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Abstract

The new field of learning control develops controllers that learn to improve their
perfomance at executing a given task, based on experience performing this task. The
simplest forms of learning control are based on the same concept as integral comntrol,
but operating in the domain of the repetitions of the task. This paper studies the
use of such controllers in a decentralized system, such as a robot with the controller
for each link acting independently. The basic result of the paper is to show that
stability of the learning controllers for all subsystems when the coupling between
subsystems is turned off, assures stability of the decentralized learning in the
coupled system, provided that the sample time in the digital learning controller is
sufficiently short.

I. Introduction

When a control system is required to execute the same command repeatedly,
the error in following the command will be repeated (except for random
disturbances). It seems a bit primative to produce the same errors every time
the command is given. The new field of learning control refers to controllers
that can learn from previous experience executing a command in order to
improve their performance. They learn what input should be given to the

system in order to have the response be the desired response. They eliminate
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the errors of the control system in executing the command, and they eliminate
errors due to disturbances that repeat each time the command is given.
Learning controllers aim to accomplish this with minimal knowledge of the
system being controlled, and base their adjustments to the command on previous
experience performing the command without relying on an a priori model of the
system dynamics. There has been considerable research activity in this field in

the last few years, some examples of which are given in the references [1-8].

The usual application of learning control, and the application that motivated
the development of the field in the last few years is robotics performing
repeated tracking commands, for example on an assembly line. Nearly all robot
controllers are designed with each joint axis having its own controller, and this
controller knows only feedback information about its joint angle or angle rate
and nothing about the other joint variables. The effect on the motion of one
joint due to motion of other joints, such as through centrifugal force effects, is
treated as a disturbance that the feedback control law must take care of.
Furthermore, with proper choice of the joint variables, the equations for each
link can be made to involve only the control action for that link. Then the only
coupling between the dynamic equations for the links is a dynamic one, with no

interaction between the axes in the input and output coefficient matrices.

The question arrises, what happens if a learning controller is used with each
of the separate feedback controllers of the robot arm. Such an application
represents use of a decentralized learning control. A serious issue is whether
the dynamic interactions in the dynamics of the systems governed by the
separate learning controllers could cause the learning processes to fail to
converge. It is the purpose of this paper to study under what conditions such a

decentralized learning control is stable.

The system equations are nonlinear in the robotics problem. Hence, the aim of
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the present investigation is to obtain an understanding of the stability of a
decentralized learning control system applied to a linear time varying system of
differential equations with disturbances that repeat each repetition. We will
approach this problem by starting with a simpler situation, considering
decentralized difference equations first, both time invariant and time varying, and
then progressing to both time invariant and time varying decentralized

differential equation systems.
Il. The Learning Control Method and Convergence Analysis

The simplest form of learning control produces the analog of this integral for
every time step k, and adds it to the control action for that step. This added
"integral” term is given as a sum of the error histories in all past repetitions in

the discrete repetition domain, which can éasily be calculated in recursive form

PR = ¢§e"(k+1)

W TR = B + ¢ (k+1) (1)

The superscripts give the repetition numbers j and j+1, and ¢ is the learning
gain which the control system designer can adjust. Note that the errors
involved are one step ahead of the control signal. In discrete systems the
control being chosen at step k will not influence the error immediately. Here
we assume that there is a one step delay. Note also that the dimension of the
error column matrix, and hence the dimension of the desired trajectory matrix
are both equal to the dimension of the input matrix. Thus the desired trajectory
must be specified in terms of measured output variables, and the dimension

chosen to match that of the input vector.

The conditions for convergence to zero tracking error for such a digital control
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system are given in [Phan, 1988] in a more general setting. Since they form
the basis for the present work, they are summarized here. Use an underbar to
denote the column matrix containing the history of a variable for all p steps of
the p step repetitive operation. Then the learning control (1) is a special case
of the following

= U+ o utSu+- - +8u
sjﬂ — L_ei—l

$() 0 - 0
L= [t 6@ =~ 0 (@)

6,(1) ¢,-1(2) = 6,(p)
=y -y
where y* is the column matrix of the desired trajectory history for steps 1
through p, and « is the matrix of the learming control signal for steps 0

through p~1. The difference operator & ; operating on any quantity represents

the value of that quantity at repetiton j minus the value at repetition j-1.
Learning control law (2) reduces to learning control law (1) if L is chosen in

the specialized form
L = diagl¢ ¢ - ¢]
Consider the modern control model

x(k+1) = A(Rx(k) + B(RHu(k) + wl(k)
Wk = C(k)x(k) (3)

where W k) is any disturbance or forcing function that repeats each repetition.
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Also, in the learning control problem, it is assumed that the initial condition is t

he same every repetition, and that it is on the desired trajectory. Then (3) impl
ies that

