Optimum Sample Size for Development of Reaeration
Coefficient Equation in Stream Water Quality Modeling
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I. Introduction

Reaeration is a physical absorption of oxy-
gen from the atmosphere by water. It is the
most 1mportant natural process by which
streams with low dissolved-oxygen (DO)
concentrations resulting from waste inputs
may recover dissolved oxygen. DO concentra-
tion is a primary indicator of stream water
quality and the reaeration coefficient (Ky) is
a dominant input parameter affecting model-
output reliability when estimating the DO
concentration (Yoon and Melching 1992).
Therefore, accurate estimation of Ky 1s 1m-
portant for assessment of the assimilative ca-
pacity of streams. The methods for measure-

ment of K, in streams are listed in Table-1.

Table-1. K2 measurement methods and ex-

pected errors

Method Expected Error | Reference
Dissolved-Oxygen Balance 65% 1
Disturbed-Equilibrium 115% 1
Radioactive Gas Tracer 15% 1
Modified Tracer Gas (Propane) 15% 2
Modified Tracer Gas (Ethylene) 25% 2

1. Bennett and Rathbun (1972).
2. Estimated error based on Grant and Skavroneck (1980)
and Rathbun and Grant (1978).

Measurement of Ky by these methods in
streams may Involve considerable error.
Even if K; can be measured accurately for a
particular period, it will vary with stream-
flow conditions. Therefore, development of a
reliable equation capable of estimating K
over a wide range of stream-flow conditions
1s necessary for prediction of DO concentra-

tions. The development of site-specific Ky es-

timation equation on the basis of reaeration
measurements made in the stream is dis-
cussed in this paper with particular emphasis
placed on the number of Ky measurements
required to obtain a reliable estimation equa-
tion.

Wilson and Macleod (1974) examined 16
published Kj estimation equations with a
data set of 400 K2 measurements and found
normalized mean errors varying from -35%
to 701%. Grant and Skavroneck (1980) ex-
amined 20 published K estimation equations
with the results of 6 K, measurements from
the radicactive tracer gas method, the most
accurate method for measuring K; in a
stream, and found normalized mean errors
varying from -94% to 7,200%. St. John et
al. (1984) illustrated the significance of K
on the oxygen balance and how the differ-
ence In estimates provided by various K esti-
mation equations can affect wastewater
treatment plant design. The results indicated
that the wastewater treatment level could
vary from conventional secondary treatment
to advanced treatment because of differences
in Ky estimation equations.

The reliability of the Ky estimation equa-
tion increases with sample size for develop-
ment of a site-specific equation. However, in-
creased sampling involves higher cost and fi-
nancial constraints require engineers to find
an appropriate number of samples for equa-
tion development that balances reliability and
cost. Several commonly used K; estimation
equations, the number of samples used to de-
rive them, and equation accuracy for the
given data are shown in Table-2. The accura-

cy is expressed in percent standard error, Ej
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Table-2. Commonly used K estimation equations and accuracy for the given data

; Ké No. of K3 | Values Used |Percent Standard
. N R -~
Eq. No elerence (1/day) Field Lab. Error
0.969
1 Churchill et at. (1962) 5.02 &5 30 - 28
H"
o7
i Owens et al.(1964) 6.94 F 32 — 35
0.67
u Owens et al.(1964) 5.34 —I?jg 68 - 32
0.408
v Krenkel & Orlob(1962) 48.85 W - 58 15
*
v | Thackson & Krenkel(1969) | 4279 Y~ - 58 24
vi | Isaacs & Gaudy(1968) T — 52 41
0.607
vi Bennett & Rathbun(1972) 5.57 W 121 — 38
0,550.25
L
vit | O’Connor & Dobbins(1958)2 | 821.34 W— 15 - 31
' ( DL)VO'B
x | O’Connor & Dobbins(1958)2 | 292.95 ——F3— 15 - 45
H

1. Kafrom these equations is for use with DO prediction equations formulated in log base e at 20°C.

2. Equations derived theoretically and tested with published field data.

[V, average velocity in the stream, m/s; H, average depth of flow, m; E, energy dissipation rate per unit
mass of fluid, erg/sec-gram; V*, shear velocity, m/s; D, molecular diffusion coefficient, m2/day; S,

channel slope, m/m]

(Bennett and Rathbun 1972), Ky, i 1s the calculated value of Ky for case I,
E Kom, ils the measured value of Ky for case i,
= 10755y e
EIJ = 100(1—10"5) S and N is the total number of cases. In this
%(Lo K Loc K )2 o study, synthetic Ky data generated by Monte
_Ji=0 E Raoi € Lam il Carlo simulation and multiple linear regres-
where Eg; = N ,

sion are applied to determine an appropriate
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sample size for development of a site-specific

K> estimation equation.

