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Events Ordering in Optimistic Distributed Simulation of DEVS Models
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In this paper, we propose a new events ordering mechanism for the optimistic distributed
simulation of DEVS models. To simulate DEVS models in a distributed environment, a
synchronization protocol is required for correct simulation. Time Warp is the most well-known
optimistic synchronization protocol for distributed simulation. However, employing the Time Warp
protocol in distributed simulation of DEVS models incurs events ordering problem due to the
semantic difference between Time Warp and DEVS. Thus, to resolve such semantic difference, we
¢-delay schemes. The proposed schemes can order
simultaneous events correctly in Time Warp-based distributed simulation of DEVS models.
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| Abstract |

1. Introduction

Discrete event simulation is frequently needed in analyzing
and predicting performance of systems. However, simulation
of large, complex systems remains a major stumbling block
due to its prohibitive computational costs. Distributed discrete
event simulation (or shortly, distributed simulation) offers one
approach that can significantly reduce these computational
costs. Since distributed simulation deals with large and
complex systems, model verification and validation become

important problems. The DEVS (Discrete Event Systems
Specification) formalism, developed by Zeigler{20], provides
a formal framework for specifying discrete event models in ‘
a hierarchical, modular manner. This hierarchical modeling
capability offers such advantages as fast model development,
model reuse, and easy model verification and validation[17].
Thus, the DEVS formalism can ease the model verification
and validation problems of distributed simulation.

In distributed simulation, one of the most difficult problem
is to handle the causality error which is a kind of errors
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that the processing of future events affects the processing of
past events. To prevent such causality errors, a synchroniza-
tion algorithm is required. Many synchronization algorithms
have been proposed. Such algorithms can be classified into
two classes: synchronous and asynchronous ones. Synchro-
nous algorithms use a central event scheduler to synchronize
the simulation progress across all of the processors which
are involved in the simulation. Since the simulation time is
managed by the central scheduler, only the events with the
same simulation time can be parallelized. Asynchronous
algorithms allow each processor to have different simulation
clock. For this, asynchronous algorithms rely on the
distributed  synchronization protocols for synchronization
instead of the central scheduler. In asynchronous algorithms,
two classes of protocols are mainly employed: conservative
one[16], which always prevent the causality error, and
optimistic one[6], which can detect and resolve the conflict
of causality.

Time Warp is the most well-known optimistic synchroni-
zation protocol for distributed simulation [6]. By employing
Time Warp in the distributed simulation of DEVS models,
we can achieve a significant speedup of the simulation time
[8. 7]. Time Warp takes an optimistic approach to resolve
the conflict of causality. That is, Time Warp permits causality
errors to occur; however, when a causality error is detected,
a rollback occurs to repair it. For detecting a causality error,
Time Warp assumes that all input events of a model can be
ordered totally[6]. However, the DEVS formalism has its
own semantics since it has been motivated from system
theory; thus, it does not satisfy this assumption of Time
Warp. For example. in the distributed simulation of DEVS
models, simultaneous events wheh have the same time-stamp
can occur. Such simultaneous events cannot be ordered. Thus.
to adjust the semantic difference between Time Warp and
the DEVS formalism. we should develop an events ordering
mechanism which makes DEVS models meet this assumption.

There have been several researches about the evénts
ordering problem in the distributed simulation of DEVS
models. The Extended DEVS (E-DEVS) formalism[19]

proposed a4 new order function for ordering the simultaneous

events of certain DEVS models in distributed DEVS
simulation. P-DEVSim+ +[18] solved this simultaneous
events ordering in distributed DEVS simulation by introduc-
ing the concept of priority. However, these approaches are
based on the synchronous simulation algorithms and cannot
be used for the asynchronous simulation algorithms. Chow
[3] proposed a parallel extension of the DEVS formalism,
called the parallel DEVS, to handle the parallelism in
simultaneous events. Meanwhile, in the traditional distributed
simulation domain, the ordering problem of simultaneous
events have been researched as follows. Cota and Sargent
[5] showed that the dependency order of simultaneous events
in distributed simulation can be enforced in sequential
simulation by using a particular assignment of priorities to
the models. Agre and Tinker[1] employed the rank and
msgID into a time-stamp to assign a globally unique time-
stamp to an event. Mehl[15] employed the concept of age
and id into a time-stamp for the same reason. However, their
approaches cannot be employed in the distributed DEVS
simulation because the simultaneous events of DEVS models
occur in more complex ways than that of the traditional
distributed simulation.

