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Adaptive Fuzzy Sliding Mode Control
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I . Introduction

In the conventional control theory, most of the control
problems are usually solved by mathematical tools based
on the system models. But in the real world, there are
many complex industrial processes whose accurate ma-
thematical models are not available or difficult to
formulate. Because the fuzzy control can often provide a
good solution for these problems by incorporating
linguistic informations from human experts, fuzzy control,
as- an alternative to conventional control techniques, is
gaining increased interests both in the academic world
and in the industrial field[1,2]. Despite its practical
successes in many areas, fuzzy control seems to be
deficient in formal analysis and robustness aspects. This
is also a great resource of criticism from some con-
ventional control researchers. To overcome this draw-
back, great efforts have been done in the field of fuzzy
control during the recent years. This paper is motivated
by Wang's and Mendel's works that fuzzy logic
systems(center average defuzzifier, product-inference rule,
singleton fuzzifier, and gaussian membership function) are
capable of uniformly approximating any nonlinear func—
tion over compact input space[3,4,5]. That is, any non-
linear system can be modeled by the fuzzy logic
systems. Especially, Wang[3] utilized the general error
dynamics of adaptive control to design the adaptive fuzzy
controller. Many other researchers have attempted to
apply the fuzzy approximator or fuzzy logic concepts to
the conventional control techniques(6,7,89]. However,
most of their works don’t have formality.

In general, we need to know the system functions and
have to find the inverse form of inertia term in system
dynamics in designing the sliding mode controller.
However it is not difficult to find the inertia term and
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its inverse form and to formulate the accurate ma-
thematical model of the nonlinear system.system. To
solve these problems, In this paper, a fuzzy approximator
theory and a SMC scheme are considered. That is, fuzzy
logic system theory is applied to designing the sliding
mode controller for the nonlinear system, x ™= A x,?
+& x, Hu . In the first method, fuzzy logic system is
utilized to approximate the unknown function f of the
nonlinear system. In the second method, two fuzzy logic
systems are utilized to approximate f and b, respec-
tively. In these control schemes, simple adaptive laws are
designed to approximate the nonlinear functions by fuzzy
logic systems. In the first method, a robust adaptive law
is also introduced to reduce the approximation errors, the
differences between true system functions and fuzzy
approximators. In the second method, the control law
which is robust to approximation error is also designed.
The stabilities of proposed control schemes are proved.
These proposed control
inverted pendulum system.

This paper is organized as follows. Section II presents
the general fuzzy logic system and fuzzy approximator.
In Section III, a SMC scheme is introduced and the
general sliding mode controller is designed under
assumption that F and & are known. In section IV, the
first method of adaptive SMC scheme using a fuzzy
logic system is proposed and adaptive laws are designed.
In section V, the second method is proposed and robust
control law is also designed. In both cases, adaptive
fuzzy sliding mode control schemes(AFSMCs) are de-
signed under assumption that the system functions, f
and b, are unknown. The stabilities of the proposed
control schemes are proved. In section VI, an inverted
pendulum system is considered to verify the validities of
the proposed control schemes and comparisons between
the cases of simple adaptive law and robust adaptive law
are noted, respectively. Conclusions are drawn in the
final section.

schemes are applied to an
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0. Fuzzy Logic System

Fig. 1 shows the basic configuration of a fuzzy logic
system considered in this paper. In what follows a brief
description of each component and the basic fuzzy
operations that it performs is discussed.
1. Knowledge Base Constructed with Fuzzy Rules

The knowledge base for the fuzzy logic system
comprises a collection of fuzzy IF-THEN rules. In this
paper multiple-input single-out(MISO) rules will be used
in the formulation of the control law. The MISO
IF-THEN rule(s) are of the form

RG):Ifxiis A} and-—and x, is A%, Then y is C' (2.1)

where x=(x,,x,) € VCR" and ye WCR denote
the linguistic variables associated with the inputs and

output of the FLS. A/ and C' are labels of the fuzzy

sets in V and W, respectively, and i denotes the
number of inputs(states) of FLS, ie i=1,2,+-,n, and j
denotes the number of rules of FLS, ie j=1,2,, M
The fuzzy rule (2.1) can be implemented using fuzzy
implication, which gives

xAL—

Alx 2.2)

which is a fuzzy set defined in the product space Vx W.
Based on generalizations of implications in multivalue
logic, many fuzzy implication rules have been proposed in
the fuzzy logic literature. In this paper, we define the
implication rule using a t-norm operator, which gives

