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Abstract

The pseudomedian [lilter was designed to be a compulationally effecient alternative 1o the median filter. However, a

thorough analysis ofthe pseudomedian filter reveals some important differences between its response and that of the median

filter. This paper develops some formal properties of the pseudomedian filler. The root signal analysis demonstrates the

close relatonship between the median and pseudomedian filters while pointing out important and useful differences.

I. Introduction

Linear filtering is a well-established method for extracting
signals from noisy environments. There are many tools
availablc for analyzing linear filters, and the properties of
these fillers are well-understood. Nevertheless in some
siluations a linear filler, even an optimal linear filter, does
nol perform adequately. In these cases, the special properties
of certain nonlinear filters are required. Unfortunately,
nonlincar filters are much more difficult to analyze than
lincar filters, and as a result the properties of many
nonlinear filters arc poorly understood.

Median filtering is onc of the most common nonlinear
techniques used in signal processing. Among the first 10
demonstrate the benefits of taking medians of sample
dala were Borda and Frost [12], and the median filter
itself is generally ascribed 1o Turkey [11]. The properties
of the median filter bave been studied in quite some depth
since these early uses 16, 7, 8, 9, 10]. The edge-preserving
and impulse-removing properties of this filter are usually
the most desirable fealures, and although the median filter
is not conceptually complex, its computation can become
quile cumbersome. The problem of efficient computation
of the filter led Pratt, Cooper, and Kabir [I] to propose
the “pseudomedian” filter, a filter with properties similar
to the median filler, which can be more efficiently
calculated. The pseudomedian filter often produces results
that are very similar indeed to those produced by the
median fulter, and many of the theoretical properties of
the psedomedian filter are the same or nearly the same as
the corresponding propertics of the median filier. However,
the response of the pseudomedian filter to high-frequency
osillations and the impulses is quite different from the
response of the median filter. In many circumstances, the
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response of the pseudomedian filter is preferable.

This paper develops some formal properties of the
pseodomedian filter, Gallagher and Wise [2) and Tyan [3]
first demonstrated the root signal set(that is, the set of
signals unchanged by filtering) for the median filter. The
root signal analysis of the pscudomedian filter demonstrates
the close refationship between the median and pseudomedian
filters while pointling out important and uscful differences.

1. Pseodomedian Filter Definition

The median filter is described as operaling on a discrete
signal. A window of width 2N + [ sample points slides
across the signal. The output of the filter is the median of
the 2N + 1 valucs in the window, and this oulput is the
filtered value at the sample in the center of the window.

The pseudomedian filter is also described for a discrete
signal and a window width 2N + |. However, the output
of the pseudomedian operator, PMED, is the average of
the maximum of the minima and the minimum of the
maxima of the N + 1 sliding subsequences of length N + 1
in the window. This definition is illustrated by the

equalions below for N=1 and N=2.

1
PMED({a, b, c}=? max {(min{a, b}, min{b, c})}
H .
+ > min{(max{a, b}, max{b, ¢})}
where the values in the window(width =2N + | =3)are{a, b, ¢}

PMED({a, b, ¢, d, e}='-;" max{min{a, b, c},
min{b, ¢, d}, min{c, d, ¢})}
+ % min {max{a, b, ¢}, max{b, c, d}, max{c, d, e}

where the values in the window(width=2N + | =5)

aref{a, b,c,d e}
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Once angain, the filtered output for the window is the
filtered value at the sample in the center of the window.
The relationship of the definition of the pseudomedian to
the median is illustrated by noting that the median can he
defined as the maximum of the minima (or, equivalently,

thc minimum of the maxima) of all subsequences of
lcngth N + 1 in the window. There are (ZN +1 ) such
N1

subscquences, and so the pseudomedian uses only a small
subset of all possible subsequences in the window. It is
worthwhile to notice that each of the subsequences used
in the pscudemedian has the value al the center of the
window as an element;this indicates that the pseudo-
median will exhibil a more “center-weighted” response
than the median.

Several observations about the pseudian filicr can be
made al this point. First, since the pseudornedian is
defined as an average of Iwo signal values, its output is
not limited to values in the unfillered signal. For example,
an unfiltered signal consisting only of integer values docs
nol necessarily result in a pseudomedian-fillered outpul
of only intcper valucs, as would be the case for the me-
dian-filtered output. This averaging method also indicates
that the pseudomedian filter have a “more linear”
response than the median filter. Second, the pseoudomedian
filter has many of the samc general properties of the median
filter : it cxhibits a “low-pass™ type of responsc in many
cases, and preserves edges while reducing impuise noise.
Finally, thc pseudomedian filter can be implemented by
an algorithm that is theoretically of lower order than
mosl algorithms for the median filier. The fast median
filtering algorithm developed by Huang, et al. [5] is a very
fast implementation of the median filier, however, and a
similar implementation of the pseudomedian filter would
not be as efficient. Other algorithms for the median filter
are either similar in speed or noliceably slower than most

implementations of the pseudomedian filter.
il. Root Signal Theory
The pseudomedian filter operates on a discrete window
in a sliding-window fashion, where the output at & par-
ticular poiat is the pseudomedian of the values in 2N + |
wide window centered at the point. That is,

