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Constrained Integer Multiobjective Linear
Fractional Programming Problem

Deepa Thirwani*- S.R. Arora*

Abstraci

In this paper an algorithm based on cutting plane aoproach is developed which constructs all the
efficient p-tuples of multiobjective integer linear fiactional programming problem. The integer
soultion is constrained to satisfy any h out of n additional constraint sets. A numerical illustration

in support of the proposed alogrithm is developed.

1. Introduction

Many interesting applications of integer linear iractional programming problems have been
given in literature. Fixed charge problems, plant location problems, Job shop scheduling
problems are some of the examples of integer lincar fractional programming problem, Integer
linear fractional programming problem have been studied by many authors [7. 8, 9, 10]. But
by considering only one criteria does not serve owr purpose because in practical life two or
more objectives are associated with a problem. In this paper we construct the pareto-optimal
set of integer solutions to enable the decision miker to choose a solution according to his
constraints, Further we check that the solution so obtained, satisfy additional constraints or
not.

We can find all the efficient solutions of an inieger linear fractional programming problem
by using Dantzig cut also but this may be a long process because its rate of convergence 1S
very slow and at each step it studies all the deminated and non dominated solutions. The

procedure developed in this paper is also hased on cutting plane technique but introduce
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deeper cuts than the Dantzig cuts. In this procedure we ifnd all the feasible soulutions of the
relaxed problem (ie. the problem without the integer constraints). Eligible directions leading
to potentially efficient solutions are identified and once a point or a region is scanned it is
deleted in order to truncate the current region. The portion which is deleted once, does not

reapear thus leading to convergence in a finite number of steps.

. Theoretical Development

The Constrained Integer Multiobjective Linear Fractional Programming Problem (CIMLFPP)

1S

(p-1): Maximize(z,,z, +-,z,)
CX4o
h l’: T gl :1| 1’“;
where z DX +p r=1,2,-,p
subject to

XeS={XeR"IAX=b, X20 is an integer point}

S is a closed and bounded convex polyhedron over which D'X=g > 0, C, D' € R", «.f €

R, r-1,2,....,p and
XEF:“ U (F,NE,N---NEF;,)

Jdzin JER

Without loss of generality one can assume that the components of C', D', r=1,2,---p are all

integers.
F={Xl|g(X)£=20, X20 is an integer point}
where gi(X) S=20 is the set of secondary constraints in F, V i € 1={1,2,---,n}.
K=llinizdsd | Onjeesdny < 1}
is the set of all subsets of 1 taking h of its e,ements at a time.
DEFINITION :

1. Efficient Point : A point X’€S is said to be an efficient point iff there does not exist
another point X'€S such that

z(X") = z.(XY, r € R={1,2,---p}
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with strict inequality sign holding for at least vne r € R,
If there exists such a point X' then the point X' is said to be dominated by X' and the

p-tuple {z,z,,---,2,} corresponding to the soultion 3° is called a dominated p-tuple.

Consider problem (PZ,)

C'X+e'

(PZ,):Max (Z,))= DX 44

subject to
X € S={X € R" | AX=b, X = 0 is ar. integer point}
and X € F.
Let S'={X € R" | AX=b, X 2 O}
S' is the feasible region of the relaxed problem ie. the problem without the integer

constraints.

X'={{x,;} is the optimal integer solution of problem (PZ,) with value of
_CX'4a

I“‘IXI_*_Bl
Zf=Value of Z, r=2,3,--p corresponding to solution X* of (PZ)

Z=Z=

{Z8Z5 -, Z% is the efficient p-tuple.
B.=Basis associated with X"
k k . . . . . .
X*={X]} is the optimal integer solution obtaine«l after applying the cut

Y X2l €T

)