Bopixxaioch 2 3=t alx) Fe e p 0(x,) Yo o) (2.3)

where % denotes a t-norm, which corresponds to the
conjunction “min” or "product” in general.
2. Fuzzy Inference Engine
The fuzzy inference engine performs a mapping from
fuzzy sets in V to fuzzy sets in R, based upon the
fuzzy IF-THEN rules in fuzzy rule base and the
compositional rule of inference. Let B be a fuzzy set in
V, then the fuzzy relational equation B- R’, where ” - "
is the sup-star composition, results in M fuzzy sets.
Using the t-norm operator yields

Kpg. RI'(J/) =sup , [z 5( O%u Al‘x,..x,q}ﬁci( ] (2.4)

In order to combine the M fuzzy sets into one fuzzy
set t-conorm can be employed, which results in

‘ Fuzzy Rule Base 1

Defuzzifier ]1—};

Fuzsifier

y
'_.') Fuzzy Inference
| Engine

L

Fig. 1. A block diagram of basic fuzzy logic system.
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l“B' (Rl...,'R“")(y)= H B»R‘”(y) 4"" "*‘/‘ Buwa(y) (2.5)

where + denotes the t-conorm(s—norm), the most com-
monly used operation for + is "max”. If we use the
product operation and choose % in (2.3) and (2.4) to be
an algebraic product, then the inference is called product
inference. Using product inference, (2.4) becomes

g w3 =sup sevle (D ai(01) 1 4i(xdee ) 1. (26)

3. Fuzzifier

The fuzzifier maps a crisp point x into a fuzzy set B
in V. In general, there are two possible choices of this
mapping namely, singleton or nonsingleton. In this paper,
we use the singleton fuzzifier mapping, ie.,

(x)=

otherwzse

wl 2)={y for x €V. (27
4. Defuzzifier

The defuzzifier maps fuzzy sets in R to a crisp point
in R. In general, there are three possible choices of this
mapping namely, maximum, center-average, and modified
center-average defuzzifiers. In this paper, we use the

center—average defuzzifier mapping, i.e.

M __. o

3 T (prsl I

y= )—)M . (28)
]Z::l(ﬂg.w( v))

where ¥ is the point in R at which x achieves its
maximum value (assume that g y)=1).
5. Fuzzy Bases Function

The fuzzy logic system with the center-average
defuzzifier (2.8), product inference (26), and the
singleton fuzzifier (2.7) is of the following form:

M — ”
2 y QIPVED)
J’(.Z) = M 7 — (2.9)
2 l;I rED)

If we fix the u,4{x;)’s and view the 7’5 as adjusta-

ble parameters, then (2.9) can be written as
w0 =067 »,

where 0=( 3',, )7 is a parameter vector, and
H0=((D, M7 is a regressive vector with
the regressor &( %) defined as

(2.10)

_ I a0
& x =—M—’—r—‘——, (2.11)
Z='.( 1] #4(x))
which are called FBFs(fuzzy bases functions). It is
proved that a fuzzy logic system 1is universal

approximator in [3]. We can fix all the parameters in
&(x) at the beginning of the FBF expansion design
procedure, so that the only free design parameters are
;i. In this paper, we use these fuzzy logic systems
constructed FBFs with adaptive parameter vectors 6, &,

and 8, as alternatives of unknown functions A x, # and
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b(x, D, respectively. In computer

adaptive parameter vector €, consists of random values
and 4§,
appropriate positive values (related with the boundary of
b : the second method) at beginning. The reason that
the values of 6, have to be chosen the positive values

simulations, the

(in first and second method) consists of

Is drawn at the Remark 1 in section V. Therefore, we
need an assumption that the boundary of A x,# and
b x,t) are known. These boundaries are used in defining
the universe of discourse of W for each fuzzy logic
system.