Error Model for the Reaeration-
Coefficient Estimation Equation

Because significant error Is involved in the
measurement of Kj, an estimation equation
derived from erroneous K measurements
may result in erroneous estimates because of
uncertainties in () the form of the equation
and @ the data used to develop the equation.
It 1s difficult to determine how large the esti-
mation error may be, therefore, il should be
addressed in statistical terms. The errors are
mmplicitly assumed to be random variables.

The basic model 1s

where Z is the total set of input data, F(-)
is the estimation equation, K, is the true Kj
value corresponding to the estimation of F
(Z), e is the estimation error, and the sub-
script 1 refers to the ith value of Ko.

The following assumptions are typically
made about the errors, ey, es -, ep
(Troutman 1985) :

(1) the errors are statistically independent
of the predictions, Fi(Z), and are identically
distributed;

(2) the errors are statistically independent
of each other;

(3) the errors have a mean and a variance
of E[e;]=0, Var(e;)=0¢? ; and

(4) the errors are normally distributed.

The advantage of imposing the above as-

sumptions is that the value for ¢ summariz-

es the accuracy of the estimation. In the de-
velopment of a site-specific Ky estimation
equation by regression analysis or other
methods, the veracity of these assumptions
should be examined. Troutman (1985) pro-
vides details on ways these assumptions may
be examined and the analyses modified to
meet these assumptions.

The input data set Z includes two subsets,
parameters and variables, denoted by b and
X, respectively. It is customary to assume
that X is observed correctly and all input er-
rors are in the parameter vector b, where a
true but unknown parameter vector £ exists.
By partitioning of the input data set, Eq. 2

becomes
KZ.i = Fi(X, 3)+ei ........................ (3)

In statistics, the population is characterized
by the true but unknown parameter values,
and inferences about the population are
made based on sample data sets. Unless the
sample size is infinite, it is impossible to esti-
mate the population parameters exactly. In
this study, the population parameters under
consideration are denoted by B and sample
parameters are denoted by b. Practically, fis
defined to be the parameter values that mini-
mize errors in the objective function, E[K, —
F(X, A1?*~min E[K —F(X, b)]2. When
the statistical model is run with any arbi-
trary set of parameters b, which may not

equal the correct set # the estimation error Is

K, —F(X,b) = K, —F(X, ®+F(X, &
—F(X,b) = e+ (X, b) «rreererveeeecnnn 4)
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where y(X, b) is the difference between es-
timations made using the two sets of parame-
ters fand b. The mean error with parameter

set bis

E[K; —F(X,b) | X)] = Efe | X]
F+E[H(X, B) | X] = 7 cevveemrrnivieninnnn. (5)

Because e has a mean of zero for any
input X, y=E[7(X, b) | X] represents the
bias or mean amount by which the estimated
Ky value with parameter vector b deviates
from the best estimate of K3 from the true
model with parameter vector B This bias
results in a larger mean-squared error of es-
timation than with the parameter vector &

(Troutman 1985), given by

E[(Ky —F(X, b))*] = F+E[/*(X, b)]

Many K estimation equations are of the
form Ky=a; V22 Ha3 with two variables, V
(velocity) and H(depth). This equation is ob-
tained by multiple linear regression with ex-

perimental and field data in the form of
InK, =Ina;+a,InV+azInH+e -+ (7)

where ¢ Is an error term with mean=0 and
standard deviation=g., and ¢ is normally dis-

tributed. For the untransformed data, Eq. 7 1s
KZ - ee a, vaZ Ha3 = g8 Va2 HaS (8)
where g is the transformed error series

which is lognormally distributed. For a
lognormally distributed variable like &,

where ¢=standard deviation of the
logarithmically transformed variable, o=
standard deviation of the non-transformed
variable, and g=mean of the non-trans-
formed variable. If g/4<0.30, then

which 1s a coefficient of variation (COV)
of the non-transformed variable (Ang and
Tang, 1975, p. 105).

