Free Vibrations and Buckling Loads of Stepped Columns
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I. Introduction

Since columns are basic structural forms
In the various engineering fields, their statics
and dynamics have been studied extensively.
Recently, the columns with variable cross-
section including the stepped columns have
been used increasingly due to the economic,
aesthetic and structural reasons, and etc.
Thus, many researchers have been concerned

with the static and dynamic behavior of the
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stepped columns. References!#4-10) and their
citations include the governing equations and
the significant literature on this subject.

The main purpose of this paper is to inves-
tigate the free vibrations and buckling loads
of stepped columns. The ordinary differential
equation is derived for the free vibrations of
linearly elastic stepped columns on the basis
of partial differential equation of motion. The
effect of axial load is included. Also, the ordi-

nary differential equation governing the
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71 )= buckling load, free vibration, harmonic
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buckled shape of stepped columns is derived
using the differential equation of free vibra-
tion. The governing equations are solved nu-
merically by the Heun’s method and determi-
nant search method combined with Regula-
Falsi method. The hinged-hinged, hinged-
clamped and clamped-clamped end con-
straints with two stepped segmental sections
are considered. In numerical examples, the
lowest three natural frequencies and only the
first buckling loads are calculated and pre-
of non-dimensional

sented as functions

system parameters.

II. Mathematical Model

Shown in Figure 1 depicts a stepped col-
umn with span length / which 1s supported
by hinged or clamped ends. The column is
subjected by the axial load P in which the
compressive force i1s positive. The cross-sec-
tion of column is a rectangle with constant
breadth and stepped depth. As shown In this
figure, the column is sectioned by several
segments in which the axial length and depth
of cross-section of ith segment are /; and d;,
respectively, and k is the number of total seg-

ments. Here, two non-dimensional variables

of mi and n; are defined as follows,
respectively.
m;=/ V4 T T TP IO PR PYRIPPR PSPPI ()
m=dy/d] e (2)

where m; i1s the segmental length parameter

and n; is the section ratio. It is noted that

................................... hinged/
, [Wop " clamped
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Fig. 1. Variables of stepped column with ax-

ial load and typical mode shape

nj isone in equation (2) because of nj=d;/d;
=1]. And it is clear that the ith segment lies
from x=l+ o+ i+ -+l tox=h+ 1+
+ -+« +/ in which x is the axial co-ordinate.

Figure 1 shows also the typical mode
shape, dotted line, of column. At co-ordinate
x and time t, the dynamic displacement 1s de-
picted as W(x, t). The column is assumed to
be in harmonic motion, or the dynamic dis-
placement W(x, t) 1s proportional to sin{wt)
and w{x), where w is the natural frequency,
and w(x) is the amplitude which 1s function
of x only. The harmonic motion is then

W(x, t)=w(x)sin(wt)

The partial differential equation governing
free vibration of tapered beam/column ele-

ment with axial load P, given in reference®,

1S

x, t)
)

ox

W PWi(x, t
Bl ( dW(x, 1)

}-F,pA PR

W (x, t
Lpd Wt

2

............ 4
ox @

where E i1s Young’s modulus, p is mass densi-
ty, A Is cross-sectional area and I is area mo-
ment of inertia of cross-section. Since A and

I are functions of x only, the equation (4) is
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developed as follows.

2

FWx ) g FWx ) ;s dl
FW(x, v, A82W(x, ol -
BXZ 2 atz =

Substituting each of #W/ox4%, #FW/ox3,
*W/ox2 and 92W/at2 obtained from equa-
tion (3) into equation (5) gives the ordinary
differential equation governing free vibration

of tapered column. The result is

d*w( d® 4’1
g1 ) g dl dWEO +(Er+P)
dx dx  gx dx
d2
W(ZX) — AW W(K) =0 ceeeveerrenanns (6)
X

The respective A and I are A;j and |; in the
ith segment and di/dx and d2I/dx2 are zero
because 1 is not varied in the ith segment. In
order to apply the equation (6) for tapered
column to stepped one, this equation is re-

written as follows.

d*w(x)

2
X

d4
g 2
dx

h ~pA1w2W(x):O

for ith segment

At hinged and clamped ends, the boundary

conditions are, respectively,
w(x)=0 at hinged end (x=0 or [)--- (8.1)

d*w(x)

7=
X

0 at hinged end (x=0o0r /) - (8.2)

— 44—

w(x)=0 at clamped end (x=0 or /)

...... (9.1)
dw(x) -0 _
& - at clamped end (x=0or [) -+ (9.2)

where equations (8.2) and (9.2) assure that
the bending moment at hinged end and rota-
tion of cross-section at clamped end are zero,
respectively.

