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Force/Position Control of Robot
Manipulator via Motion Dynamics
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I . Introduction

In this paper, we address the problem of controlling a
robot manipulator which is to track a path on a
frictionless surface while exerting a force (tangential and
normal force) on the surface. Many manufacturing tasks
such as deburring and polishing a surface require such
constrained motion execution.

An interesting and informative historical perspective on
some past work in the area of robotic force control was
presented by Whitney[1]. Considerable number of resear-
chers have studied the problem of constrained motion
control of a rigid robot manipulator along a frictionless
surface. Early researchers in this area, such as, Paul and
Shimano[2] proposed decomposing the manipulator into
types of joints those which contribute to the force
control and those which contribute to the motion of the
end effector along the surface. Mason[3] partitioned the
compliant motion control problem into that of performing
force control and position control in a global world
coordinate frame. Raibert and Craig[4] pursued this
subdivision of tasks into position and force control
framework and developed a hybrid force/position control
law, where each manipulator joint provides a hybrid
torque which affects both the end effector force and
position.

However detailed stability analysis of the hybrid
control law were not performed. Anderson and Spongl5]
combined the notion of impedance control with hybrid
force/position control to allow for precise force servoing
which might be required in many applications. Anderson
and Spong’s hybrid impedance control strategy allowed
for implementation of higher order than second order
impedance model suggested by Hogan and Kazerooni[6].
Compensation of the nonlinear manipulator dynamics
were also accounted for in the hybrid impedance control
scheme. The dynamic equation of the manipulator along
an algebraic constraint surface were identified as a
singular system of differential equations (or descriptor
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systems) by McClamroch. Khrisnan and McClamrochl7]
also considered the design of a hybrid/force position
control scheme for flexible joint robots by linearizing
them about an operating point. Ham[8-10] proposed
adaptive nonlinear control of one-link flexible arm and
adaptive control based on explicit model of robot
manipulator.

In this paper, we derive motion equation that can be
used to make the trajectory of end-effector move from
an initial point to the desired point on the constrained
task plane(for hyperplane) by using the mathematical
tools concerning vector fields of manifold We also
consider the robust motion equation that can be used
even in the presence of uncertainties. We suggest a new
force/motion control scheme of robot manipulator based
on the proposed motion equation.

The paper.is organized as follows. In section II, we
describe the concepts of submanifold and determistic and
robust motion equations. In section III, we formulate the
dynamics of the rigid robot manipulator with an
end-effector. In section IV, we design a new
force/position control law. In section V, the feasibility of
the proposed a new force/position control scheme is
verified through a computer simulation.

II. Mathematical Tools

In this section, we briefly discuss the concepts of
submanifolds and derive motion equations based on that
concepts.

Definition 1:Iet 2 be a distribution defined on the
manifold N. A submanifold S of N is said to be
integral submanifold of the distribution o if, for every
pe S, the tangent space T,S at p coincides with the
subspace a(p) of T,N.

Definition 2 : A maximal integral submanifolds of & is
a connected integral submanifold S of 2 with the
property that every other connected integral submanifold
of & which contains S coincides with S.

Example 1 : Consider the following distribution, defined
on Rk*
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A{ (xpx) ) =span{ (—x5 207 }.

Let S be maximal integral submanifold of the above
distribution 2. Then

S={ (xR | X +xb=1c for somec).

Let Ao be a nonsingular and has dimensiond, in a

neighborhood U° of x°. Then the following lemma is
satisfied.

Lemma 1:Let & be a smooth distribution and x° a
regular point of A. Suppose dim (2&(x°)) = d, then there
exist an open neighborhood U° of x° and a set

{ fi,>++,fa) of smooth vector fields defined on U° with
the property that
1) the vectors f,(x), -, fz(x) are linearly independent at

each x in U°.
i) alx)=span{ fi(x), -, fs(x)} at each x in U°.

Remark

1 : Moreover, every smooth vector field ¢

belonging to & can be expressed, on U°, as

() = £ e(x)fi(x)

where ¢, (x), -+, cg{x) are smooth real-valued function of

x, defined on U°.

Based on the above mathematical tool, we suggest two
theorems concerning motion equation under the following
assumption 1. One is for a deterministic motion equation
which has no uncertainty and the other one is for a
motion equation which has some uncertainties.