Monte Carlo Evaluation of Equation Bias

Monte Carlo simulation involves repeated
simulation of a process using a set of random
parameter values generated in accordance
with the corresponding probability distribu-
tions.

Monte Carlo simulation was used to gener-
ate statistically based synthetic Ky data for
assessment of the relation between sample
size and reliability. Multiple linear regression
1s applied to the synthetic K3 data to develop
K, estimation equations representative of
various sample sizes. Additional synthetic Ko
data are used to evaluate the bias error in
the K7 estimation equations representative of
various sample sizes. The procedure is ap-

plied to the Passaic River in New Jersey.
Application to the Passaic River

From Table-2, the typical error of a site-
specific Ky estimation equation developed

with field measurements can be assumed to
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be about 35%, i.e., 0.~0.35. The procedure
for optimum sample-size determination for a
site-specific K, estimation equation is applied
to the Passaic River in New Jersey. To esti-
mate the probability distributions of the ve-
locity and the depth of the Passaic River, the
hydraulic simulation part of the output from
QUALZ2E-Passaic (New Jersey Department
of Environmental Protection 1987), which
was calibrated with field data from August
3-5, 1983 was used. The stream was In a
low-flow condition and representative values
of the velocity and the depth were selected
for each of the 32 reaches. The frequency dis-
tributions of the velocity and depth for these
reaches are shown in Figure 1, and the distri-
butions are assumed to follow a beta distribu-
tion. The basic statistics and assumptions

made are

10
(a)

Frequency
S

0 1. I

0.00 0.15 0.30 0.45 0.60

Velocity(m/sec)

15
(b)

Frequency

o CT 1 [
0.0 0.6 1.2 1.8 2.4 3.0
Depth(m)

Fig. 1. Frequency distribution of velocity
and the depth of the Passaic River

from the low-flow survey of August

3-5, 1983

(1) the two selected “true” equations,
F(X, B), are

Owens et al. (1964) : In Ky = 1.94
+0.73In V=175 In H4greeevevvereees (1D

Churchill et al. (1962) : In Kz = 1.61
+0.969 In V—-1.673 In H+g-reereeveee (12)

(1) e 1s normally distributed with mean
and standard deviation
e = 0, o = 0.35
(1) basic statistics of V and H for the Pas-
saic River,
velocity (V, m/sec)
mean, &, = 0.129
mode, M, = 0.076
range, [rl, r2] = [0.016, 0.598]
depth (H, m) :
mean, gy = 0.950
mode, My = 0.457
range, (rl, r2] = [0.160, 3.048]
(v) beta distribution for both V and H.
Many random numbers were generated for
V, H, and € as per the appropriate distribu-
tions. Normal random numbers are generated
for g and random numbers following a beta
distribution are generated for V-and H.
Synthetic Ky values are generated by Monte
Carlo simulation with random numbers of V,
H, and e and two assumed “true” equations,
equations (11) and (12), and different data
sets (5,000 K3 values each) are prepared for
multiple linear regression and error analysis.
Two independent variables, V and H, and
one dependent variable, K3, are used in multi-
ple linear regression to develop the K; estima-

tion equation. An incorrect equation, F(X, b),
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is developed because of variation in ¢ and
the estimation of K2 made with this equation
differs from that made with F(X, 8. The
overall uncertainty in the estimates of Kp

from the erroneous equation is given by

VAR[In K,]; = o2+ Hr* X, b)], and
............................................. (13)

SD[In K,] ;= JoZ+ E[7%(X, b;)] -+(14)

where } denotes that this is the jtb realiza-
tion of the value of SD[In K;] and E[yjz (X,
bj)] for the case of an estimation equation F
(X, bj) based on n samples and b; are the
model parameters for the jth realization. For
an accurate estimate of SD[In Kj], many
sets of n samples should be analyzed until the
mean of the standard deviation of the natu-
ral logarithm of Ky

N
SD(In KZ] = L 3 SD[In KZ]j ...... (15)
N, j=1

where N¢ is the number of realizations nec-
essary for SD[In K5] to converge to a consis-
tent value.