In this paper. we analyze the characteristics of DEVS
events and propose a new events ordering mechanism. The
proposed mechanism can make DEVS models meet the model
assumption of Time Warp. Also the mechanism can order
all DEVS events correctly with respect to their causal

relationships.
2. Backgrounds

2.1 DEVS Formalism

The DEVS formalism provides a basis for specifying
discrete event models in a hierarchical, modular form|20].
In the DEVS formalism, one must specify the basic models
from which larger ones are built and indicate how these
models are connected together in a hierarchical fashion. The
basic model AM. also called the atomic model, is defined
by a 7-tuple[20]:
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where,
X : external input events set
S : sequential states set.
Y : external output events set
&, - 8 X{i} —$ : internal transition function
where J is an internal event which notifies that the
next schedule time has arrived.
0,4 Q@ XX~—S§ : external transition function,
where @ is the set of the total states of M given by
Q={(s,¢)]s€Sand0 < ¢ < tals))
A ;8§ x{it—Y : output function
ta : §—R;, : time advane function

As with modular specifications in general. we must view
the above atomic DEVS model as possessing input and output
ports through which all interactions with the external world
are mediated. To be more specific, when external input events
are arriving from other model and received on its input ports,
the model decides how to respond to them by its external
transition function. In addition, when no external events
arrive until the next internal transition time which is specified
by the time advance function, the model changes its state
by the internal transition function and reveals itself as
external output events on the output ports to be transmitted
to other models. For the notice of the next internal transition
time, an iniernal event (i) is used as shown in the above
definition.

Several atomic models may be coupled in the DEVS
formalism to form a multi-component model, also called a
coupled model. In addition. closed under coupling, a coupled
model can be represented as an equivalent atomic model.
Thus, a coupled model can itself be employed as a
component in a larger coupled model, thereby giving rise to
the construction of complex models in a hierarchical fashion.
Also, the coupled model specifies a tie-breaking rule, called
the SELECT function, which is used for ordering simultane-
ous events in sequential simulation. The use of the SELECT
function will be described later. A coupled model CM is
defined as follows[20]:
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CM = (D, M}, {1112, ;}, SELECT )
where
D . set of component names.
For each i in D
M, : DEVS for componet i.
I, set of influencees of i.
For each j in it /,
Zj: Y;—X; : i-to-f output translation function.
SELECT : subsets of DD : tie-breaking function.

Detailed descriptions for the definitions of the atomic and
coupled DEVS can be found in [20, 21].

For simulation of DEVS models, the abstract simulator
concept was developed by Zeigler[20]. This abstract simulator
concept have been employed in both sequential and
distributed simulation environments of DEVS models{13, 12,
4, 18, 19, 11, 10]. An abstract simulator is a virtual processor
which interprets the behavior of a DEVS model. For
simulation, an abstract simulator is assigned to each DEVS
model in a one-to-one fashion; thus, abstract simulators form
the same hierarchical structure as that of the models. Abstract
simulators simulate DEVS models by exchanging event
messages with each other.