8j = P6;_u
¥y = [yTQ) 7@ - (P}
= [u") «Q) - «T"(P-1D]7 (4)
where
C(1) B(0) 0 0
) A(DB0) C@)B(1) 0 )
COMIAMRB)  CA(TILAMR)B) -~ C(HB(p—1)

The product notation represents a matrix product going from larger arguments

on the left to smaller arguments on the right. Then recognizing that

0;¥= — 6;¢ and using the leamning control law (2) gives the following rule

for the error history as a function of the repetition number j:

8,¢ = —PLg'™!

€ = (I-PL)g'™ ! = Eg'!
or

e = (E) ¢, (6)

Here the j superscript on the parentheses represents the jth power. Thus the
learning control law will converge to zero tracking error as the repetitions
progress provided the lower block triangular matrix E has all eigenvalues less
than one in magnitude, i.e. provided the eigenvalues A ; of the diagonal blocks

are all less than one in magnitude:
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| A, (I—-C(k+1)B(R$,(E+1)] < 1
k= 012-,p—1 )]

lll. Decentralized Learning Control in Discrete-Time Systems

We first consider a time-varying or time-invariant digital system of the

following form

%,,i(k+1) = A, ;i (B)x, (k) + ;AO. (k) 2,;+ By, i(B) v;(k) + w, (k)
J*i
(k) = C, (k) x, (k) (8

This represents s subsystems, with uncoupled input and output matrices. The
dynamic interactions between the subsystems are represented by the coupling
matrices Ao . The control input to subsystem { is v; , its state is x,; , and its
measured output is yi . The subscript o refers to the open loop system model.
In a later section we consider differential equation models with the same

structure.

Now consider that each subsystem has its own decentralized feedback
controller with feedback of only that subsystem’s measured output. The
feedback controllers can be direct output feedback controllers or dynamic output

feedback controllers, whose equations are

vi(k) = vFB,i(k) + uz(k)
vrs.i(k) = Crp.i(R) xrp.1(k) + K;(B) [y:(k) — yi (R ]
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xrp,j(k+1) = Aprp (k) xrp (B + Brg (k) [y:(k) — i (B)] )
In the case of dynamic output feedback controllers, there is a state vector for

the controller for each system i. The input v; is divided into the feedback
control signal wvgp,; determined by the controller dynamic equations or output

feedback equations in (9), and the learning control signal #,;. Equations (8)

and (9) can be combined to form the closed loop system dynamic equations

relating the learning control input to the system response

x(k+1) = AR x; (k) + IZ“Aij(k) x;(k) + Bi(k) u;(k) + wyy (10)

i

w the state vector for system i is augmented as x;(#) = [xI;(B zL5.(D]17
and the w; s still an input that repeats every time the command is given to the
system, but now it contains the repetitive command as well as the repetitive

disturbance

wi(k) = [wo.:(k) — B, AW KR} (B -
— Bpp i (B) yi (k)

The closed loop system matrices are

: — [Aq (k) + B, (R K (k) C;(k) B, (k) Crg (k)
AcB) = | Brs, (B C:(B) 0™ ]

AR = [Aza.d'i(k) 8 ] (12)

B =[Bi:( 0]7
Ci(h=[C,i(k 0]
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1. The Decoupled Learning Control Systems

Now consider the design of the learning controller for subsystem i which is
done assuming that this system is totally isolated without dynamic coupling to

the other subsystems. The dynamic equations under consideration are then

In specifying the desired response for the learning controller, the variables
specified at each time step must be measured variables, and their number cannot
excede the number of inputs (there is an alternative formulation, which we will
not consider here, that specifies more variables than inputs but the desired
trajectory is not specified every time step). This requirement means that the
desired trajectory is specified as a desired history of some, but not necessarily
all measured variables. The subscript R will be introduced to represent
quantities with various rows deleted, keeping only those rows associated with
variables specified in the desired trajectory for the learning controller. An
example of this distinction which occurs in the robotics problem is as follows.
Consider a single robot link of a robot arm having its own input torque and
only this input torque appearing in its dynamic equation. Let the feedback
controller for this link not only use position measurements but also velocity
measurements in order to adjust the damping. Thus the measured information
contains two variables, but the desired trajectory specified to the learning
controller can contain only one variable because there is only one input.
Normally this is specified as the desired velocity history. For simplicity of
presentation, we will limit ourselves to the case where the number of measured
variables specified in the desired trajectory at every time step is equal to the
number of input variables. It is a simple matter to alter the development to

handle the case were fewer variables are specified.
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Using equation (2), the leaming controller for the ith system becomes