Multiple linear regression was performed
with the first 10 data sets and the equation
obtained, F(X, bl), was

In K;,=2.24+0.875 In V—1.77 In H--- (16)

This equation is different from the F(X, &)
equation, therefore, a different estimate of Kz
results for the same velocity and depth.
Equation 16 is applied to an independent
data set to determine the variance due to

bias. This independent data set is in descend-

ing order from data set number 5,000. Twen-
ty data sets (data sets number 5,000 to 4,
981) are used to evaluate the expected value
of Y4(X, b1), which is

SURX B~ KX b))b(17)

1
E{YI(X bl)]zﬁ P

where m=20. Using Eq. 14, the SD[in K]
1 can be obtained with E[r%(X, b1)] and
0£=0.352.

The next 10 data sets (data sets number
11 to 20) are used for multiple linear regres-
sion and F(X, by) is obtained. The variance
resulting from bias for this equation is deter-
mined for another 20 independent data sets
(data sets number 4,980 to 4,961). This proce-
dure is repeated until the mean of SD[{In K;]
converges to a consistent value, and this con-
sistent value is the average error in K; esti-
mation by an equation developed for the case
of 10 samples. Once the mean of SD[In Kj]
for 10 samples was obtained, other sample
sizes were examined to evaluate the effects
of sample size on the estimation error. Sam-
ple sizes of 10, 20, 30, 40, 50, 60, 80, and 100
were selected and the Kj estimation equa-
tions of Owens et al. (1964) and Churchill et
al. (1962) were examined to determine the

appropriate sample size.

Results and Discussion

Example with the Equation of Owens
et al. (1964)

The mean of SD[In K3] and associated 95
% confidence limits are presented in Table-3
for different sample sizes and three cases
with the equation of Owens et al. (1964)
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Table-3. Mean of the standard deviation of
In (Kz) and 95-percent confidence
limits for different sample sizes
with the equation of Owens et al.
(1964) assumed true

5,=0.35, 0,=0.35, 6,=0.25,
Sample
m=20 m=30 m=20
. Mean of SD[In K;] Mean of SD{InK;] Mean of SD{In K]
® (Kl (Kyinlfdey)  (Kyinl/day)

10 0.4236 +0.0187 0.4308+0.0220 0.2981 £0.0083
20 0.3802+0.0078 0.3970+0.0081 0.2713+0.0037
30 0.3657 £0.0026 0.3658 £0.0024 0.2636 +0.0023
40  0.3643+0.0032 0.3641+0.0027 0.2603+0.0018
50 0.3643+0.0028 0.3641+0.0026 0.2577 +0.0013
60 0.3581+0.0016 0.3575+0.0016 0.2568+0.0015
80 0.3563+0.0016 0.3564 £0.0017 0.2557 +0.0012
100 0.3548+0.0011 0.3548 +0.0010 0.2537 +0.0009
oo 0.3500+0.0000 0.3500 +0.0000 '0.2500 +0.0000
(expected)

assumed to be the “true” equation. As sam-
ple size increases, average error decreases
and the range of the 95% confidence limits
also generally decreases. The error will be
the same as ¢, if sample size increases to in-
finity where F(X, b) becomes F(X, 8 and
no bias error is expected.

The mean of SD[In K] with error bars of
95% confidence limits for different sample
sizes with ¢,=0.35 and the number of sam-
ples used to evaluate the variance resulting
from bias (m) equal to 20 is illustrated in
Fig. 2(a). Error bars for sample sizes of 20
or more are smhll and barely noticeable
whereas the error bars are fairly large for a
sample size of 10. This implies that, if a ran-
domly taken set of 10 samples is used to de-
velop a Ky estimation equation, the error, SD
[In Kz], might deviate significantly from the
mean of SD[In K;], whereas the potential de-

viations are not large for sample sizes of 20

0.45
} (a)
= 040f
B4
i
o) [ ] [ ]
& o35 = 2 .
0.30 s — " - _
0 20 40 60 80 100 120
0.35
(b)
2 0.30F
Z i
£ s,
2
7 o5 .2 e 2
0.20 n : s L 2
[} 20 40 60 80 100 120
Sample Size

Fig. 2. Meamn of SD[In K;] and associated
95% confidence limits for K estima-
tion equation derived from different
sample sizes generated from the

equation of Owens et al. (1964) : (a)
05=0-35, and (b) 65=0.25

or more. As sample size increases from 10 to
20, the mean of SD[In K3] decreases signifi-
cantly. Further increases of sample size be-
yond 20 yield much smaller and more gradu-
al reduction in the mean of SD[In K3 ]. Thus,
the error resulting from equation bias can be
reduced significantly by increasing the sam-
ple size from 10 to 20. However, collecting
additional samples beyond 20 produces a
small error reduction and is not justified. The
result for the case of m=230 is presented in
Table-3, and it is almost identical to that for
m=20. Thus, m=20 is used hereafter.