M. Sliding Mode Control
Consider the nth-order nonlinear systems of the form

x(n) — f’(x, x,---,x("fl))ﬂ—b(x, 9&,-~,x("‘1))u+d(t) 3 1)
y=x '

where f and & are unknown continuous functions, d(#)
is the unknown external disturbance, ¥ € R and vy € R
are the input and output of the system, and
x= (), x5, a0 T=(x, %, " T & R* is the state
vector of the system which is assumed to be available
for measurement. In order for (3.1) to be controllable, we
require that 5>0 for x in certain controllability region

U,C R". And we have to make an assumption that
ld(dl <D. The

x to track the
Xq4 . With the tracking error

d(H) have upper bound D, that is,
control problem is to force the state
desired state

e=x(H— x,(D=(e, &, e NT (3.2)
In general, a sliding surface is defined by
s(e= ce=0, (3.3

where ¢=(c¢y,¢y,",cn-1,1) In which the c¢,'s are all
real and all roots of the polynomial " '+c,_1p" 2+

+¢;, = 0 are in the open left half-plane(p:Laplace
operator).
Starting from the initial conditions e(0)= 0, the tracking

problem x= x, can be considered as the state error

vector e remaining on the sliding surface s(e, =0 for
all #=0. A sufficient condition for this behavior is to
choose the control input so that

1L n-1-1d. n=0. (3.4)

Considering s*( @ a Lyapunov function, it follows from
(3.4) that the system controlled is stable. Looking as the
phase plane, we obtain : the system is controlled in such
a way that the state always moves towards the sliding
surface and hits it. The sign of the control value must
change at the intersection of state trajectory e(9) and
the sliding surface. In this way, the trajectory is forced
to move always towards the sliding surface. A sliding
mode along the sliding surface is thus obtained.
The sliding condition of (3.4) can be rewritten as

st s€—p-1d or  s-sgnls) £ —q. (3.5)

where 7 is a positive constant. By taking the time
derivative of both sides of (3.4), we obtain

s = ¢ ety et tc,e " PVrx P —xi?

n—]
= Zlc e tx™—x P
&

(36
= S:Cie D4Rz, O+b(x DutdD—x .

Therefore the control problem is to obtain the proper
SMC input #«" which guarantees the sliding condition,

. n—1 . .
s s = s glcie()ﬁ-f(i, H+b(x, Hu +d(H—x5) (3.7)
< =1,

or

wn(9) (Zce " +Ax Db s D +dD-xP) (g
<=

If Ax 8 is known, we can design the proper sliding
mode control law easily as follows.

D If 0, B
w'< b ) (= _~IC,-e(')—f(1, H—=d(t)+x 5" ~74)
) If s<0,

n-1
w2 bxt) (= Fee—Rad-d)+x{"+2))
i) If s=0,
W= Kzt (-]

=1

ce Y- Rz D—d(t)+x ()

=

i

where 7427>0, and iii) is the case of the instant that
the state trajectory hit the sliding swrface. Therefore
proper SMC input #" is

* -1 .
w= Yz (39)
(= L ce?—Ran—dd+xd —h-sgn(s) - 1),
where
=y T (310

This SMC input guarantees the sliding condition of (3.4).
However, Ax, 8, blx D and d(f) are unknown. To
solve this problem, we propose the adaptive scheme
using the fuzzy logic system in the next section.

IV. Adaptive Fuzzy Sliding Mode Control : the First
Method

If Ax,H and b(x,f) are known, we can easily
construct the SMC input #" as in the previous section.
However, f and & are unknown. To find the solution of
this problem, we replace the Ax, ¢ by the fuzzy logic
system R 46 which is in the form of (29) or (2.10)
and consider the term & 'sgn(s)|F,| in order to reduce
the disturbance due to the uncertainty of the unknown
control gain.

0< b< b(x,H and
b is a known positive

Where we assume that
Bx,0) = b+ 4K x, D, and
constant and J4b( x, ) is an unknown positive function.
The resulting control input is as follows.
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- n_l 3, n,
uy= b7'(— iglc,-e”-ﬂjﬁ)-kxf,) 41

—hsgn(s) - (D+14)— b 'sgn(s)|F ),

n—1
where F,=-— glc,-e(’)- AAO)+x " —h - sgn(sH(D+7.4).
Then

s= Az O~ R A6)—hsgn(s) (D+79 ) +d(2)

9 4 (4.2)
+AKx, ) 2T F, — XD b7 sgn(s)|Fl.