8,-_z_¢~,- = L,eﬁl
$a(1) 0 0
Li= ¢2(1) ¢11.(2) :'. .9 (14)
$p(l)  651(2) - daw

A A
EiR=Yir ™ YVir

Equation (4) for system i becomes &;¥;= P;6;u; where the system
matrices in P; are from equation (13). When only the rows associated with

variables specified to the learning controller are retained in ¥, and in P; one

writes
6j_YiR= P,'R(?,'_u,' (15)

and then the error history for the learning controller operating on the uncoupled

system (13) is given by

e'=(E;)e, (16)
Ei= I'— P,RL,

Hence, the stability condition for the learning controller for system i to give
zero tracking error on the uncoupled dynamic equation (13) is that all of the
eigenvalues A ; of the indicated matrices satisfy

f A (I—(Ci(k+1D)Bi(R)rtalk+1)| < 1 a7
k=0,1,2,,p—1
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We now suppose that the learning controllers for all subsystems satisfy this
condition for convergence to zero tracking error that assumes there is no
coupling between the subsystems, and we ask the question, what happens when
these learning controllers are applied to each subsystem in the coupled dynamic

equations (10)?
2. Stability of the Decentralized Learning Control

The coupled system (10) can be written in the form of equation (3), which
determines the A,B, and C matrices to be considered in the learning control
stability analysis. The stability of any learning control law of the form (2)
applied to the coupled system (10) written in the form (3) is governed by the
condition (7), after performing the appropriate deletion of rows in the product of
C with B, retaining only those rows associated with outputs whose desired
values are specified to the learning controller (i.e. introduce the subscript R as
appropriate). However, the learning control has been designed in a decentralized
manner, and is given for each subsystem by equation (14). We must combine
these learning controllers to express the learning control law for the combined
system (10) or (3).

The error history for the ith subsytem, _6{'12 , is a column vector of the errors
at repetition j for time steps 1 through p. The error history vector associated
with the coupled system (10), _efe , contains all elements from the error vectors

for each of the subsystems, but regrouped. The column matrix starts with the

errors for time step 1 for all subsystems going from 1 to s, and progresses to
time step 2, etc. Hence, the block partitions ¢,(%) of the leaming control gain
matrix L for the coupled system (3)

Sju= Le}! (18)
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can be written for all m in terms of the block partitions &;,(%) of the learning

control matrices in (14) for the s subsystems as follows

¢m(k) = dz'ag(¢1m (k),¢2m (k)’;¢sm(k)) (19)

Equation (4) becomes &;vz= Prdju where the diagonal partitions of Ppg

can be written as

(C(RB(k—1)) g = diag((C, (BB, (k— 1D, (C; (B By(k—1)g, -, (C; (k) B;(k— 1))

(20)

by making use of the decoupled block diagonal nature of the input and output m

atrices in system (10).

According to equation (7), zero tracking error for system (10) in the form (3)
is achieved if the eigenvalues of the diagonal blocks of I— PgzL are all less

than unity in magnitude, i.e. if the eigenvalues of

I—(C(RB(k—1))pd, () (21)

are all less than one in magnitude for all k. Using the diagonal decoupled struc
ture of both matrices involved, according to equations (19) and (20), produces th
e stability condition that all eigenvalues of the matrices

I—=(Ci(k) B(k—1))r9i1(k) (22)

must be less than one in magnitude, for all systems and all time steps
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However, the conditions (22) are simply the set of all stability conditions
associated with the s decoupled learning control systems. We can sumerize in

the following result.

Result 1: Suppose that the learning controllers (14) for each of the s
subsystems satisfy the stability conditions (17) for stability of the
learning process when there is no coupling between the subsystems, i.e.
for stability of learning in system (13). Then, when these learning
controllers are applied to the coupled system (8) with the decoupled
feedback controllers operating on each subsystem, the resulting
decentralized learning control system will converge to zero tracking error
as the repetitions of the operation progress. This result holds
independent of the magnitude and nature of the dynamic coupling terms
Ajj.