2.2 Time Warp protocol

The Time Warp protocol is the most well-known optimistic
synchronization protocol for distributed simulation[6]. In
Time Warp, the simulated system is partitioned into a set
of subsystems that are simulated by a set of logical processes
which communicate by sending/receiving events. For schedul-
ing, send and receive time-stamps are assigned to an event.
The receive time-stamp represents the scheduled simulation
time of the event, while the send time-stamp represents the
simulation time the event was sent. Time Warp takes an
optimistic approach for synchronization, in that a process
executes every message as soon as it arrives. If a message
with a smaller receive time-stamp subsequently arrives (this
message is called a straggler), the process rolls back its state
to the time-stamp of the straggler and re-executes from that
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point. To guarantee the detection of a straggler message, all
input messages should be ordered totally. For this, Time
Warp assumes the following two semantic rules for models
[6].

Rule 1. For each simulator, every incoming event has a
distinct receive time-stamp.

Rule 2. The send time-stamp of an event must be smaller
than its receive time-stamp.

These rules are proved to be sufficient for total ordering
of input events in each model[6,14]

3 Ordering of DEVS Events in the Optimistic
Distributed Simulation

Distributed simulation can exploit the parallelism of DEVS
models. In this paper, we assume the following distributed
simulation model based on the Time Warp protocol. Basic
simulation mechanism combines abstract simulator-based
hierarchical simulation and the Time Warp protocol. That is,
for simulation, each atomic DEVS model is assigned to its
own simulator. Simulators are distributed across computer
nodes; they simulate DEVS models by exchanging time-
stamped event messages with each other. Each computer node
has its own local simulation clock, local scheduler, and
simulators mapped on it. The local scheduler manages
corresponding local simulation clock and generates internal
events for the simulators waiting for internal transitions. For
synchronization between computer nodes, the Time Warp
protocol is employed. Refer to (8, 9, 10, 7] for more detailed
description of the model.

However, DEVS models don’t satisfy the two semantic
rules of the Time Warp protocol because the DEVS
formalism is a general formalism based on system theory.
Thus, to employ the Time Warp protocol in the simulation
of DEVS models, we should resolve the semantic differences
of Time Warp and DEVS. Simultaneous events are defined
as the events scheduled to occur at the same simulation time;
thus, they have the same time-stamps. During simulation of
DEVS models, a simulator can reeive simultaneous input

events; this violates Rule 1. Also, the simulation time advance

mechanism of DEVS differs from that of Time Warp. In
Time Warp, the simulation time advances during an event
transmission, not in a logical process. Thus, an event has
send and receive time-stamps for advancing the simulation
time. The receive time-stamp represents the scheduled
simulation time of the event, while the send time-stamp
represents the simulation time the event was sent. However,
in the DEVS semantics, the simulation time advances within
simulators {or their associated atomic DEVS models), not
during a message transmission. The sending and receiving
of an event occurs at the same simulation time; thereby an
event needs only one time-stamp. This violates Rule 2. Thus,
to adjust this semantic difference between Time Warp and
DEVS, we should develop an events ordering mechanism
which makes DEVS models meet these rules.

The simultaneous events of DEVS models can be divided
into two classes: internal and external simultaneous events.
Internal simultaneous events are generated when more than
one simulator have the same next internal transition time;
then, the local scheduler issues multiple internal events for
the simulators. These internal events are simultaneous events
since they would be executed all at the same simulation
time. During executing these internal events, simulators may
generate multiple external (output) events. These events are
external simultaneous events. Figure 1 shows these two
classes of simultancous events. In Figure 1, the horizontal
direction represents time - both real and simulation times -
and the vertical direction represents simulator (or model)
space. At simulation time 9, i, and i, are internal events,
while x,, x., and x. are the external events caused by
them. Moreover, these two classes of simultaneous events
may occur repeatedly at the same simulation time. That is,
after executing external simultaneous events, the affected
simulators may want to execute their internal transitions at
the same simulation time, since the range of the time advance
function includes zero. Thus, local schedulers generate
another set of subsequent internal events for the simulators,
thereby repeating the entire process. For example, in Figure
1, i, and i, are the subsequent internal simultaneous events
caused by the external events, x,, and x.. Therefore, all of
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Figure 1 : Simultaneous events of DEVS models

these simultaneous events should be simulated in the correct
order.