To facilitate the numerical studies, the fol-

lowing non-dimensional system variables are

introduced :
E=x/1 wereeeeerrereen e (10)
DEW(K) /L veeereremineemnnnieeneenns (11)
p=P /x 10 SEETTRPIER TR PSR N (12)
Cj:wjfjm, j=1, 2, 3,-e weeuer (13)

in which x and w(x) are normalized by span
length [/ as £ and 7, p is load parameter, and
¢ is frequency parameter where j is the mode
number.

Dividing both sides of equation (7) by E[
of the flexural rigidity of ith segment gives

the following equation.

d*w(x) d? A
W:(“F P W(ZX)AP“ () =0
dx Ele, dx El o,
for ith Segment ««e---eresrereseessuens (14)
where,
@=L /1, e (15)
B=A A, eeeermineeniten (16)
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Since the cross-section i1s a rectangular
shape whose breadth is constant, hoth values
of @ and B can now be written by the term

of n; defined in equation (2) as follows.

.......................................

Substituting equations (17) and (18) into
equation (14) and using equations (10)-(13)
give the non-dimensional ordinary differen-
tial equation which governs the free vibration
of stepped column element with axial load.

The result is
d477 _
d&'

for ith segment

2 2
_7pdn o
ni 4& n?”

Also, the non-dimensional boundary condi-
tions of equations (8.1)-(9.2) are obtained
by equations (10) and (11). The resuits are

7=0 at hinged end(£=0or 1) (20.1)

d277
d

£

7=0 at clamped end(&=0or 1)

=0 at hinged end(é&=0or 1) --- (20.2)
-+ (21.1)

%%:o at clamped end(£=0 or 1)+ (21.2)

When a compressive load P coincides with
the first buckling load B, the respective fre-
quency wj of }=1 becomes zero. Thus, substi-
tuting ¢;=0 and p=b into equation (19)
gives the differential equation (22) which
governs the buckled mode shape of stepped

column.
dy_ _wbdy o (22)
d54 =W g 52 or ith segmen

in which b is the first buckling load parame-

ter defined as

Hl. Numerical Methods

Based on the above analysis, two general
FORTRAN 77 computer programs were writ-
ten to calculate the frequency parameter c;
and its corresponding mode shape 7=7;(£),
and the first buckling load parameter b,
respectively. The Heun’s method was used to
integrate the differential equations and then,
the determinant search method combined
with Regula-Falsi method was used to deter-
mine both eigenvalues of c¢; and b. For the
sake of completeness, the numerical methods
are summarized as follows. First is the free
vibration problem.

(1) Specify the column geometry(end con-
straint, m; and n; for 1=1, 2, 3, -+, k, and p)
and set of two homogeneous boundary condi-
tions accordance with the end constraint,
which are either equations (20.1) and (20.2)
or (21.1) and (21.2).

(2) Consider fourth order system, equa-
tion (19), as two initial value problem whose
initial values are the two homogeneous
boundary conditions £=0, as chosen in step
(1). Then, assume a trial frequency parame-
ter ¢j in which first trial value is zero.

(3) Using Heun's method?),
equation (19) from &=0 to 1. Perform two

integrate
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separate integrations, one for each of the two
boundary conditions.

(4) From the Heun’s solution, evaluate at
£=1 the determinant D of coefficient matrix
for the boundary conditions of either equa-
tions (20.1) and (20.2) or (21.1) and (21.2).
If D=0, then the trial value of c; is an eigen-
value. If not, then increment c; and repeat
the above calculations.

(5) In each iteration, note the sign of D. If
D changes sign between two consecutive tri-
als, then the eigenvalue lies between these
last trial values of c;.

