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Abstract

A real-time identifier for the nonstationary time-varying signals and systems was implcmented using a low cost DSP(digi-

tal signal processing) chip. The identifier is comprised of 1/O units, a central processing unit, a control unit and its support-

ing software. In order lo cstimate the system accurately and to reduce quantization error during arithmetic operation, the

firmware was programmed with 64-bit extended precision arithmetic. The perfformance of the identifier was verified by

comparing with the simulfation results. The implemented real-time identificr has negligible guantization crrors and ils

real-time processing capability crresponds to 0.6 kHz for the nonstationary AR (autoregressive) model with n =4 and m= |

1. Introduction

In the field of time serics analysis for system or signal
identification, time series arc often encountered in which
the statistics of the data cxhibit a nonstationary situation.
In fact, the time series of the mosi physical system has
nonstationary statistics. Howcver, nonstationary time serics
analysis is very complex (o compute in contrast to the
analysis of stationary ttime scries data. In addition, heavy
amounls of data processing are burden in general purposec
digital computer. Therefore, the nonstationary data
processing has been (ricd by assuming that the data under
consideration is piece-wise stationary [1-3).

Recently, due to advance in digital signal processing
and VLSI technology, low cost DSP chips have becn
ptoduced, which alleviate the heavy computational
problems. Scveral algorithms for the analysis of signal
processing have been suggested. Kitagawa and Gersch
used the nonstationary time series analysis method in
seismic data analysis [2], and Moscr showed that this
algorithm could be useful in real-time processing [3].

When used for real-time processing, however, Moser’s
algorithm was accompanicd by the difficully of requiring
hcavy amounts of computation. This difficulty may out-
weigh the algorithm’s usefulness.

In this paper, the rcal-time idenlifier was realized using
the nonstationary identification algorithm and a TMS320
(Texas Instruments) DSP chip.
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II. Formulation for the ldentification of
Nonstationary Time-varying Signal

Nonstationary time serics are used (o represent any
class of data whosc stalistical properties change with
time. The vast majority of physical dala actually fall into
this category. 1t is only for reasons of approximation and
simplicity that many data are arbitrarily assumed lo be
stationary. Nonstationary data are obtained, for example,
under transient operating conditions when an environ-
ment changes suddenly, or during long range opcrating
periods when system properties change so Lhal a given
inpul will producc a variable output [4).

Nonstationary time sequence, y (&), is as follows:

wRy=Y o (BYyk—1) + wik), k=0.1,2,..., ()
i=1\

wherc 2; is the smoothness prior nonstationary AR par-

ameter, and
a;(k) =3 bi;(R) - a; (k= j) + vi(k) (2)
f=1

Here w(£) in Eq.1) and z; (k) in Eq.(2) are orthogonal to
each and the second order moment of the ergodic white

gaussian process wilh zero mean is
Varlw (R =W (k), Varly,(B)] = V;{k),

where % represents discrete time and a; and #;; are
nonstationary AR parameters. In the sense of bayesian,
the most moderate choice of the smoothness prior is (o

medel the m‘th order difference equation as follows[2-3]:



14

V7 a(k)=uv(k), (3)
where V is 1he ditference operator. For example,
Valky=ak)—alk~1). (4)

In the nonstationary sequence representalion of tEq.{l}
and (2), the AR parumeler can be changed into the fol-

lowing slate space equation.
x(k+1)= Alk)x (k) +ulk) {5)
y{k) = ClR)x (k) +wlk) ©)

where the estimated AR parameter is x{&):
a; (k)

ay (k)
0,‘(/2“”
x(k)= : N
a,(k—1)
ailk—m+1)

|, (—m+1)

bll bIZ blm
&y 0 by 0

Ak)=

0 by 0 by 0 B

l ’!l(m—ll'(m-l)

()mm-llm

%)
Let
wBY =|e kD)t + 1)k + 130 0)ispe (D
CERY=[yk— 1Dy y(k—2) o y(B—n)0 - 0)i x ume (10)

The covariance matrix #{k) of 2 (%) is represented by (11)
covlu(R =V (k)=

V,k+1) 0 0 |
0 Vytk+1)