To order these simultaneous events correctly, we should
preserve their causal relationships. The DEVS simultaneous
events have two kinds of causal relationships: direct and
indirect. A causal relationship between the causing internal
event and the resulting external event is called direct since
the execution of an internal event can generate an external
event directly in DEVS semantics, as mentioned before. A
causal relationship between causing and resulting external
events is called indirect since an external event can be only
generated by an internal event, not by an external event.
This indirect causal relationship occurs because the range of

the time advance function of a DEVS model includes zero.
Thus, after executing the causing external event, a simulator
can receive an internal event at the same simulation time;
the execution of this internal event generates the resulting
external event. For example, in Figure 1, the solid arrow
between events i, and x,. represents their direct causal
relationship. Also, the dotted and solid arrows between events
X, and x,. represents their indirect causal relationship.

For ordering these simultaneous events while preserving
their direct and indirect causal relationships, we propose the
time-and-priority-stamp and ¢ -delay schemes. First, the time-
and-prioritv-stamp scheme 1s developed as a new ordering
mechanism for external and internal events. The time-and-
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priority-stamp consists of a pair, {t, p), where t is the
simulation time and p is the priority. Note that the lower
value p implies the higher priority (if we assume only non-
negative priorities, the priority-stamp value 0 has the highest
priority). That is, since simultaneous events have the same
time-stamps, we add a priority-stamp for ordering such
events. These pairs are ordered lexicographically as shown
in the following definition.

definition 1 Let m, and m, be either internal or external
events , and let tp,=<t, p,) and tp, ={t,, p,) be the time-
and-priority-stamp of m, and m,, respectively. Then, tp, { tp,,
if and only if (i) (1, { ), or (i) (t, = ¢, and p, { p,).

The rules for assigning the time-and-priority-stamp are
different for internal and external events. The time-stamp of
an internal event is its scheduled simulation time. The time-
stamp of an external event is the same as that of its causing
internal event (note that external events can be generated
during the execution of an internal event). The priority-stamp
utilizes the SELECT function, the tie-breaking function of
the DEVS formalism. The SELECT function assigns a unique
priority to each simulator (or its associated atomic DEVS
model) before the simulation starts. The priority-stamp of an
external event is the priority of its source simulator-the
simulator which sends the event. The priority-stamp of an
internal event is higher (or smaller) than those of any external
events. For example, Figure 2 shows the assignment of the
time-and-priority-stamps to the simultaneous events of our
previous example. The priority-stamp of x,, is 6, the priority
of simulator A. Also, the priority-stamp of i, is 0, the highest
(or smallest) priority value in the example.

For implementing the indirect causal relationships of
simultaneous events in The time-and-priority-stamp, we
propose the ¢ -delay scheme. The basic purpose of the ¢ -
delay scheme is to insert a sufficiently small time delay
artificially between the causing and resulting external events
to simulate their indirect causal relationship; thus, the time-
and-priority-stamp of the resulting external event becomes
larger than that of the causing event. We formalize the ¢ -
delay scheme by defining the /evel of a simultaneous event.

The level of an event represents the relative position in the
causal relationships to which the event belongs. Simultaneous
events at a smaller level precede the ones at a larger level
in their causal relationships. Also, the simultaneous events
at the same level do not have any indirect causal relationships
with each other. The rule for assigning a level to a
simultancous event is as follows. If an internal event and
its causing external (or internal) event have different time-
stamps, the level of the internal event is 0 (for example, the
level of i, is 0 in Figure 2). The level of an external event
is the same as that of its causing internal event (for example,
the level of x,, is 0 (the level of i,) in Figure 2). Finally,
the level of an internal event is equal to the level of its
causing event increased by one (for example, the level of i,
is 140 (the level of x,;) in Figure 2).