{ye} = PMED{Xy_yoocXpyeeXn—n}

The filter is assumed to be operating on a signai that
extends to infinily in both directions, such that the filter

window is always filled with signal values. However, the
analysis presented below also holds true for extended
signals. These signals are infinite in length and have N
constant points equal to the first value in the signal
appended to appended to the beginning of the signal, and
N constant points equal to the last value appended to the
cnd {See also [2].)

The signal characteristics defined below create a precise
vocabulary for the theorems presented in this paper. The
lerms apply to a signal lo be operated on by a filler of
window width 2N + [.

1. A constant neighborkood is an area of N + 1 or more
conseculive points that have the same value.

2. An edge is a monotonic sequence of points between
constant neighborhoods such that the edge and constant
neighborhoods combined are monolonic.

3. An imprise is an arca of N or fewer points that is
surrounded on either side by identically-valued constant
neighborhoods.

4. An osctilation in any area that is not included in a
constant neighborhoad, edge, or impulse.

5. A root signal of a filter is a signal thal is
unchanged by that filter.

The first below associated two of the above definitions
with a single property.

Lemma 1: A signal of arbitrary lenglh consists only of
constani neighborhoods and cdges if and only if cach
subscquence of length N + 2 in the signal is monotonic.

Proof Suppose a signal consists only of constant
neighborhoods and edges. Since edges are by definition
monotonic and are separaled by constant neighborhoods,
a monotenic subsequence of the signal must contain a
constant ncighborhood. But since a conslam neighborhood
has al least N + 1 conscculive equally valued points, any
length N + 2 subsequence including a constant neighbo-
rhoods and edges musi be monotonic.

Now suppose thai every length N + 2 subsequence of a
signal is monotonic. For a change in trend to occur(that
is, from nondecreasing to nonincreasing or vice versa),
there must be a subscquence of at least N +1 equally
valued points belween the sections of incrcase and
decrease. Thus the arcas of equal value belween trend
changes are constant neighborhoods, and the monotonic
regions between these areas arc edges. Therefore all
signals where every length N + 2 subscquente is monotonic

consist only of constant neighborhoods and edges.

QED
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Two simple obscrvations concerning the pseudomedian
filtcr may now be made. The value in the center of the filter
window is importlant because this value is in every sub-
sequence faken while computing the pseudomedian. Since
this is so, no subsequence can have its mimmum be
greater than this value, and none can have its maximum
be less than than value. Therefore the maximum of the
minima is restricted to valucs greater than or equal to the
value in the cenler of the window, and likewise the mini-
mum of the maxima must be less than or equal 1o the
value in the center of the window.

Observation {:The minimum of the length N+
subsequences taken for a length 2N 4 | pseudomedian is
greater than or oqual to the value of the point at the
cenlter of the window.

Observation 2:The maximum of lhe minima of the
length N + 1 subsequences taken for a length 2N +1
pseudomedian ts less than or equal to the valuc of the
point at the center of the window.

The pseudomedian is thus the average of two values,
one of which is greater than or equal to the value in the
center of the filter window, and the other of which is less
than or equal 1o the value in the center of the window.

The following two properlies are important features of
the pseudomedian lilter and are shared with the median
filter. They follow directly from the above observalions.

Property [:The psendomedian of 1 monotonic sequence
of length 2N + 1 is the value in the center of the sequence.
That is, if X -y < ... £ Xg =< .. < X, then

PMED {I,N,...‘xo‘...,xN} =Xy

Proof: The maximum of the first subscquence in the
window is X, which is the value in the center of the win-
dow. Since al least one subsequence has x, as ils maximum,
by Observation | the maximum of the minima is xo.

Therefore, PMED{x _y,....Xpron Xp e a1 =X
QED

Property 2.The pseudomedian of a sequence of lenglh
2N+ 1 that contains a constant neighborhood is the
value of the constant neighborhood.

Proof :Since a constant neighborhood is an arca of at
least N+ 1 consecutive equally valucd points, then al
lcast one of the length N + 1 subsequences taken while
computing the pseudomedian has its maximum and its
minimum equal to the value of the constant ncighborhood.

By Observation 1, the minimum of the maxima is the
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value of the center point, and by Observation 2, the
maximum of the minima is the valuc of the center point.
‘The center poinl musi be within the constaat neighborhood,
becawsc the constant neighborhood is more than hall the
length of the window. Therefore, the pseudomedian of a
lenglth 2N +1 sequence containing a constant neighborhood
15 the valuc of the constant neighborhood.