Je N Ty
af=activity vector of x|
Y'=(B) a, j€l,

a,={jla‘€ B,

N'={jla‘&/By}

Zi=CiY/, reR={1,2,~+,p}

where Cj, is the numerator of the rth objective function corresponding to the basis Bi.
=G, Y/, reR
where Cj, is the denominator of the rth objectove fimctopm cprresponding to the basis B

ny=Cs X"+, r=1,2,-.p
11::Cékxk+ﬁrl r:1127”'|p
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A =ni(L5—d) — 15z ~c)
Te={ljeN, and A} <0 and A} >0 for at leust one reR’={2,3, p}
J={ljeN,, A <0, reR"

For JyeT," the edge E, incident at solution x" s defined as follows :

x P
X1:X1 - 01)( Y|l;)u le I k
E.= yx=(x,Xy,%X,) | x,=0,
X,=0, ven,—{j,}

k
where 0 < 6, < min{ Xk Vi > 0}

0, 1s an integer and 0, yi, is also an integer for every i€l,.

2. Dominated Edge : An edge incident at an integer feasible point is said to be dominated if
all the solutions along that edge yield dominated p-tuples {z),z, 2z},

Theorem L An integer feasible solution of preblem (PZ,) not on an edge E,, 1,€T. k=1

through x* in the truncated region S' lies in the closed half space

rox=>1 (1

]EN)("'(JI)
Proof. Let )Z:(S(J) be an integer feasible solution of problem (PZ;) not on an edge E,,
which does not satisfy (1).

Then %,=0 for all j&Nx—{j,} and X, is an integer such that

k
0 < % < min { Xy > o}
Y

iely i

then X lies on Edge E, which is not the case,

k
If %, > min {—X— vi, > O} then it leads to an infeasible point. Therefore %X, > 0 for
Y

)
i€y i

some J€Nx—{j;} which implies that %X, > 1, since X is an integer feasible solution
Hence, the result.

Remark 1. The cut (1) ie.

2. %=1 is a generalization of the Dantzig cut as when T, (k>1) is empty, the corre-
JEN—={}

sponding cut reduce to the Dantzig cut
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F2AE FIR
Z XjZ]

JEN,

This cut (1) is preferable to the Dantzig cut as it truncates whole edge while Dantzig cut

truncates only a point.

Remark 2. If for some j,€T(#¢)

k
0= min {i vh > )} <1
iclk Ym

corresponding to solution xk, then no integer feasible solution can be obtained on edge E.

Theorem II. All integer feasible solution for problem (PZ,) through xk, which lie in the

closed half space

x>

JE)x

are dominated.

incident at solution x* is defined as

Proof. The integer feasible solution X on edge E,

— .
X=X _OJ‘ Yiix
=0,

I

i\VIO, Ve Nk’_{]k}

"
I
|
f
i
%
4
|

k
where 0 < 0, < min{ XL, Vi, > 0}

iely o

0, and 0, v., are integers for every i€l,, solution X lies in the closed half space

Yx=>1

J€]y

For such a solution X,

Y CERACK, o
Z(%) = Z,(x") = —— —
v} dix+dx,+5 1
1€,
xC (= 0,y5)+C 042
_ i€y _ e
Yd(x =0,y +d 0,48 1f

fram
Cer\+O‘ _Om( Y‘C yilk Jk ) 1 i
- )3 drxk ﬁ {)Jk( S_‘d yl)k Jk ) - L

1(

. —OJk(Zer_ .Jk) - I'l‘k
4 K

-0 (Ly—d,) 1
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0.~ 1(zs~c)+n (Ls—d,)} p¥
= By

[Lk_-OJk(Lr;(k_drik)lrk L;

oik Ar)j(k k :
:?—11(— < 0as A, < 0 for ), € ]y

where Trzlrk_eyk(Lrlj(k_dirk)

Hence, integer feasible solution X which lies in the closed half space ¥ x>1, is a
j€lk
dominated solution,
Similarly, all other integer feasible solutions which can be derived from x* by moving in di-

rection x;, j€J, lie in the closed half space ¥ x,>1 and are also dominated,
J€JL

. Procedure to solve the problems

Step 1. Solve problem (PZ,). Note that in place of problem (PZ,) one can similarly con-
struct problem (PZ,) for any r=23,--,p and proceed with any problem. Let x be an optimal

1

solution of problem (PZ,). Record the corresponding p-tuple (Z/,Z;,--Z)) and B,N,T.