1. Adaptive Law Synthesis
Letting the optimal parameter vector of fuzzy logic

system be 8°, we can define the minimum approximation

€error,
w=Rx - R A46". (43)
So, (4.2) can be rewritten as
s= ﬂj&‘)—?(_g]ﬁ)%—w——hsgn(s) (D+774)+d(l) 4.4

+aKx ) bR K x D b sgn(F)

If we choose f to be the fuzzy logic system in the
form of (2.10), then (4.4) can be rewritten as

s= ¢TH D +w—hsgn(s) (D+7,)+dd

h 1 45)
+A6x, ) bTF — b x 8 b sgn()F |

where ¢=6"—8, and & x) is the fuzzy basis function
(2.11).
Now consider the Lyapunov candidate

_ 1,2, 1 o7
Vl_ 2(S+ 71¢¢’) (46)

where
of V,is

y, i1s a positive constant. The time derivative

v, = ss'+711 873
= spTEH x) +sw—s h sgn(s) - (D+7,)
+s- d(t)+—7}—T¢T€ﬁ
+sd6(x, ) b7F —lsdb(x &) & 7UF
< 'TLI‘IST(YISE(_&)'_ O +sw+sab(x, ) b7'F,
— |82 D 27 IF I —Is k74
< 4Ty s MDD bseld hra

4.7)

where ¢=-— 8. Because the term s- o is of the order
of the minimum approximation error and from - the
Universal Approximation Theorem, Wang expected that
the o should be very small, i,e, @ <g, if not equal to
zero in the adaptive fuzzy system[3]. Therefore, we can
choose the adaptive law

=75 €. 4.8)

However, this approach is not complete, thus we
consider the robust control techniques under the
assumption that the upper bound of ® is known in the
next subsection.

2. Robust Adaptive Law Synthesis

Let the control input

290

uy, = b (-~ S;cie“’—?(,zdﬁ)wtx&”)
—hsgn(sH(D+7 4+ 0)— & sgn(HF 4,

49

where
= o n
Fy=—Zce= R +xs
—h- sgn(s) - (D24t 0)
and p (the estimation of ) is Pp=p'—p and

0 =l mx Le, p° is the upper bound of minimum
approximation error of the fuzzy approximator. Therefore

we can obtain s :

s = AxD— RAD—h-sen(s) - (D+7n 4+ p)
+d()+dab(x, 0 - b7F,,
— bz D b sgn(9IF .

(4.10)

Now consider the Lyapunov candidate

V=548 41 ) 41D

Applying (410) to (411) and after straightforward
manipulation, we obtain the time derivative of V,,

vy, = 7—11¢T(71 S& 20— B —shsgn(s) (D+7)
+sedD)+so—h- - 2+712 7o+
s(Ab(x, ) b7 F 1, —Hx, 0 b sgn(9IF 1)
< Tlltﬁr(h s~ O+sw—hld 0"+
il (p'—?))‘f"—yl—z P ptsdix ) bT'Fy,
~188 ) BTHE D=l - h-ny

< *leqST(yl s& - O+sw
—held o R ld (o D)l ke ny
< 4700 s 8D = O+ B brrer kel
1 72
'"'51 s h- 7 4.

(4.12)

Therefore we can choose the adaptive laws

~

B=7,-s- &2, o=7y-h-Id. (4.13)

V. Adaptive Fuzzy Sliding Mode Control :
the Second Method

In the previous section, we had to know the accurate
lower bound of the control gain function & x,#). But it
is difficult to know this value precisely. So we propose
another method that A, ) and b(x, » are replaced by
R46,) and K A8, in this
section. We replace f and & with two fuzzy logic sys-
A A6) and B 48,), and append another input
u, Iin order to reduce the disturbance due to the

uncertainty of the unknown control gain. The resulting
control input is as follows.

the fuzzy logic systems

tems,

Uy = Uy + Uy, (51)

where
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= 50N e~ o) +xl?
k- sgn(s) - (D+1.)

|a)b|max
(O] gy 2 T Dl

is the known minimum value of control gain & x, D.
Then

uy=—TI,"sgn(s)lup and I' >

s= Az 0-RA0)+(Kx - Kad0)u, (59
+b(x, Duy~h - sgn(s) - (D+y)+dH ’