QED

The following lemma establishes a suflicient condition
for a signal to be root th pscudomedin [ilter.

Lemma t A signal consisting only of constant ncighbo-
rhoods and edges is a rool of a pseudomedian filter of
window width 2N + |,

Proof For a signal lo bc a tool, the pscudomedian of
cach window must be the value in the center of the window.,
For a given signal, there are 1wo possible cases for each
2N + | length window.

Case 1:The points in the window are monolonic.

By Property L, the pseudomedian is the value in
the center of window.

Case I1: The poiats in the window are nonmonolonic.

Since edges are monotonic and are separated
by constant neighborhoods, a monotonic window
must contain a constant neighborhood. By Pro-
perty 2, the pseudomedian of such a window is
the "value of the constant neighborhood. The
cenler point of the window must be within the
constant  neighborhood, and  iherefore the
pscudomedian of lhe window is equal to the
value 1n the cenler of the window.

QED

The next lemma is a more resteicitve version ol Lemma
6.A.1 proved in Tyanl3] for the median filler. The
additional resiriclions enforced by the pseudomedian filter
arc the basts lor proving thal the root signals from
Lemma 2 arc in fact necessary and sufficient conditions,
whereas there exists and additional class of infinite-length

root signals for the median filter,

Lemmal: Let n{m and let x, {X;{ Xy, for all n<i{m. If
PMED! X, oKy ot = X and i PMED{X,, -, Xm4g 1 =
Xm Where n—p<m-—q and n +p<m+q, then x, < x,
foralln-p=j(nand ;< xpforall m{j<m+q.

Recast in less symbolic language for p=q =N, Lemma
3 states that if a signal is stactly increasing from point n
1o point m, and PMED{xX,_,.....X, .} =%, and PMED
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{Xm-gs-sXm+¢) =%n, then the signal is monotonically
nondccreasing from point n-N {o point m + N,

Proof of Lemma 3:Scc Figure | below for a diagram of
the signal secgment under consideration. Consider Iirst the
window from n-p to n+p. The proof will be given for
the caxe where the maximum of the minima ad minimum
of the maxima of the length p + 1 subsequences must be
X,. (The value of x, may be achieved by averaging two
unequal values when compuling the pseudomediin, but
signals that achieve this result do not fit the hypothesis of
the theorem. The proof lor this casc is omitted.) Since x,
is the cenler point of the window, if therc is at least one
length p + 1 subsequence with x, as its maximam, by
Observation 1 the minimum of the maxima will be x,,.
For this to be trug, the first subsequence in the window
must have x, as its maximu, since all other subsequences
include x, 4 ) %,. Thus x; < x, for all n~p <j{n.

Now consider the window from m-¢q te m + q. Again,
the minimum of the maxima and the maximum ol the
mimima must both be x,,. Since x,, is the center point of
the window, if there is atl least one g + | subscquence
with x, as its minimum, by Observalton 2 the maximum
al’ the minima wil! be x,,. All subsequences in the window
except the nghtmost onc include x,,—; { X, so the righlmost
subsequence must have x,, as its minimum. Therefore, x;

< X fOr al m{j<m +q.

QED

The last two kemmas needed to demonstrate the necessary
conditions for root for signals also dcrive from Tyan's
work on median liters [3]. Lemma 4 is a restatement of
Tyan's Theorem 6.2(with virtually idcntical proof) and
Lemma S is related 1o Tyan's Theorem 6.3.

Lemma 4 1€ there is at least one monotonic subsequence
of length N+ 1 in a root signal of a pscudomedian fikter
of length 2N + 1, then every kength N 4- 2 subsequence of
the rool signal is monotonic,

Proof” Follows from Lemma 3. Proof for median filter
given in Tyan [3] applies, with Lemma 3 subslituted for

the corresponding median filter lemma.

Lemma 5:Every root signal of a length 2N +1
pscudomedian filter has at least one subsequence of
Iength N + 1 thal is monotonic.

Proof " Consider a root signal {x,} of a length 2N + |
pseudomedian filter. Assumc that this root does nol have

any monotonic subsequences of length N + 1. Consider a
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particular transition lo a higher value al, say, k=0, so0 x,
{x;. Then lecmma 3 requires that x,< X, for euch i
where-N < i (0. Thus x_y = ... < x; < x4 is 4 monotonic
subsequence of the length N + I, which contradicts the
assumption that the root signal {x,} docs not have any
menotonic subscquences for length N + 1. Therefore,
every root signal has at least one subsequence of length N

+ | that is monolonic.

