropriate parameters, such as memory 

size, speed, numberical accuracy and easy use of the 

assembly language. In this paper, Texas Instruments 

TMS320C25 digital signal processor[8] has been employed 

for the real-time identifier implementation.

The TMS320C25 provides on-chip memory that includes 

a 4096-by-16bit ROM and a 544-by-16bit RAM. To 

achieve maximum throughput, memory access time must 

be fast. In general, the real-time minimal through must 

satisfy the Nyquist rate. The internal memory banks of 

the TMS32OC25 satisfy this condition.

Finite word-length registers of the DSP chip affect the 

accuracy of the algorithm [9]. These effects are found in 

quantization error and limit cycle. Quantization errors 

such as those due to analog-to-digital data conversion are 

influenced by the numbering system used to encode data 

(e.g., 2's complement, floating point, etc.). With recursive 

algorithms, the round-off or truncation errors can build 

up and affect the performance of the algorithm. Large-scale 

overflow limit cycles are caused when a system state (or 

variable) exceeds a prespecified bynamic range. This error 
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can be disastrous if it is not corrected.

There are several ways to minimize the effects of finite 

word length. One approach is to properly scale the filter 

variables and parameters for each sample point. Another 

approach is to use the floating-point processor with large 

dynamic range. For example, the dynamic range of 

TMS320C25 (fixed point processor) and DSP32(floating 

point processor) is 2"小~1 and, 10-38~ IO38, respectively. 

Although the floating point proccessor has a wide 

dynamic range, it is very expensive and hardware 

implementation is complex.

In this study, therefore, the TMS320C25 DSP chip was 

chosen, and 64 bit extended precision arithmetic was 

developed to reduce the effects of finite word length. 

Also, hardware size was reduced very compactly(about 

10cm * 10cm).

The real-time identifier for the nonstationary time-varying 

signal constructed in this study is shown in Fig.l.

Figure I. Schematic diagram of the real-tme identifier

Figure 2. Flow chart of the identifier algorithm

To prevent aliasing error the low pass filter is employed, 

and program memory includes identifier algorithm, inihal 

covariance value, and input noise variance value. TMS 

320C25 DSP chip performs identifier algorithm, estimates 

AR parameters, and transmites parameters to PC.

A flow chart of the identifier algorithm is shown in 

Fig.2. Initial values are stored in the internal data memory 

of TMS320C25 during system initialization. Whenever 

BIO signal is low the nonstationary signal is sampled, 

and then covariance matrix and Kalman gain are 

computed. This convariance matrix is stored in the 

internal data memory and used to compute Kalman gain 

next As x(k- 1) is estimated using this Kalman gain, so x 

(k) will be predicted. From this x (k), y (k) will be 

estimated and prediction error will be computed. By this 

prediction error and Kalman gain, AR parameters are 

corrected. Thrc is executed repeatedly.

IV. The Performance Evaluation of the 
Real-time Identifier

The performance of the real-time identifier has been 

verified by two steps. First, the signal with different AR 

(autoregressive) parameters in the two interval was 

generated by filtering the white gaussian noise. Then the 

convergence behavior of the identifier was compared with 

that of GLCgradient lattice) algorithm [1]. Second, 나 

performance of the realized identifier was evaluated by 

comparing the result obtained from direct biasing of the 

nonstationary signal to the identifier with the result of a 

floating point simulation. With the surface electrode 

(TECA, NCS 2000) attatching to the portion from which 

나le EMG signal can be well obtained at the normal 

human biceps of the arm, the EMG signal is sampled 

while the operation of lifting up and down the 14kg load. 

Abrupt flexion of arm causes the EMG signal to be sud­

denly large and have unstable waveform in the initial 

stage of action because the muscle become burden.

The EMG signal is acquired during 1 second at the fol­

lowing condition ； 1024Hz sampling frequency, gain of 

2000 times and the bandpass filter of 0.5— 500Hz 

passband. The RUN test is accomplished to verify the 

nonstationary of the sampled data [4].

Consider a sequence of N observed values of a random 

variable x where each observation is classified into one of 

two mutu시ly exclusive categries, which may be identified 

simply by plus(+) or minus( A run is defined as a 

sequence of identical observations that is followed and 

preceded by a different bservation or no observation at 
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all.

The number of runs which occur in a sequence of 

observations gives an indication as to whether or not 

results are independent random observations of the same 

radnom variables. Specifically, if a sequence of N obse­

rvations are independent observations of the same ran­

dom variable, that is, the probability of a ( + ) or (—) 

result does change from one observation to the next, then 

the sampling distribution of the number of runs in the 

sequence is a random variable r with a mean value and 

variance as follows；

ME
用=乙厂+i (15)

(16)
2 - 2M M(2M N?—N)

Here, N\ is the number of (+) observations and N2 is the 

number of ( —) observations.

In this experiment, the nonstationary identifier was 

constructed for the nonstationary model order n = 4, 

smoothness prior order m = 1 and used the suboptimal 

assumption of constant input noise variance V(k)=I in 

the identifier and V (k) = 0.00002/ in the floating point 

simulation, where / is the identity matrix. In the 

identifier, the normalized value is 2048 since the input 

range of the identifier is + 1 [V] and the A/D converter 

has 12bit resolution.

Figure 3. Signal generated by filtering white gaussian noise.

Table 1. AR parameter values for each time interval.

Para. n
value

1-512 513-1024

a\ (w) 1.97 1.35

a2 (n) -2.08 一 1.52

“3 0Z) 1.22 0.95

a4(n) -0.40 -0.30

The signal generated by filtering the white gaussian 

noise is shown in Fig.3. The parameters corresponding to 

each time interval are shown in table 1.