Step 2. Choose any j, €T, Find the corresponding minimum ratio # of the pivot operation.

(a) If @ <1, ignore j, and choose j€ T, ;#j,. Rename it as j,.

(b) If 6 <1, determine all integer feasible solutions along edge E,. Each such solution give
rise to new potentially efficient p tuples of the form (2,24+,2,) With 21SZ]1 and z, >

z for at least one r=2,3,---,p.

Let S; be the collection of all p-tuples recorded upto step 1.
Remove all the dominated p-tuples from S, ard let S, be the remaining set.
Thus, S, is the set of all potentially efficiert p-tuples at the end of step 1. Test if any

one satisfies F. If not, go to step 3.

Step 3. Truncate edge E, by the following cit



E2AH IR Constrained Integer Multiobjective Linear Fractional Programming Problem 233

Record all non-dominated solutions and check whether any one of it satisfies I or not. If it
satisfies F stop otherwise repeat the process.

General kth Stage. Choose j,€ T, determine all integer feasible solutions (if any) along edge
E, Read the corresponding p-tuples and augmen: set S, with these p-tuples to construct set
S.... Remove the dominated p-tuple from Si, to obtain Sy

Truncate edge E, by the cut

5
Y ox.2l
yE Ny~ iy

1 'n the truncated region. Read the correspond-

and determine the optimal integer solution X"
ing p-tuple. If it is non dominated then augment set Sy by adding this p-tuple to it and re-
name the augmented set as S,y again Check, if any one of the solution satisfy F or not. If
not, repeat the process,

Terminal Stage. The process terminates after ar nth stage when either

(1) T, = ¢

(2) Tn # ¢ with

{a) any j,€T, yields dominated edge only
or (b) The cut
Y %21
Nk}
leads to an infeasible solution in the truncated region for some j,€T.

The current set of stored p-tuple is the desired set of efficient p-tuples.

Theorem M. In any efficient p-tuple(z,z,--,2,), z is the maximum value of the first objec-
tive corresponding to (p-1) tuple (z,z,-,z) and (2,2,-+,z) is a non dominated (p-1) tuple

corresponding to the value z; of the first objective.

Proof. Let (z}z---,2*) be an efficient ptuple corresponding to X* and zf is not the maxi-

mum value of z,. Suppose that there exist a solution X** yielding value z{* of z such that
>z
and = 7 1€R’ = {2,3,-,p!

) Then, (z}zf - z*) is dominated by the p-tuple (z{*z},--,z7), which is a contradiction.

Conversely. Consider an efficient p-tuple (z,z,,z,) and assume that there exists a solution
% vielding value 7, of z, i€R={1,2,-,p} such that Z=z, and (z/,z,) is dominated by (Z,,
7). Then (z/,z’-z)) gets dominated by the ptuple (z,2,-,2) which is again a contradic-

tion,
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Thus, (z{,--,z’) is a non dominated {p-1) tuple corresponding to the value z' of the first
objective,

Hence, the result.

V. Numerical Result

Consider the problem

Maximize (z,,z,,2,;)

3x,+5x,
2%, +3%,-+1
4x,+x,
x,+2x,+2
_ 9xt2x,
5%, +x,+1

where Z,=

Zy

3
subject to
4x,+5x,<22
5x,+3x%,<15
X, X,20 and integer
and XeF = (FINF) U(F,NF,) U(F,NE)
where F,={(x,%,) : x{+x/<16, x,+x,>2}
Fo={(x,%) @ 2x,+x%,<5, 3x,+5x<10}
Fy={(x,%x,) : 4x,+5x,<10, 3x,+4x,>15}
Consider the problem (PZ,) give by
3x%,+5x%,
2x,+3x,+1
subject to 4x,-+5x,<22
5x,+3x%,<15