(6) Use the Regula-Falsi method? to com-
puté the advanced trial c;j based on its two
previous values.

(7) Terminate the calculations and print
the value of ¢; and the corresponding mode
shape »; when the convergency criteria are
met.

Figure 2 shows the flow diagram for above

algorithm. The second is the buckling load’

Set trial frequeney of ¢

Assumpution of two sels

of initial values

[ Numerical integration frihl Froguency
by heun’s method incrvn\w:[n )

S
U;J* 1 —I lCalcuIalinn of d(\l(-rminnl—l
~TDT <0.00000 N(y*<ﬁ)’l<>\’m~< Z-cl)/el OLHRT>
Yes 9
Yis

lation of Mode shap

Rogula-Fabsi method
Tor adv,

No

o

Trial frequency
Inerement

Yes

STOP

Fig. 2. Flow diagram

problem. Same procedure mentipned above 1s
used for a given column geometry(end con-
straint, n; and m; for 1=1, 2, 3, .-, k). And it
1s clear that the eigenvalue in equation (22)
1s the buckling load parameter b.

In numerical examples, the hinged-hinged,
hinged-clamped and clamped-clamped end
constraints with two stepped segments are
considered, and the lowest three frequency
parameter c; (j=1, 2, 3) and only the first
buckling load parameter b are calculated. All
calculations were carried on a notebook com-

puter with graphics support.

IV. Numerical Examples and Dis-
cussion

The first series of numerical studies are
shown in Table-1. These studies serves to
validate the analysis presented herein. Table-
1 shows that the numerical results of this
study quite agree with the reference val-
ues. Figure 3 shows the ¢; versus p curves
for k=2, ny=0.8 and mi=my=0.5. It is
shown in this figure that the frequency pa-
rameters c¢j(j=1, 2, 3) decrease as the load
parameter p is increased, other parameters
remaining constant. This holds true for the
hinged-hinged, hinged-clamped and clamped-
clamped end constraints. Further, it is ob-
served for these three columns that the p val-
ues marked by [ on the horizontal axis are
the buckling load parameter b for given ge-
ometries of columns. Thus, the values of c;
and c3 after these values of b are meaning-
less ‘since the columns already have been
buckled at the p values of b, and not shown

In this figure. Also, it is seen that as the end
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Table-1. Comparison of results between ref-
erences and this study

® free vibration problem

geometry end frequency parameter, ¢ ]
of column |constraints* ! SAP90 I this study
k=2 h-h 1 8.17 8.02
m=07 lz 33.89 { 33.42
m;=m,
=05 3 74.93 72.90
p=0. hc  |1] 1367 1327
2 42.01 41.44
3 87.95 86.57
[ cc [1] 1862 18.16
2 5292 52.13
J 3| 101.23 99.35

® buckling load problem

geometry end buckling load parameter, b
of column |constraints* | Ref.[11] | this study
uniform h-h 1.00 1.00
h-¢ 2.05 2.05
| e 400 [ 400

*h : hinged ¢ : clamped

200
] k=2, n,=0.8, m;=m,=05
] : hinged-hinged ends
BEEREEXER . hinged-clamped ends
150 : clamped-clamped end
J O:b for given geometry
1

Ot
2

-1 0 1
p

Fig. 3. ¢; versus p curves for k=2, n,=0.8
and mi=m:=05

constraint increases on all three column ge-
ometries, from hinged-hinged to hinged-

clamped to clamped-clamped, each value of ¢;

200

1 k=2, my=m,=0.5, p=0.5

1 : hinged-hinged ends

1 ----- : hinged-clamped ends
150_: -------------- : cl{imped-clamped end

i O minimum n, not buckled

ng
Fig. 4. ¢: versus nz curves for k=2, m;=mz:=
0.5 and p=0.5
Increases.

It is shown in Figure 4, for which k=2, m;
=mz=0.5 and p=0.5, that the frequency
parameeters(j=1, 2, 3) increase as the sec-
tion ratio ny Is increased. In this figure, the
[ marks on the horizontal axis are the mini-
mum ng values not buckled for given geome-
tries of columns. It is noted that the mini-
mum values of ny for hinged-clamped and
clamped-clamped end constraints are nearly
equal to each other. Also, the ¢ and c3 val-
ues. before the minimum ny values are not
shown since the columns are buckled in these
range of ng values.