The case of 0,=0.35 1s fairly realistic rela-
tive to the quality of several commonly ap-
plied K; estimation equations (Table-2).
Under good stream-flow conditions (i.e., pris-

matic channels with small ranges of flow and
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biological activity), a more accurate basic
equation might be derived based on tracer-
method measurements of K, where the accu-
racy is approximately +15% (Table-1). A
best case scenario was examined by assuming
that Ko values obtained by a tracer measure-
ment method would yield an equation with o,
=0.25, and the result is illustrated in Fig. 2
(b). Results shown in Figs. 2(a) and (b) are
similar in shape and a sample size of 20 can
be considered appropriate for both cases. Un-
certainty reduction for a sample size increase
of 10 to 20 is less significant for ¢.=0.25
(Fig. 2(b)) than for ¢,=0.35 (Fig. 2(a)).
The accuracy of the simulation results may
be tested by comparison to the theoretical
variance in predictions made with regression
models. If for a linear regression model the
independent variables are normally distribut-
ed, then the total prediction variance, 0123 , 18

equal to (Troutman 1982)
&= E+{[2(n—DY/[n(n—3)1}d% (18)

The total prediction variance as a function
of sample size computed from Eq. 18 is listed
in Table-4. The agreement between the total
prediction variance in Table-4 and the mean
of SD{In K51 in Table-3 is very close. For a
lower sample size (10 to 20) the difference is
larger, reflecting the fact that the indepen-
dent variables follow beta distributions, but
the variance from Eq. 18 is still comparable.
For higher sample sizes the differences be-
tween a normal distribution and a beta distri-
bution are less significant, and the agreement
between the results in Tables-3 and 4 is very

close.

Table-4. Total predication variance as a
function of sample size for a re-
gression model

Sample Size 0,=0.35 0.=0.25
10 0.3924 0.2803
20 0.3690 0.2636
30 0.3623 0.2588
40 0.3591 0.2565
50 0.3572 0.2552
60 0.3550 0.2543
80 0.3545 0.2532
100 0.3536 0.2525

For practical applications,bengineers and
planners are more concerned with the bias in
Ky than in the bias in In K;. Numerous stud-
les have shown that bias or smearing of the
relations can result from the retransfor-
mation from logarithmic to standard rela-

tions. The expected value of y2(X, b) was
computed for the simulation results for Kz in

the same manner as for In Ks. For, example,
the bias in the Ky estimates for the first real-
1zation of an equation developed from 10

samples presented above is

_9_39V?.875/H§.77 ______ (19)

The mean and 95% confidence limits of {E
[72(X, b)1}1/2 (simillar to a standard devia-
tion resulting from bias) for estimation of Kg
for the case of g,=0.35 are shown in Fig. 3
for a range of sample sizes. As was the case
for In Ky, the variance resulting from the
bias in K3 estimation reduces significantly by
increasing sample size from 10 to 20, but fur-
ther increases In sample size produce only
small reductions in the variance resulting from

bias. Also, the magnitude of the confidence
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Fig. 3. Mean of {E[72(X, b)1}¥2 for K3 and as-
sociated 95% confidence limits for Kj

estimation equation derived from dif-
ferent sample sizes generated from the
equation of Owens et al.(1964)

limits decrease significantly as the sample
size increases from 10 to 20, but further in- -
creases in sample size produce only small re-
ductions in the magnitude of the confidence

limits.

Example with the Equation of

Churchill et al. (1962)

An additional 5,000 Ky values were com-
puted with Eq. 12 (instead of Eq. 11) with
the In V, }n H, and e remaining unchanged.
Multiple linear regression was performed
utilizing these Ky values with the data in de-
scending order from data set number 5,000,
and determination of the variance resulting
from bias was performed with the data in as-
cending order from the first data set. This is
opposite to the case with the equation of
Owens et al. (1964). The mean SD[In K]
and associated 95% confidence limits are
presented in Table-5 for different sample
sizes and two cases with the equation of
Churchill et al. (1962) assumed to be the
“true” equation. These results are also illus-
trated in Figs. 4 (a) and (b). The mean and