Valk+1) (1)
0

The nonslationary time-varying system model, which conve-
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tled inte the state equation, can be solved into an uscful
sotulion, and the Kalman filter algonthm (as nonstalionary
idenlfier algorilhm) can be applied (o estimale Lhe
nonstalionary AR parameters al each time interval &. The

procedure to cstimate paramelers s us follow{5-71:
x{k +1/ky=[ AR — K C UM x (/R —1) + K (R) y (k) (12)

K{kY= Atk) P{kfk—1)C )T
[CR)PIE—1DC(ER)T 4 W R a3

PEH1/R)=AR)

| P(kjR=1) - Plkfk—1C (R

AC R PlRfk ~DCRY + W (R)

< CRIPRIE-1NART +V (k) (14)
= Ellxtk +1)—x(k +1/k)

x k1Y ~xlk+ R

fy ()., y(R)

Here, x (% +1/k) is the estimaic of x{(k +1) from given
data a kh sample time, and P (2 +1/k) is pridiction crror
covanance at that time. The stabilily of this algorithm is

proved in |3
il. Design of the Real-time Identifier

In order to implement the real-time identifier, as
described in the previous sections, i1 is necessary Lo sclect
a DSP chip wilh apprepnate paramcters. such as memory
size, speed, numberical accuracy and casy usc of the
asscmbly language. In this paper, Texas Instruments
TMS320C25 digital signal processor[8] has been employed
for the rcal-time identifier implementation.

The TMS320C25 provides on-chip memory that inctudes
a 4096-by-16bil ROM and a 544-by-16bit RAM. To
achicve maximum lhroughput, memory access time must
be fas. In general, the real-time minimal through must
satisfy the Nyquisl rate. The internal memory banks of
the TMS320C25 satisfy this condition.

Finite word-lenglh registers of the DSP chip affect the
accuracy of the algorithm [9). These cffects are found in
quantization creor and limit cycle. Quantization errors
such as those due lo analog-to-digital data conversion are
influenced by the numbering system used to encode dala
{c.g.. 2's complemenl, Doating point, ¢ic.). With recursive
algorithms, Lhe round-off or truncatlion errors can build
up and affect the performance of the algonthm. Large-scale
overllow timit cycles arc caused when a syslem state (or

variable) exceeds a prespecified bynamic range. This error
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can be disastrous i[ il is nol correcled.

There are several ways 1o minimize the effects of finite
word length. One approach is to properly scale the filter
variables and paramelers for each samplc point. Another
approach is 1o use the floating-point processor with large
dynamic range. For cxample, the dynamic runge of
TMS320C25 (lixed point processor) and DSP32(floating
point processor) is 27"~ 1 and, 107*~ [0, respectively,
Although the floating poinl proccessor has a wide
dynamic range, it is very cxpensive and hardware
implementation is complex.

In Lhis sludy, therefore, the TMS$320C25 DSP chip was
chosen, and 64 bit extended precision anlhmetic was
developed to reduce the cffects of finite word length.
Also, hardware size was reduced very compacily(about
10cm *» 10cm).

The real-time idlentifier (or the nonstationary time-varying

signal constructed in this study is shown in Fig.t.

Signal 12bit TMS320C25 Program
——— LPF |—
Input AD BIO ClockIn Memory

100KHz Sample L 40MHz
0sc Rate 0SC

Figure 1. Schemalic diagram of the real-tme idenlificr

compute

delay P

delay

compute compuite
K(k) - Pa(k)

estimate .
$) correction
Prediction estimate
x(k) (k-1)
t l

Figure 2. Flow chart of the idenlifier algorithm

To prevent ahasing error the low pass filter is employed,
and program memory includes identifter algorithm, inital
covartance value, and input noise varance value. TMS
320C25 DSP chip performs identifier algorithm, eslimates
AR parameters, and transmites parameters to PC.

A flow chart of the identifier algorithm is shown in
Fig.2. Initial values are slored in the intermal data memory
of TMS320C25 durning system initialization. Whencver
BIO signal is fow the nonstationary signal is sampled,
and then covariance matrix and Kalman gain are
computed. This convariance matrix is stored in Lhe
ialernal data memory and used to compute Kalman gain
next As x{k—1) is estimated using this Kalman gain, so x
(&) will be predicted. From this x (k). ¥ (&) will be
estimated and prediction crror will be compulted. By this
prediclion error and Kalman gain, AR parameters arc

correcled. Thre is excculed repealtedty.