(PZ,) : Maximize z,=

X;, X220 and integer,

The optimal solution of the relaxed problem i.e. without the integer condition is x,==0,

Wz
Applying Gomory cut,
_Tg' Xl—% X:i'*'xr,:—%

The optimal integer solution is given by Table .
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EAUR I
20 2 8
(13 S e g ). But

x'=(0,4) is the efficient solution of the given problem yielding the triad

%' does not satisfy F, therefore we find another efficient solution from, table-1.

1,={2,3,4}, N;={1,5:, T,=iL5}

Choose j=1€T,, G:min{—%, —i—}z% <1
As 0 < 1, ignore j,=1.
« Truncate edge E, by the cut

Yy ox=1

JEN ~{

ie. X = 1 or-xs+tx~=1—1.
Appending this cut in table-1 and solving we get table-2.

Here x*==(0,3) is an efficient solution with the triad (-S—, , %), As x° does not satisfy F,

3
8

therefore we find another efficient solution,

From table-2, 1,={2,3,4,5), N,=11,6}, T.={1,6}
Choosing j=1€T,, 0= min {-g—, %}:—5(1 > 1.
For 0=1, new solution is given by x,=3, %70,

which is same as x°. If we choose j=6€ T, 0=mr{3}=3>1.

e, x=(0.3) yielding triad ('—g, %

oo e
—_

For §=1, new solution is x,=2, x,=0
ie. X=(0,2) yielding triad (%, %, g) is another efficient solution and X satisfy F.
Therefore, the efficient solution of the problem is (0,2) yielding the triad (—17—0, —é— %).
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Table- 1

s | 3 5 0 0 0

d\—~ 2 3 0 0 0

¢ | 4 1 0 0 0

d— 1 2 0 0 0

cl— 9 2 0 0 0

di— 5 1 0 0 0

s D 4 D% DY Dy X b 3 a a; a, as

1 2 1 3 5 Xy 4 0 1 0 0 1

0 0 0 0 0 0 X4 3 5 0 0 1 -3

0 0 0 0 0 0 Xy 2 4 0 1 0 5
z =% oz =% z=9,
W =8, L =4, =20
Ly =5, L =10, LY =13

Zi - c—> | -3 | 0 0 0 5

L, ~d—>| =2 0 0 0 3

A — -1 0 0 0 -5

Zy > | —4 0 0 0 1

L ~-d—|-1] 0 0 0 2

AL | 36 0 0 0 -2

Zi5 - ¢ - | -9 0 0 0 2

5 - d—=> | =51 0 0 0 1

A - 5 0 0 0 -2
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Table-2
il ci—> | 3 5 0 0 0 0
d— | 2 3 0 0 0 0
= | 4 1 0 0 0 0
d— | 1 2 0 0 0 0
ci—> | 9 2 0 0 0 0
\ di—= | 5 1 0 0 0 0
D% D} D% D% Dy Dl X5 ‘ b a a ay a a, as
1 2 2 1 3 5 X 3 0 1 0 0 0 1
o Lo oo oo |x 6|5 tolol1]|o]l-3
0 0 0 0 0 0 Xy 7 4 0 1 0 0 -5
0 0 0 0 0 0 X 1 0 0 0 0 1 -1
z =3, 1z =3z T
Zy =6, Z, =3, Zi=15
Lw =4, 15 =8 L,=10
Zy — o> | -3 0 0 0 0 5
L, — & —>]| -2 0 0 0 0 3
V=0 0 0 0 0 -5
Z, — o> | —4 0 0 0 0 1
Ly — & = | —1 0 0 0 0 2
V> | 29 0 0 0 0 -2
Zy — - | -9 0 0 0 0 2
Ly — - | -5 0 0 0 0 1
L= 6 0 0 0 0 =2