IV. Decentralized Learning Control

in Differential Equation Systems

The problem of interest for application to robot problems has the same form
as equation (8) except that instead of being a difference equation, it is a

differential equation

%0,i(B) = Ac (D x,,:(2) + ’ngo,ii(t)xo.i(t) + B, i(D v;(D) + we (D
i (23)

yx(t) = Co.i(t)xo.i(t)
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Again we consider a set of decentralized output or dynamic feedback

controllers, one for each of the s subsystems

vi(8) = vpg,:(§) + u; ()
vep,i()) = Crp () xpp (D + K;(D [y: (D — 9 (D ] (24)

xr,i(D) = App (D xrp,i() + Brp i() [¥: () — 3 (D) ]

The equations are converted to closed loop form as before

x:() =Aci(Dx(D + ngc,;‘j(t) %;(D + B (D u;() + w. (D (25)

JZ

yi(D = Ci(H) x:(

The new aspect of the problem is that this is a set of differential equations
rather than a set of difference equations with the input and output matrices
decoupled, but with the system dynamics coupled. The learning controller is a
digital controller, which means that before it can be applied to the problem, we
must discretize equation (25) using a zero order hold on the learning control
input. This process causes coupling of the subsystems in the input influence

matrix. However, we can still prove the following result.

Result 2: Suppose that the learning controllers for each subsystem are
asymptotically stable for all sufficiently small sample time 7 when applied
to that subsystem without coupling to other subsystems. Thus they
converging to zero tracking error at the sample times as the repetitions
progress when applied to system (25) when all coupling terms in the
system matrix are set to zero. Then, when these learning controllers are
applied to system (25) with the coupling present, there exists a sample
time 7 sufficiently small that the resulting decentralized learning
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controller will converge to zero tracking error at the sample times as the
repetitions of the command tend to infinity. This result is independent of

the size of the dynamic coupling terms between the subsystems.
Proof: Write system (25) in the combined form

2D =Ac(D) D+ B uld) + u(d (26)
(D = C(Hx(D

Consider time invariant case first. Then using the Taylor series definition of

the exponential of a matrix

O(T—7)=exp(A (T — 1))
=I—-A(T— 1)+ Q/3DNAYUT— )2+ -

in the expression for the input matrix in the discrete time system equations (3)

produces

T
B = J(; Oo(T— r)dr B,

=BcT+ (1/2) A.B. T + (1/3!) A B, T3 + - 27

Write the learning control gain matrix of equation (19) in terms of gains

normalized by the sample time as ¢ ;= 71/ 7 . Then the matrix whose

eigenvalues determine stability in equation (21) becomes

I—(CB)g ¢ 1/ T= diag(I-(C;B.)r ¢ i1) (28)
— ((1/2! CA,B. T+ (1/31)CA B, T* + ) ¢ ,
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As we make T sufficiently small, the eigenvalues can be made arbitrarily
close to the eigenvalues of the decoupled learning controllers in the first term of

this expression, ie., they can be made arbitrarily close to those of equation (22).

The time varying case is more complicated. In the discrete time input matrix,
(+1T
B(k) = fkT O((E+1)T, r)B.(z)dr

make use of the expansions

4B

B(e) = BAkD) + St r(e — D+ Jr 28 | (e — a1+

1
2
04,1 = 0t 1) + L2 1, (1= 1) + o L2, (1= 1)+ -
=TI+ At )t~ t) + 57 2, [A. () + A1) (t— 1) +
and
O((k+1DT, r)=[0(z,(k+1) D]

=TI+ AR+ D)D(E+1D)T — )+,
to obtain

B(kT) = B.(EDT + (1/2)[A.((k+1) DB.(kT) + B.(kD) T?>+ -« (29)

As before, substitution of this expansion for the input matrix into equation
(21) produces eigenvalues arbitrarily close to those of equation (22) for
sufficiently small sampling times 7. This completes the proof.
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This shows that the decoupled nature of the continuous time input influence
matrix can produce arbitrarily small coupling in the discrete time input influence
matrix because for sufficiently small sample time the linear terms in the
expansion can be made to dominate. Thus stability of the decoupled learning
controllers for all sufficiently small sample times is sufficient to guarantee
stability of the decentralized learning in the coupled differential equation at least
for sufficiently small sample time. This result explains the success of

decentralized learning control on the robot problem.
V. Numerical Examples

In this section, we present two examples. The first illustrates the effect of
coupling between subsystems in the system dynamics, and the second studies
the application of decentralized learning control to robot problems. The latter
example illustrates the application of decentralized learning control to nonlinear
systems, and also studies the effect of the coupling between subsystems

introduced in the input matrix by the discretization of the system equations.