The convergence speed of the parameters by the GL 

algorithm and the identifier algorithm are shown in Fig.4 

and the mean square error for 64 blocks (each block 

includes 16 data samples) is shown in Fig.5.

Figure 4. Convergence speed of parameter a} (n) for GL and 
identifier algorithm

It fin'I or- n-.j'Tilrff

Figure 5. Mean square error curve for ax (m)

In Fig.4, the real parameter value changes abruptly at 

the 513th sample number. The parameter value varies 

from 1.97 to 1.35. Comparing the real parameter value 

with the estimated parameter value, the parameter value 

estimated by the GL algorithm varies by 0.29 from the 

513th to the 1024th sample number. This variation rate is 

46.8% of the real parameter variation. In the case of the 

identifier algorithm, the estimated parameter value varies 

by 0.58 from the 513th to the 1024th sam미e number, and 

this variation is 93.5% of the real parameter variation. 

Therefore, we can see that the convergence speed of the 

identifier is 7.76 times faster that of the GL algorithm in 

the case of the abrupt change signal (or the nonstationary 

sign시). In Fig.5, we can observe the variation of MSE 

(mean square error). One the parameter value varies 

abruptly, the MSE of the identifier over the GL algor­

ithm is improved about 30~50%.
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The EMG signal obtained from the biceps muscle is 

shown in Fig.6. Even when there is no voluntary change 

of mus어e state, myoelectric signals with long duiation are 

probably nonstationary due to the physiology of the sys­

tem [10]. If it was possible for the neural input and blood 

or oxygen supply to the muscle to remain constant, the 

output(EMG) might exhibit stationary. Since this is not 

the case, we must examine the myoelectric activity during 

a short time period when these inputs are relatively con­

stant and the EMG is perhaps weakly stationary.

Figure 6. Nonstationary electromyographic signal

meaning the data should be considered nonstationary.

The paramenters that were estimated by the identifier 

and floating point arilhm머ic algorithm are shown in Fig.7. 

The similarity of each result manifests the stability of 

identifier operation. Fig. 8 is the plotting of the EMG 

signal reconstructed from estimated model parameters. 

Fig. 9 is the autocorrelation function of the EMG signal 

acquired from the biceps muscle and the crosscorrelation 

function between the raw EMG sign이 and the reconstructed 

EMG signal. In Fig. 9, the crosscorrel굖Lion function 

manifests clearly that the reconstructed EMG signal by 

identifier and the raw EMG signal are highly correlated, 

and data shows that the identifier does identify the 

nonstationary signal very accurately.

■J ； '"'t ■■■ni'，•宀'H

4 0'.； E* “妃

To evaluate the stationarity of the turbulence data, the 

sample data was divided into 32 segments of equal length 

(32 samples each), and a sample standard deviation devi­

ation was computed for each segment. The median stan­

dard deviation of the acquired EMG signal is 0.231 Now 

let it be hypothesized that the data are nonstationary. 

From RUN distribution table [4], this hypothesis would 

be accepted at the a = 0.05 level of significance if the 

number of runs observed in the sequence of standard 

deviations relative to the median was less than 11 or 

more than 22. From ta비e 2, it is seen that only 나 runs 

occur in the sequence. Hence, the hypothesis of nonsta- 

tionarity is accepted at the 5 percent level of significance,

Figure 7. Estimated AR parameter(0 («))

Figure 8. Reconstructed signal with estimated parameter by 
implemented identifier

(S.D.: Standard Deviation)
Table 2. Stochastic value of each interval

Block mean S.D. Block mean S.D. Block mean S.D. Block mean S.D.

1 0.085 0.006 9 0.159 0.124 17 -0.232 0.241 25 -0.123 1.031

2 0310 0.010 10 0.070 0.224 18 -0.065 0.191 26 0.047 0.620

3 0.063 0.002 11 0.041 0.083 19 0.007 0.163 27 0.141 0.844

4 0.040 0.012 12 0.065 0.252 20 0.230 0.202 28 0.130 0.으 46

5 0.085 0.004 13 0.046 0.424 21 -0.100 0.241 29 0.012 0.324

6 0.019 0.016 14 0.081 0.245 22 0.071 0.109 30 0.098 0.005

7 -0.005 0.023 15 0.048 0.619 23 0.189 0.431 31 -0.058 0.017

8 0.074 0.054 16 0.293 0.162 24 0.150 0.396 32 -0.051 0.072
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Figure 9. Autocorrelation function and crosscorrelation functon

The implemented real-time identifier has negligible 

quantization error because the identifier used 64 bit 

extended-precision arithmetic, and its real-time processing 

capability corresponds to 0’6k버z for the AR model with 
n 느 4 and m = 1.

V. Concufusion

This paper demonstrated that a real-time identifier for 

the nonstationary time-varying signal can be implemented 

using a fixed point DSP chip.

We summarize the res니Is of this experimental study as 
follows：

1. Assuming that nonstationary signal regard to 

time-varying AR model, nonstationary identification 

algorithm could identify the parameter accurately.

2. It is possible that the nonstationary parameter 

identifier can be implemented such that it has real-time 

processing capability, and if is applicable to physically 

real nonstationary systems.

3. High numerical fidelity was obtained using 64 bit 

extended-precision arithmetic.

4. The identifier can be constructed in pocket size(10cm 

* 10cm) because the system was designed for low power 

consumption driven by a battery.

The designed real-time identfier is able to use FES 

(functional electrical stimulation) system for paraplegics, 

spectrum estimation, and adaptive signal processing for 

system identification.
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