1. Adaptive Law Synthesis
Letting the optimal parameter vectors of fuzzy logic

systems be 687, 6} we can define the minimum app-
roXimation errors,
w=FRx )~ R 48})), w,=¥x )~ W A463). (53)

So, (5.2) can be rewritten as
s = 7(&10})—K_Jdﬁ/)fw/—hsgn(S)(D-f'va) (5.4)
+ dD+ (B 403 — B A0 +ou+¥x, Dus.
If we choose 7 and % to be the fuzzy logic systems
in the form of (2.10), then (5.4) can be rewritten as

s = ¢/T5f(_z)+wf+(¢[$b(_£)+wb)u/ (55)
+& %, Duy—h - sgn(s) - (D+n ) +d(D,

where ¢,=60;—6, ¢,=0,—0,, and &,(2 and
£(x) are the fuzzy basis functions (2.11).

Now consider the Lyapunov candidate
Vo=-L(2+-L 978 + 1 974,) (56)
272 y1 ISy, TATES

where 7y,, 7, are positive constants. The time derivative
of V, is

Ve = sst-97d 14,
= ")}T¢f(37161(£)+ $) +sw;

+712¢Z(8725b(1)u/+ b
—shsgn(s)(D+n)+sd(D+sw,u;,

—s I'b( x, Dsgn(s)lu 4

< ol (rsEf D+ 4)

+—71;¢Z<72s5,,(1)u,+ &9 67)
+sw—ld ke g

where ¢,=— 6, and ¢,=— §,. Because the term
s+wy is of the order of the minimum approximation

error, we can choose the adaptive laws as follows.

Gr=v1 5 ELX), Op=7y°5 E( X0 uy (5.8)

However, this approach is not complete, thus we also
consider the robust control techniques in the next
subsection.

2. Robust Control Law
In order to reduce the disturbance due to w/,, in this

section, we consider the term I';- sgn(s) in the control

law. The resulting control input
Uy = U + U (5.9
where

Iw lmax
U oo =—T"y sgn(s) lu s1 = Iy sgnls), Fzzm

Therefore we can obtain s :

5= ¢fTE/(_&)+wf+(¢ZEb(_&)+wb)uf+b(Lt)urob (5.10)
—k - sgn(s) - (D+74)+d(D. '

Now considering the Lyapunov candidate V,, and

applying (5.10) to (5.6) and after straightforward mani-
pulation, we obtain the time derivative of V,

Ve < Lo frnsE D+ )
+712‘¢1>T(72355(_Z)u/+ ¢-b)—|5{ k-7,

(511

Therefore we can choose the adaptive laws as (5.8).
Remark 1 :1In the real implementation of the proposed

controller, the condition that & 46, is not zero should
be guaranteed, because the proposed controllers (5.1),
5. Therefore, in this
paper, we choose the adaptation step size of 6,

(59) have the inverse term of
72 is
properly small and initial parameter values of 6, is a
positive constant in simulations (the output of the fuzzy
logic system is positive if all elements of the parameter
vector 8, are positive : non-vanishes property ; appen-
dix of [3D).

Remark 2 : Since the sliding mode congrol laws involve
the sgn-functions, these control laws are discontinuous
across the surface s, thus they lead to the control
chattering. Chattering is, in general, highly undesirable in
practice, since it involves extremely high control activity,
and may excite high-frequency dynamics neglected in the
course of modelling. To overcome this problem, in this
paper, we use the sliding surface with the boundary
layer proposed by Slotine and Sastry[10,11,12]. Therefore
smoothing out the control discontinuity can be achieved
by replacing the function sgn(.) as saf.) in control
laws (41), (49), (5.1), (5.9). Detailed expressions are
omitted(refer [11,12]) and we investigate the continuous
approximation of (4.1), (4.9) only through the simulations.

VI. Design Example
To illustrate the above design approaches, an inverted
pendulum system is considered. The dynamics of the
system can be derived using the Euler-Lagrange method,

X = 2y 6.1)
sinx | — cosx | L x3sinx; ———— u($)
. g ! B om+m”? U m +tm
2 = 4 mi 2 '
3T T

where x, and x, are the angular position and velocity

of the pole, «(#) is the control input force applied to v
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cart, g is the gravitational constant : 9.8(m/sec 2, m,

is the mass of the cart, and m and / denote the mass
and length of the pole, respectively, The control objective
is to maintain x,(= x; () and x,(H= x,,(8), that

is, tracking error ¢ converges to (. In this design
example we choose the switching surface given by

(&= ce=0, (6.2)

c=[c;,1]. In 62), m=0.1Kg,
!=0.5m and we choose the 7,=0.03 and

where e=[e, e]7,
m < = lKg’
¢c,=3.0 in simulations of the first and second methods.