Example 1 : Consider the following discrete-time system, containing two
subsystems that are coupled only in the matrix of the system dynamics by the

coupling factor «o:

Ga | 07 osslmk ] b t[wh] @

yi(k+1) 1. [0.099 0 ] % (k+1)
[Yz(k+1) 0 0.077 [xz(k+1)

Note that when the coupling factor is set to zero, each subsystem produces
zero steady state tracking error for a constant command. Figure 1 gives the

desired trajectories for the two outputs y; and yz , of subsystems 1 and 2.
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For subsystem 2, the desired trajectory was generated by splitting the total time
interval into three parts. The first one-third and the last one-third follow sixth
order polynomials that satisfy the boundary conditions for its subinterval and
supplies smoothness through the second derivative. These two subintervals are
connected by a constant slope segment in the central one-third. The same
method was used to obtain each half of the desired trajectory in subsystem 1.
The same desired trajectories will be used in the next example, where the
horizontal axis indicates time in seconds. For the purposes of this example, the
conversion from continuous time to the discrete time of the present example is

done using a sample time of 0.02 sec, associated with k = 1, 2, ... , 50,

The learning gains for each subsystem were set to produce eigenvalues of the
learning process of 0.66, following the examples in Ref. [Chang, 1991]. Also in
accordance with the results of that reference, we alternate the sign of the

learning gain each time step, in order to improve the transient behavior.

The theory developed in this chapter establishes that convergence of the
learning process to zero tracking error in decentralized learning control is
dependent only on the input and output influence matrices, and is independent of
the coupling a between the subsystems in the system dynamics matrix. Here
we study the behavior of the learning control process as a function of this
coupling a. Figure 2 shows the error histories for various numbers of
repetitions when the coupling is set to zero. The first repetition corresponds to
the error produced by simply commanding the desired trajectory in the learning
control input. The subsequent repetitions apply the linear learning control with
alternating sign. The repetition 51 error histories correspond to the horizontal
lines which appear to be zero error to within the resolution of the graphs
presented. Figures 3 and 4 give the corresponding error histories for subsystem
1 when the coupling factor is set to « = 05 and 5.0, respectively. Note that

the error histories for subsystem 2 remain as in Fig. 2 since this subsystem
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remains uncoupled.

Examination of these figures indicates that after 51 repetitions the error
appears to be zero in each case, which is consistent with the theory. However,
introduction of large coupling between the subsystems is seen to produce
significant increases in the magnitudes of the errors during the transient part of
the learning process. Thus, the coupling influences the history of convergence
to zero tracking error as the repetitions progress, but cannot influence the

ultimate convergence itself.

Example 2: The theory developed here applies to linear time-invariant systems,
and also to linear time-varying systems. The original motivation for much of
the literature in learning control is for application to robots which are nonlinear
systems. The main objective of the chapter is to develop decentralized learning
control for such applications, and the theory developed models the nonlinear
robot equations as linearized in the neighborhood of the desired trajectory, which
produces linear time-varying equations. This example illustrates this process by
application of decentralized learning control to a polar coordinate robot moving in
the horizontal plane. First, decentralized learning control is applied to the
time-varying linearized equations model, and then application to the full

nonlinear model is studied.

The nonlinear equations for motion of the polar coordinate robot in Fig. 5 are

given as

(mg+mp) vr(D — [mer(D + m(AD + D16 ,(H? = F(D 31)

[ + mpr(D? + mp (A + D216 () + 20 myr () + m (AD) + D17(D 6 ,(8) = M, (D)

where r(t) is the radial extension of the prismatic joint measured from the

center of the support point to the center of mass of the prismatic beam (without
load), and 6 ,(f) is the angle of rotation of the beam about the vertical axis.
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The beam mass is mg= 39.28kg , its half length is /=0.6 , and its moment

of inertia about the vertical axis is Iy= 1.93kgm’ . The mass of the point
mass load located at the end of the beam is m; =10kg . The force and

moments applied to each joint are supplied by proportional plus derivative

feedback controllers given by

FO=KI[AD) = rDI+KLr(d — 7 D)+ (D
M) =K;[60,(&)— 6" () +K[6,(0— 071D+ (D (32)

where, K;,K, ,K;3,K,; are the feedback gains with values 98.6, 4435, 450.9,

182.2 respectively, and #;(# and wuy(# are the learning control signals.