Figure 5 shows the ¢j versus m; curves for
k=2, no=0.7 and p=0, in which the frequen-
¢y parameters cj{(j=1, 2, 3) increase as the
segmental length parameter m; 1s increased.

Since the columns become uniform columns

~when the m; reaches at 1.0, the c; values

marked by [J are those of uniform columns
which are validated by comparisons with the

references values®).
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k=2, n,=0.7, my=1-m,, p=0
: hinged-hinged ends .
- hinged-clamped ends
: clamped-clamped end
B! ¢, for uniform column

SLARLIN S A SRS R B N S B B B

0.0 0.2 0.4 0.6
m,
Fig. 5. ¢; versus m; curves for k=2, n.=0.7
and p=0

—— k=2,n;=0.5, m;=m,=0.5, p=0
uniform column, p=0

c3=88.83

¢, =6.25

Fig. 6. Typical mode shapes of stepped and
uniform columns

For comparison purpose, the typical mode
shapes of stepped column for k=2, ny=0.5,
m;=my=0.5 and p=0, and uniform columns
for p=0 are shown in Figure 6. It is shown
that there exists big discrepancies from the
two mode shapes in the aspects of both the
amplitudes and nodal points.

Figure 7 shows the b versus ng curves for
k=2 and m; =mgy=0.5. The buckling load

ol
1k=2, m=m,=0.5

: hinged-hinged ends
-2 hinged-clamped ends
. clamped-clamped end
O b for uniform column

PER AT IO I T R S SO0 N S T A T B S T

0

lllI_]l‘r'l’_v’T"Il1lI'lllT

0.2 0.4 0.6 0.8

0.0 1.0

nz
Fig. 7. b versus n: curves for k=2 and m1=

mz=0.5

parameters b increase as the section ratio ny is
Increases, other parameters remaining con-
stant. [t is noted that the increasing rate for
the clamped-clamped end constraint after ap-
proximately ns=0.5 Is very steep comparing
with the other two curves. And the buckling
load parameters b of uniform columns marked
by [ are checked by the reference values!?),
And it is seen that as the end constraint in-
creases on all three column geometries, from
hinged-hinged to hinged-clamped to clamped-
clamped, each value of b increases.

It'is éhown in Figure 8 for k=2 and np=0.7
that the buckling loads b increase as the seg-
mental length parameter m; is increased,
other parameters remaining constant. The b
values of [] marks are the b values of uni-
form columns which are also validated by the
reference values!l). In this figure, it is seen
that the increasing rate of b versus my curve
is especially very high at the range approxi-
mately from m;=0.5 to 0.8.

48—
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5
1k=2,n,=0.7, my=1-m,
4 : hinged-hinged ends

4 3= ‘hinged-clamped ends &
oA e : clamped-clamped end ]
1 O: b for uniform column -~

3
J

b :

d /

2+ ’ P
] T
:

1

e e o ——
0.0 0.2 0.4 0.6 0.8 1.0

my

Fig. 8. b versus m: curves for k=2 and n.=0.7

V. Conclusions

The numerical methods developed herein
for computing frequencies and buckling loads
of the stepped column were found to be espe-
cially robust and reliable over a wide and
practical range of system parameters. As the
results of theoretical analysis and numerical
examples for the columns with two stepped
segments, the conclusions are drawn as fol-
lows.

1. The non-dimensional differential equa-
tion which governs the free vibrations of
stepped column with axial load is derived as
the equation (19).

2. The non-dimensional differential equa-
tion governing the buckled shape of stepped
column is also derived as the equation (22).

3. The frequency parameter decreases as
the load parameter Is increased.

4. The frequency parameter Increases as
the section ratio is increased.

5. The buckling load parameter increases

as the section ratio is increased.

6. Both values of frequency parameter and
buckling load parameter increase as the end
constramnt increases from hinged-hinged to
hinged-clamped to clamped-clamped end con-

straints.
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