In simulation of the first method, the inputs are designed
by (4.1) and (4.9) and the boundary of the approximator
| A x 6<15. This value is used in
determining the initial random values of 8 in u,u,,. In

is determined as

the second method, the inputs are designed by (5.1) and
(59). We have A x68)=15 and |& x 6,)=1.9, so
we choose 1.9s as the initial values of 6, at beginning.
In simulations(of all cases), we choose 5 fuzzy levels,
ie, NB, NS, ZO, PS, PB on each universe of discourse
of x and xy;, and we use the fuzzy logic system with
the center-average defuzzifier, product inference, the
singleton fuzzifier and gaussian membership functions.
Because the inverted pendulum system is of 2nd order
with respect to angular displacement of the pole, the
fuzzy logic systems, all of Fs and % are constructed

with 25 rules (5% 2 input varables, 5 fuzzy levels),

respectively.
rad
ST T T T
0.0 & -
0.0 —
~0.1 |- .
~0.2 b -
-0.3
0t 4
oSl 111044 Tec
0 1 2 3 4 5 6 7 8 9 10
(a) input : (4.1)
rad
ST T T T T T T
0.0 S-\s‘ -
0.0+
-0.1 —
-0.2 —
-0.3 -
-0.4 .
osl L1 v 4441 g Tlsee
[O 23 4 53 6 7 8 9 10

(b) input : (4.9

YFig. 2. Angular displacement and velocity of the
pole( x;(0)=0.2, x25(0)=0.0, xz= 0).

Fig. 2 ~ Fig. 4 show the control results of the first
method when the initial states and desired value are
2,(0)=0.2, x,000=0.0, x,=0. Fig. 5 ~ Fig. 8 show

the control results of the second method when the initial
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states and the desired value are x,(0)=0.2, x,(0)=0.0,
x4,= 0. Fig. 9 and 10 show the control results of the
first method and Fig. 11, 12 show the control results of
the second method when the initial states and desired
trajectory are x,(0)=0.2, 22(0)=0.0, x{9=—7 (sin(»
+0.3sin(39).

‘O(_TTTTﬁﬂﬁ T

Ll

!

Pt
DL O B OI®
|

|| Tisec
4 5 6 7 8 9 10

(@)
;8]
(o]

(a) input : 4.1)

1111

ONPOBO

T
_Z_Bi(
-
00 ob by Tsec

0o 1 2 3 4 5 6 7 8 9 10
(b) input : (4.9

Fig. 3. Ax,® and R A6
(x,(0)=0.2, x9(0)=0.0 x4,=20.

15 & T T T T T T
10 .
S~ —
0
-5 —
-10 —
—1: Lo 4 1 1 1 1 lsec

3 4 5 6 7 8 9 10
(a) input : (4.1)

15 8 T T T T T T T

10

5 —_

o "

_5 _(
_‘|O —
_15 v b Isee

2 3 4 5 6 7 8 9 10
(b) input : (4.9

Flg. 4, U, and ul,(x1(0)=02, XZ(O)=OO, ﬂz_o_)
0.3 rad -
-4 SN N B N N S N B
QOE\\;

0.9 {

-0.1
-0.2 )

-0.3
-0.4
O g Thee

o 1 2 3 4 5 6 7 8 9 1C

(a) input : (5.1)
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0.3 rad
02 T | I | I T I T ﬁa
N .
0.0
-0.1 i~ -
-0.2 ~
-0.3
05 ! S U N j I | J sec
0 1 2 3 4 5 8 7 8 9 10

(b) input : (5.9

Fig. 5. Angular displacement and velocity of the
pole( x,(0)=0.2, x,(00=0.0, x;=0).