V. The Performance Evaluation of the
Real-time ldentifier

The performance of the rcal-ime identifier has boen
verified by two steps. First, the signal with differcnt AR
{(auloregressive) parameters in the 1wo inlerval was
generated by filtering the while gaussian noise. Then the
convergence behavior of the identifier was compared with
that of GL(gradient lattice) algorithm [1]. Second, the
performance of the realized identificr was evaluated by
comparing the result oblained from direct biasing of the
nonstationary signal to the identificr with the resull of a
floating point simulation. With the surface electrode
{TECA, NCS 2000} allalching to the portion from which
the EMG signal can be well obtained at the normal
human biceps of the arm, the EMG signal is sampled
while the operation of lilting up and down the 14kg load.
Abrupt flexion of arm causes the EMG signal to be sud-
denly large and have unstable wavelorm in the initial
stage of action because the muscle becotne burden.

The EMG signal is acquired during 1 second at the fol-
lowing condition; 1024Hz sampling frcquency, gain of
2000 times and lhe bandpass filter of (.5~ 500Hz
passband. The RUN tesl is accomplished 1o verify the
nonstationary of Lhe sampled data [4).

Consider a sequence of N observed values of a random
variable x where each observation is classified into one of
two muiually exclusive categries, which may be identified
simply by plus(+) or minus(—). A run is defincd as a
sequence of identical observations (hat is followed and

preceded by a different bservation or no obscervation al
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all.

The number of runs which occur in a sequence ol

observalions gives an indication as to whether or not
results are independent random observations of the same
radnom variables. Specifically, il a sequence of A obse-
rvations arg independent observations of the same ran-
dom variable, (hal is, the probability ol a (4+) or (=)
result docs change from onc obscrvation Lo the next, then
the sampling distnbution of the number of runs in the
sequence 1$ a random variable » with a mean valuc and

vanance as follows;

_ 2NN,
= N +1 (15)
2N, N, 2N, N, —N)
2_ ! ALcAARAR
a; NN -1) (16)

Here, Ny is the number of (+) observations and N, is Lhe
number of ( —) observalions.

In this experiment, the nonstationary identifier was
conslrucled for (he nonstationary model order n=4,
smoothness prior order m=1 and uwsed the suboptimal
assumption of constant input noisc variance V{£)=1 in
the identifier and ¥ (£)=0.00002/ in the floaling point
simulation, where { is the identity matrix. In the
identifier, the normalized valuc is 2048 since the inpul
range of the identifier is +1[V] and the A/D converter
has 12bit resolution.

Figure 3 Signal gencrated by filtering while gaussian noisc.

Table 1. AR parameter values for each time interval.

Para. n 1-512 S13-t024
value
a, () 197 1.35
a,(»n) —-2.08 —-1.52
ay(n) 1.22 0.95
a4(n) —~0.40 —0.30
| I
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The signal generaled by filtering the white gaussian
noise 15 shown in Fig.3. The parameters corresponding 1o
cach time interval are shown in table 1.

The convergence speed of the paramelers by the GL
algorithm and the identificr algorithm are shown in Fig.4
and the mean square error for 64 blocks {each block

includes 16 data samples) is shown in Fig.5.

Figwe 4. Convergence speedt of parameter @, (n) for GL and
idenlficr algorithm

Figwe 5. Mean squarc error curve for a) (n)

In Fig.d, the real parameter valuc changes abruplly at
the 513tk sample number. The parameler value varies
from £.97 to 1.35. Comparing Lhe real parameler value
with the estimated paramcter value, the parameter value
cstimaled by the GL algonthm varies by 0.29 from Lhe
513th (o the 1024th sample number. This variation rate is
46.8% of 1he real parameler variation. In the case of the
identifier algorithm, the estimated parameter valuc varics
by 0.58 from the 513th to the 1024th sample number, and
this variation is 93.5% of (he rcal parametcr variation.
Thercfore, we can see that the convergence speed of the
identifier is 7.76 Limes laster that of the GL algorithm in
the casc of the abrupt change signal (or the nonstationary
signal). In Fig.5, we can observe the variation of MSE
(mean square error). One the parameler valuc varies
abruptly, the MSE of the identifier over the GL algor-

ithm is improved aboul 30~ 50%.
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The EMG signal oblained from (he biceps muscle is
shown tn Fig.6. Cven when there is no volunlary change
of muscle state, myoclectric signals with long duiation are
probably nonstationary duc to the physiology 0! the sys-
temt [10). If it was possible for the ncural inpul and blood
or oxygen supply to the muscle to remain constant, the
outlput(EMG) might exhibit stationary. Since thss is nol
the case, we must cxamine the myoclectric activity during
a short time pertod when thesc inputs are relattvely con-

stant and thc EMG is perhaps weakly stationary.