Table-5. Mean of the standard deviation of
In (Kz) and 95-percent confidence
limits for different sample sizes
with the equation of Owens et al.
(1962) assumed true

Sarmol 0,=0.35, 6.=0.25,
ampie m=20 m=20
) Mean of SD[In K3] | Mean of SD[In K;]
Size (Kyin 1/day) (Kyin 1/day)
10 0.4296 +£0.0224 0.2958 +£0.0077
20 0.3774 +0.0060 0.2720+£0.0042
30 0.3661 +0.0027 0.2639 +0.0024
40 0.3633 £0.0024 0.2623 £0.0032
50 0.3613+0.0023 0.2577 £0.0014
60 0.3580+0.0015 0.2565 £0.0013
80 0.3562 +0.0015 00.2554 +0.0012
100 0.3547 +£0.0011 0.2536 +0.0009
0o 0.3500 +£0.0000 0.2500 £0.0000
(expected)
0.50
(a)
0.45F
G 1
E, 0.40F
(% E [ ] L] -
0.35 s L] L}
0.30 — L ! n n
0 20 40 60 80 100 120
0.35
(b
E 0.30 [ §
£ 3
2 o2 I 2 »
0.20 —_— L L " L
0 20 40 60 80 100 120
Sample Size

Fig. 4. Meamn of SD[In K2] and associated 35%
confidence limits for K; estimation
equation derived from different sample

sizes generated from the equation of
Owens et al. (1962) : (a) ¢.=0.35, and
(b) 0.=0.25 -

95 % confidence limits of {E[72(X, b)1}1/2
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2.0
2. 1sf
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s 1o}
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Fig. 5. Mean of {E[72(X, b)]}/2 for Kz and
associated 95% confidence limits for
K7 estimation equation derived from

different sample sizes generated
from the equation of Owens et al.

(1962)

for estimation of K for the case of ¢,=0.35
are shown in Fig. 5. The results from applica-
tion of Eq. 12 are similar to those for Eq. 11,

and the appropriate sample size is about 20.

Conclusions

The appropriate sample size for the devel-
opment of site-specific Ky estimation equa-
tions that balance cost and reliability was ex-
amined for the Passaic River in New Jersey.
The K estimation equations of Owens et al.
(1964) and Churchill et al. (1962) were used
in a Monte Carlo simulation analysis to gen-
erate synthetic Ky data that were applied to
evaluate reduction In prediction variance
with sample size. All examples showed that
about 20 samples can be considered an ap-
propriate size for the Passaic River. This
result is consistent with the suggestion of
Ang and Tang (1975, p. 236) that when the
sample size is greater than 20, the sample
variance i1s a good estimator of the popula-

tion variance. Further, the simulation results

agree closely with theoretical results for re-
gression models. Thus, the results of this
study might be applicable for a wide range of
reaeration-coefficient estimation equations
and stream conditions. Testing of the multi-
ple regression and equation-bias estimation
procedures with field measurements of Ky is
needed to verify the bias reduction with sam-
ple size. Unfortunately, large data sets of
field measured Ky values are expensive to ob-
tain and rare.

In typical water-quality modeling, stan-
dard K, estimation equations, which are
functions built into the model, are used to
calculate the Ky values. Generally, the equa-
tions built into water-quality models are
well-known equations. However, these were
developed under conditions prevailing in a
given river or for a specific set of laboratory
conditions, and the estimation reliability for
general field conditions i1s poorly known. For
the stream system of interest, it is recom-
mended that a site-specific K, estimation
equation be developed rather than applying
built-in equations because DO is one of the
most Important indicators of the stream
water quality, and Kg is often the dominant
input parameter affecting the reliability of
DO prediction. A site- specific Ky estimation
equation should be incorporated into the
model. The cost for field measurement of the
K; values by the propane gas method is ap-
proximately $ 3,000~ $ 4,000 per measure-
ment, depending on field conditions. Consider-
ing the high cost to develop a water-quality
model, the use of the model in making multi-
million dollar decisions regarding upgrading

or expanding wastewater treatment plants,
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and the significance of the reaeration coeffi-
cient on the decision, spending about $ 60,
000 for 20 K2 measurements to develop a
more reliable model may be justified. The
simulation procedure demonstrated in this
study can be applied to other rivers to help
make decisions regarding the appropriate
sample size for development of a site-specific
K, estimation equation before actual sam-

pling starts.
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