9 T T T 1
6
4 -
2 —
0
~
- ]
S8 0w g Tsec
01 2 3 4 5 6 7 8 9 10
(a) input : (5.1)
53 S E E S B RO B SN
6 —
4 -
2 N
0
-2 -
-4 -
-6 —
8 L 1 1 1 1 Tlsec

O
oo
(e}
-~

5 6 7 8 9 10
(b) input : (5.9)

Fig. 6. Ax 0 and R A6)
(x,(00=0.2, %,(00=0.0, x,=0).

o A A O S S B R

2.0 b

1.5 F -

10k 4

05 -

ool 1 1 111 i 1 1 lsec
0o 1 2z 3 4 5 8 7 8 9 10

(a) input : 5.1)

3T T T T T T

2.0 b—

15 -

1.0 —

05 L _

S T S T N S B R B
0 1 2 3 4 5 6 7 & 9 10

(b) input : (5.9)

Fig. 7. ¥4 0 and ¥ 46, _
(210(0)=0.2, x,(00=0.0, x,=0).

Fig. 13 ~ Fig. 16 show the control results of the
continuous control law for the first method described in
appendix. Fig. 2, 5, 9, 11, 13 and 15 show the angular
displacement or velocity of the pole and Fig. 3, 6 and 7

show the comparisons between R 46) and R A8,) or
between & x,f and H A4,), Fig. 4, 8, 10, 12, 14 and

16 show the comparisons between u, and #,, u, and

Uoy Uy-com ANA % 1,— com, TESDECEVELY.

N
BT T T T T T 7 ]

10 -

5 -

0

-5

-10 -

-15 ! do b sec
3 4 3 7 8

0 1 2 3 4 5 6 7 8 9 10
{(b) input : (5.9)

Fig. 8 wu, and u,,
(x1(0)=0.2, xz(0)=0.0, _2€d=_0_)

71 17T 717

|

|

COO0000O0O0O0
PR OO NW N

o 1 2 3 4 5 6 7 8 9 10

00000000 D
LUN - O0OONWP

sec

(b) input : (4.9)

Fig. 9. Angular displacement of the pole
(xld(t)=—%(sin(t)+0.3sin(3t))).

N
077 T T T T T T 7T

10

-10
-20
-30

(a) input : (4.1)



ROt - Ki=s) - Al ERsSt =2A M2 H43 19%6 12
N

1T T T T T ]

10 l'

0
~10
-20 1
S o J NS R [ (N S VRO SN NUUN N —

C 1 2 3 4 5 8 7 3 3 10

(b) input : (4.9)
Fig. 10. Comparisons between %, and u,,

(x14(8) = _1% ( sin (#) +0.3 sin (32)).

rad

8;a‘ﬁ S A N

0.2

00

0.0

-0 1

~0.2

OO L T Ty Theee
0 1 2 3 4 5 6 7 8 9 10

oooovoooo0
PATI 2 QOMN WL &

o
]
[o¥)
IS
o
N

(b) input : (5.9)
Fig. 11. Angular displacement of the pole
(x1D= T’B(sin(t) +0.3sin(39)).

S Y IS SR NN S
3 4 5 6 7 & 9 10

(b) input : (56.9)

Fig. 12. Comparisons between u, and u,,

Q
N

(x, D= 1—’6( sin(#) +0.3sin(38)).

In these figures, angular displacements of the pole
converge to desired value within about 2 seconds, and

A A6),

fuzzy logic systems, R A0 5, converge to real
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0.3 Krad

02| T ] T 7 7T _]

0.0 -

0.0
-0.1 F _
-0.2 —
.._03 s
-0.4 1
~05 1 b b 1] sec

0 1 2 3 4 5 6 7 8 9 10
(a) continuous input of (4.1) © % |_m
0.3 rad
OWZ) I i T 1T 1T 1T 1 1
2

0.0 —

oo*\~
-0.1 -
-0.2 —
-0.3 —
~0.4
~0.5 IO S AU SN SRS N SN S| sec

(&)

12 3 4 5 6 7 8 9 10

(b) continuous input of (4.9) ' %, com

Fig. 13. Angular displacement and velocity of the
pole( x1(0)=0.2, x,(0)=0.0, x,= Q).