To implement the level of events in the time-and-priority-
stamp, the ¢ -delay scheme is employed. The ¢ -delay is
defined as follows.

definition 2 The ¢ -delay is a sufficiently small positive
time advance value, such that €*A { K, for a sufficiently
large constant A, where K is the minimum of any positive
time advance values of all DEVS models to be simulated.

When the level of an event is increased, the scheme
increases the event’s time-stamp value by an ¢ -delay. This
scheme can be implemented easily in the abstract simulator
algorithm[8]; that is, when the time advance function of a
simulator returns 0, the scheme simply replaces 0 with an
¢ -delay. Thus, the time-stamp of the resulting output event
becomes always larger than that of the causing input event.
Note that replacing zero time advance value with an ¢ -delay
does not affect the simulation result since the ¢ -delay is a
sufficiently small value compared to the time advance values
specified by the modeler. For example, Figure 2 shows the
resulting time-and-priority-stamps for our previous example.
After processing the input external event x., simulator E
sets its next internal transition time to 9 + ¢. Thus, the
time-and-priority-stamps of i; and x,, become (9 + ¢, 0)
and {9 4+ ¢, 1) respectively.

The ¢ -delay scheme is not the onty method for
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implementing the level of events. For example, we can
incorporate the level into the stamp of an event as a separate
field; that is, the stamp of an event will consist of three
fields: time, level, and priority. Then, these stamps can be
ordered lexicographically. However, by employing the ¢-
delay scheme, the only use of the two fields, time and
priority, becomes sufficient for such ordering. Note that the
¢ -delay is similar to the delta-delay in VHDL simulation

[2]. Both delays represent the default propagation time of

events in case there is not an explicit propagation time
specified. Also, they are both small time delays greater than
zero, but smaller than any explicitly specifiable time delay.
However, they are employed for different purposes. The
the
mechanism of VHDL simulation ;

time advance
it should be used

simulation
thus,

delta-delay is used for

even in sequential VHDL simulation. In contrast, the ¢ -
delay is employed to implement to the level in distributed
simulation.

By employing the time-and-priority-stamp and ¢ -delay
schemes, we can order totally all input events of a simulator
while preserving their causal relationships. For example, the
three external events of simulator D, ie. x., X and X,
can be ordered correctly, as shown in Figure 2. Also, the
schemes can make DEVS models meet the semantic rules
of Time Warp as shown in

Theorem 1 The proposed schemes can guarantee that
DEVS models satisfy the semantic rules of Time Warp.

proof :
should be ordered totally. We can easily see that the first

Rule 1 states that all input events of a simulator
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rule holds. Events with different time-stamps can be ordered
easily by their time-stamps. Simultaneous events are parti-
tioned into different levels. Simultaneous events with different
levels have distinct time-stamps by the ¢ -delay scheme.
Also, all simultaneous events with the same level have
distinct priority-stamps since the source simulators of the
events have distinct priorities by the SELECT function. Thus,
all simultaneous events of a simulator can be ordered totally.

Rule 2 states that the send time-stamp of an external event
should be smaller than its receive time-stamp. Note that an
external event of DEVS models has only one time-and-
priority-stamp since the sending and receiving of an event
occur at the same simulation time in DEVS semantics, as
mentioned before. However, we can consider that the send
time-and-priority-stamp of an external event is equal to the
time-and-priority-stamp of its causing internal event, since
external events are generated during the execution of an
internal event. From Definition 1, the time-and-priority-stamp
of an internal event is smaller than that of external events
generated from it (Note that the priority-stamp of an internal
event is 0, the highest priority value). Thus, the second rule
holds also. and this completes the proof. Therefore, the

second condition holds also.

Conclusion

In this paper, we proposed a new events ordering
mechanism in the optimistic distributed simulation of DEVS
models. The proposed mechanism employs the time-and-
priority-stamp and the ¢ -delay schemes. The mechanism can
guarantee that DEVS models satisfy the semantic rules of
Time Warp. Also, the mechanism can order all events

correctly with respect to their causal relationships.
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