QED

The five lemmas proved above combine to show a
ncoessary and suflincient condition for root signals (finite/
extended or infinile) for a length 2N +1 pseudomedian
filter.

Theorem 1. A necessary and sullicient condition for a
signal (o be invariant under psendomedian [illering »s thal
the signal consist only of constant neighborhoods and
cdges.

Proo: Any signal, and thus any potential root signal of
a length 2N +1 pseudomedian filter, can be ascribed to
one of following cases:

Case 1: Al least one length N +1 subsequence of lhe
signal is monolonic: or

Case 11: The signal has no monolonic subsequences of
length N+ 1.

By Lemma 4, all rool signals belonging to Case | are
ceverywhere monotonic ol length N 42 that is, cvery
length N +2 subsequence of a root signal salisfying Case
E is monolonic. By Lemma 1, all such signals consist only
ot constant ncighborhoods and edges.

By Lemma 5, there are no rool signals that salisfy Case 11,

All (root and non-root) signals must satisfy one ol the
above cases, but all root signals of the psendomedian filter
must satisly Case 1. and furthermore must ooly consisl of
canstant neighborhoods and edges. Therefore, all Teoot
signals of thc pscudomedain filler consist solely of con-
stant ncighborhoods and cdges. By Lemma 2, all signals
consisting of only constani neighborhoods and edges are

root signals of the pscudomedian filter.

QED

Theorem 1 is a powerful result that holds both lor
finite-length signals that are extended as described earlier
and for “infinite-length™ signals. it is the same result as
the necessary and sufficient condition for exlended

finile-fength root signals of the median filter shown in
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Gallagher and Wise [2}. This teads immediately to the
resulls below:

Corollary [ An exlended linite-length rool signal of a
median filter of length 2N +1 is a root signal of a
pseudomedian filtcr of length 2N +1.

Corollury 2: A tool signal of a pseudomedian filler of
length 2N 41 is a signal of a median filter of length 2N +1.

Recall thal an extended finite-length signat has N con-
stant poinls equal to the first value in the signal
appended to the beginning of the signal, and N constant
points equal to the last value appended 1o the end. The
root signal set of the pseudomedian filter is thus identical
10 that of the median filter for finite-length signals. How-
ever, il the sel ol roots under consideration is extended to
include signals that exlend to infinity in either directlion,
another type ol rool signal of the median filter emerges.
These "Type I1™ or “fast fluctuating” roots arc necess-
arily bivatucd ;that is, they lake on only two values, and
do not contain any constant neighborhoods [3]. There is
also a related sct of signals that may be termed “oscillat-
ory” roots of the median filter:these signals are nol
invariant lo each pass of a median filler, bul the original
signal will recur after iwo or more passes of the filter.
The pseudomedian filter does not have any fast-lluctuat-
ing or ascillatory roots.

In practice, all signals are finile in length, bul Type 11
and oscillatory median filter rools are still important.
Even a small section of such a rool within a finite signal
creales unattenuated oscillations in the oulput of the
median filter;only at the cndpoints of the section docs
the fifter cause any change. The pseudomedian filter,
however, usvally reduces such bi-valued fast-fuctuating
seclions Lo a constant DC level in one pass by averaging

the two values in the section throughout.

m-q m m+q

n-p n n+p

Fig 1. Diagram of signal segment considered for Lemma 3.

The Journal of the Acoustical Socicty of Korea, Vol. 15. No. 2E {1996)

[V. Convergence to Root Signals

Another lopic of interset in rool signal analysis is con-
vergence of a repeatedly filtered signal to a root signal.
For the median filter, Gallagher and Wise |2]) have shown
that a signal of length L will become a root signal after at
most{L-2)/2 successive passes ol a median hlter. No such
upper limit on the number ol passes required 1o yield a
root signal can be derived (or the pscudomedian hter.
Indecd, some signals (for example, any impulse) will
never in theory (he reduced to a root signal by successive
passes of a pseudomedian liller. However, cach successive
pass results in a signal thal is “closer™ 10 a rool signal
than the previous pass, and as the number of passes
becomes very large, Lhe resulting signal approaches a roat
signal, These observations indicale that respealed pscudo-
medain tiltering will resull in either:

1. a rool signal afler a [inite number of passes:or

ii. a sequence of signals that converges to a root signal.

Note that lhe resulting root signal in cither case often
is nol idenlical to (he corresponding median fiter root

signal.

V. Conclusion

The toot signal analysis in this paper demonstrates
somc provocalive similarilies and differences between the
pseudomedian and median fillers. Although the rool signal
sets of the two filters arc identical when restricted to
finele-tength signals, the root signals lo which the filters
converge for a given inpul signal are not the same. The
properlies @l the fillers revealed in this paper arc
theoretically interesting, but more important, are practi-
cally useful in predicting and understanding the effects of

the filters on signals and images.
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