N
[ B N A
10 —
S5+ ~
0
s B
-10 -
s b1t | jsec
o 1 2 3 4 5 6 7 8 9 10
(a) continuous input of (4.1) @ 2| _pm
N.m
15
T T 7 I i I I I
10 |- _j
5 '—A -]
0
s [ ]
—-10 —
-15 | ! | | N I N B | ‘-lsec
6 t+ 2 3 4 5 8 7 8 9 10
(b) continuous input of (4.9) ' 21, o

Fig. 14. U1 —cont and U 1y—cont
(x,(0)=0.2, x5(0)=0.0, x,= 0).

system functions respectively. Especially, the cases of
using inputs #;, and u,, are more effective than the

cases of using x, and w, in Fig.s 3 and 6. From Fig.

8 we can see that Bb( 46, does not converge to real

b, but it converges to a positive constant. The di-

fferences between the results of #, and «,,, wu, and
u,, are not conspicuous in Fig. 2, 4, 5, 7, 9 and 11. So

we can see that the minimum approximation errors are
very small, if not equal to zero. In Fig. 3 and Fig. 6,
especially, the case of using robust technique is more
effective than simple adaptive technique. So we can see
that the

reducing the approximation error in transient time. The

o terms in w,, play the important role of
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chattering in the simulation results dues to the
characteristics of sliding mode control. From Fig. 4, 14,
10 and 16, in addition, we can also see that continuous
approximations are effectively achieved.

0.4

0.3

0.2

0.0

0.0

—O.1[:

-0.2

:8jif'1 I S W SR W BN B 1
01 2 3 4 5 6 7 8 9 10
(a) continuous input of (4.1) ' 2, som

0.4 rad

0.3

0.2

0.0

0.0

-0.1

-0.2

o O S R W R R S B

o 1 2 3 4 5 6 7 8 9 10

(b) continuous input of (4.9) © % |,—com

Fig. 15. Angular displacement and velocity of the
pole( x L) = T”O—( sin(#) +0.3sin(3%))).

N

L e A R S R B B 1
10
0
-10
-20
aglt 1t f L L sec
0 1 2 3 4 5 &5 7 8 9 10
(a) continuous input of (4.1) © 2% -con
N
W77 T T T T T
10
OM
~10
_.20.._
~30 D N WSNR S NS SN N B sec
o 1 2 3 4 5 B 7 8 9 10

{(b) continuous input of (4.9) ' %, coms
Flg 16. U | —cont and U 1y—cont

(x1D= T’(’)—( sin{?) +0.3sin(39))).

VII. Conclusion

The proposed AFSMC schemes were motivated by the
fuzzy approximator theory and results of [3,4,5], and we
used the fuzzy approximators as the estimators to the
unknown function f and b. We introduced the con-
ventional sliding mode control theory and proposed two
methods that fuzzy approximator could be applied to the
siding mode control. We also proposed the robust con-
troller using the robust adaptive law, that is, we used

the adaptive law to reduce the error between the
nonlinear function and the fuzzy approximator. The
stabilities of proposed control schemes were proved and
we verified that the minimum approximation error is
very small and the fuzzy logic system can approximate
the nonlinear function well, and the sliding mode control
scheme based on the robust adaptive law is more
effective than the simple adaptive law in simulations.
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Appendix
The continuous control laws to eliminate chattering in
the first method are as follows. These are the cases that
n=2 and e, is the boundary layer width and tracking

precision.

Uy —cont — _b_l(-cl e—ﬂﬁa)+ x“d
—hsa(s/(c e )} (D+7.4)
— b7 "sal(s/(cre IF 1,

sy
1002d A%Ystm WALy =9
(B, 1995 AABS A
4 SQEHAD. 1969 ~ FoE
2 Ay ATE 19969 ~ @A)
At o T WAL F
Aok AR A, ApArEE Ao,
2RA 5 o) EE A,

e

19799 Agdista HAFEH F4
(F8HAL, 1982 A &dgtu Hzpzg
#F AAlayg EA(FEA AL, 1988
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Ulr—cont = _é_‘(—cle_-?(_fde)‘l' x"d
—hsa(s/(c & ) (D+n 4+ )
— b 'sal(s/(c e IF 1,

where

Fi.= —cie— XA+ x,
—h-sal(s/(cie,) - (D+7y

Fi, = —cie— RAD+ x, )
—h - sal(s/(ce,) - (D+n 4+ 0)
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