Figure 6. Nonstationary clectromyographic signal

To evaluaie the stationarity of the turbulence data, the
sample data was divided into 32 segments of equal length
(32 samples each), and a sample standard deviation dewi-
ation was computed for each segment. The median stan-
dard deviation of the acquired EMG signal is 0.23) Now
let it be hypothesized that the data are nonslationary.
From RUN distribution table 4], this hypothesis would
be accepled al the «=0.05 level of significance i€ the
number of runs observed in the sequence of standard
deviations relative to the median was less than Il or
more than 22. From tabie 2, it is seen that only 4 runs
occur in the sequence. Hence, the hypothesis of nonsta-

tionarily is accepted at thc 5 percent level of significance,

Table 2. Stochastic value of each interval

i7

meaning the data shoukl be considered nonslationary.
The paramenters that were esiimated by the identifier
and floating point arithmetic algorithm are shown in Fiz.7.
The simifarily of each resull manifests (he stability of
identifier operation. Fig. 8 is thc plotling of the EMG
signal reconstrucled from cstimated maodel parameters.
Fig. 9 is the autocorrelation function of the EMG signal
acquired from the biceps muscle and the crosscorrelation
function between the raw EMG signal and the reconstructed
EMG signal. In Fig. 9. the crosscorrclalion [unclion
manifests clearly that the reconstructed EMG signal by
idenlifier and the raw EMG signal are highly corselated,
and data shows Lhal the identifier docs identify Lhe

nonstationary signal very accurately.

Figure 7. Estimated AR parameler (a, (32)}

Figure 8. Reconstructed signal with estimated parameter by
implemenled identifier

(S.D. : Standard Devialion)

| Block | mean | SD. | Block | mean , S.0.
| 0.085 0.006 9 0.159 0.124
2 | oo | omo | 10 | o070 | 022
3 | o006y | o0z | 11| 0041 | 0083 |
oo oo [T Jows [0z
5 0.085 0.004 13 (1L.046 0.424
6 | oms | oote | 14 | oost | 0245
7 [ -oo0s | 0023 | s | ooas | o619
| & | oom [oost | 16 | 0293 | ote2 |

Block medn S.D. Block mean S.D.
T | Cemr | o2a | 25 | -oam | ren
Y18 | —owes | 091 | 26 | oma7 | 0620 |
19 | oo |ones | 22| onar | o |
.20_ —UE 5202_ _28 (1.136—_ 0.2496
e ] —oa0e | e2m |20 J.. 0012 | 0324
2 | oom | 0009 | 30 | 009 | ooos |
23 | oam9 | 0an | 3 | ~00ss | 0017
T2 | oas0 | 0396 | 32 | ~00si | oom
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Figure 8. Autocorrelation function and crosscorcelation Tunclon

The implemented real-time identifier has ncgligible
quanbization ercor because (he identifier used 64 bit
extended-precision arithmetic. and its real-lime processing
capabifity corresponds 10 0.6kHz for the AR madel wilh

n=4and m=1.
V. Concuiusion

This paper demonstriled that a real-time identifier lor
the nonstationary lime-varying signal can be implemented
using a txed point DSP chip.

We summarize the results of this experimental study as
follows:

1. Assuming thalt nonstattonary signal repard Lo
timec-varying AR model, nonstationary dentification
algorithm could wdentity the parameter accurately.

2. H is possible that the nonstationary paramcler
identifier can be implemented such thal il has real-lime
processing capabilily, and if is applicable (o physically
real nonstationaty systems,

3. High numerical lidelily was oblained using 64 bit
extended-precision arithmetic.

4. The ideatifier can be construcled in pockel size{10c¢m
» 10cm) because the syslem was designed for low power
consumption driven by a battery.

The designed real time identfier is able o use FES
{(functional electrice! stimulation) system (or paraplegics,
spectrum cslimation, and adaptive signal processing for

system identification.
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