The desired trajectory is again given by Fig. 1, where the subsystem 1 graph
is 7"(H) in meters, and the subsystem 2 graph is 61(# in radians.

Decentralized learning control was applied to each axis, using a learning gain set
to give eigenvalues of the learning process as 0.66 for the input influence matrix
values at the initial time on the trajectory. Then this learning gain is given an
alternating sign with each time step as in [Chang, 1990]. Ten time steps are
used for the 1 second maneuver when the sample time is 0.1 sec, and 20 are
used with the 0.05 sampie time. Note that when a sample time of 0.1 sec is
used, there are slightly less than two samples for the fastest "time constant” at

the start of the maneuver.

Figure 10 gives the error histories for various repetition numbers when
decentralized learning is applied to the linear time varying model of equation
(33) with a learning sample time of 0.1 sec. Repetition 1 correspond to the first
run with feedback only, and no learning control signal. Figure 11 gives the
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corresponding curves when the same control law is applied to the full nonlinear
equations in (31) and (32). These figures are very similar in form, and it is
interesting to note that the introduction of nonlinearities did not hinder the
learning process. In fact learning progressed somewhat faster for the nonlinear
system model. Figures 12 and 13 give corresponding curves for sample time
0.05 sec. This time the figures for the learning in the nonlinear and the linear
system models are not as similar, and in some cases convergence is faster in

the linearized system.

We can also examine these figures to see the effect of decreasing the sample
time. Comparing the learning in the linearized models for the two sample times
(Figs. 10 and 12) shows that convergence to zero tracking error is generally
faster when the sample time is larger. With the smaller sample time, the
tracking error in the early parts of the trajectory are better for early repetitions,
but the error can grow to be significantly larger in the latter part of the
maneuver. This type of error history motivated the learning in a wave
approach presented in [Chang, 1990]. The larger sample time of course
introduces significantly more coupling in the input matrix. This could adversely
affect the learning, but this does not appear to be the case for the example at
hand where smaller sampling time accentuates transients. Of course, the faster
convergence is to zero error at the sample times, and with the larger sample
time there are fewer points on the desired trajectory for which one obtains zero
error. ‘This is the price one pays for the faster convergence. When the figures
for learning in nonlinear equations are compared for the two sample times, the
same general conclusions apply, but with more severe transients toward the end
in the nonlinear case, and with somewhat longer convergence times. Decreasing
the sample time further, to 0.04 significantly accentuates the transients at the
end of the 1 sec time maneuver. This suggest that the detrimental influence on
the transients that occurs when the sample time is shortened, overshadows the

beneficial effect of this process on the coupling in the input matrix.
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Vi. Concluding Remarks

In this paper, the most basic form of learning control, based on integral
control concepts applied in the repetition domain, is studied in decentralized
control applications such as the use of learning control on each axis of a robot.
This type of decentralized learning control is illustrated in examples, including
motion of a polar coordinate robot in the horizontal plane. Modeling a robot as
linearized about the desired trajectory, we have shown in this paper that for
sufficiently small sample time, the tracking error convergences to zero as the
repetitions of the task progress, provided the learning cdntrollers would converge
if there were no coupling between the axes. When there is no such coupling,
the robot equations become simple and linear, making the evaluation of
convergence simple. The conclusion is that for sufficiently small learning gain,
and sufficiently small sample time, the simple learning control law based on
integral control applied to each robot axis will produce zero tracking error in
spite of the dynamic coupling in the robot equations. Of course, the results of
this chapter have much more general application than just to the robotics
tracking problem. Convergence in decentralized systems is seen to depend only

on the input and output matrices, provided the sample time is suffiently small.
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Fig. 8 Time variation and instantenous eigenvalues
in examples 2, sample time T= 0.1
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Fig. 10 Error histories for various repetitions
for example 2, using a linearized time varying
model with sample time T=0.1 sec.
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Fig. 11 Error histories for various repetitions
for example 2, using the continuous nonlinear
model with sample time T=0.1 sec.
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Fig. 13 Frror histories for various repetitions for example
2, using the continuous nontinear model with
time T=0.05 sec.

Fig. 12 Error histories for various repetitions for
example 2, using a linerarized time varying
modd with sample time T = 0.05 sec.
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