Let x,,x, be two points on a maximal submanifold S
of nonsingular d— dimensional smooth distribution A (x)
and define a set B; contained in S as follows

Bs= {x| lx—x,] <8,2S}.

Assumption 1: The absolute angle between T,S and
T,S is less than #/2 for any points x, ye B;
where 6= | x; —x,1 .

Theorem 1 : (without uncertainty)
Let «x, be the points on a same maximal
integral submanifold S of the distribution 4. Then
there exist some time functions &, (¢), -, k;(¢) such

that the following motion equation move the state
trajectory from x,

and x;

to x; without deviating from the

integral submanifold S.

x(8) = k(D) A(x)+ o+ ko (8) Falx) 2.1

where £ (x), -, f,{(x) are independent and selected

such that
a(x)=span{ fi(x), -, fa(x) }. (2.2)

Proof : The proof
function as follow

is based on the Lyapunov-like

Vix)= (x; —x) (2, —2)/2. (2.3)

Taking the time derivative of V along the trajectory of

(2.1) vields
Vie)= —(x;—2)Tx (24)
= = (o —2) (kB () Fi(x) 4o+ ky(8) F(x))
Let us define
k()= (xy —x) TFi(x) Bi(t)
where 8;(¢)>0, i=1,2,-,d.
Then, we can write as follow
Vix)= =[((x; —x) A (x))*
+((x; —0) THx )P+ -
+ ey —2) (e ) 18:08) 0. (25)
Let £, be the largest invariant set of contained in set

2, = {xeBy: Vix)=0), then we can
find £, =x,. By using LaSalle’s theorem, we can find

£, where

x(t) approaches x; as time goes to infinity. [ |
Lemma 2 : If x(¢) = #(x, t) is a stable, then

x(t)=F(x, x,1),
where
Fx, 4, 0= L5t 4
+ D) i) — Sz, 1),

i1s also stable for any constant 7> 0.

Proof : Let z(t) = x(¢t) —f(x, t), then from the above
equation we obtain

z2(t) = —ya(t).

Because 7y > 0, the above system is stable. So for any
2(0)

limz(¢) =0
00
and therefore we can see that
limx(£) =0 [ |
o0
Example 2 : Consider the following distribution, defined

on R®

a(x)=span{ (0, —x3, %) 7, (x5, —2,,0)7}

Let S be integral submanifold of the above distribution
A . Then

S={ (x;, %, x3) | 2% + x5 +x5= ¢ for some ¢}

Consider the following points x,= (1,0,0)7, x, = (0,1,

0)“and we choose £, (t), b, (¢) as follows
kl(t) = (x1 —x)Tfl(x)(l “6_31)
kz(t) - (x1 _x)sz(x)(l -6_31) (26)

then, from theorem 1, we obtain the motion equation that
move the state trajectory fromzx, tox, as follows
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()= A (x —0)TA@A —e™)
+ () (x —x) T hH(x)( —e ™). @

The state trajectory of above system is shown in Fig.l.
From Fig. 1, we can check the validness of theorem 1.
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Fig. 1. The state trajectory of motion equation
(x3 = 0) .

Theorem 3 : (with uncertainty)
Let x, and x, be the points on a same maximal
integral submanifold S of the distribution & . Then there
exist some time functions #4;(¢), -, k,(¢) such that the
following motion equation move the state trajectory from
x, to x without deviating from the integral sub-

manifold S.

x()=ky () () + ko (8) o () oo+ kg (8) f(x)
+a () A )+ (8) fo(x )+ 708 fo{x) (2.8

where | 7(t) | <8;,i=1,2,-,d and fi(x), -, fa(x) are
independent and selected such that

alx)=span{ filx), -, falx)} . (2.9)

Proof : The proof is based on the Lyapunov-like func-
tion as follows

Vix) = (xg—x)"(xg—x)/2. 210

Taking the time derivative of V along the trajectory of
(2.8) yields

V) = (g =)
= =0 E R (D +n (). @l
Let us choose
ki(t) = (x4 —2)"£i(x) + K tanh(s,) 2.12)

where s;= (x;—x)7f; and K;>0, i=1,2,,4d.
Let us define V;(x) as follows

Vilx) = —(xy—2)T(k; () + 0,(t)) fi(x)

then, by substituting (2.12) into (2.11), we obtain

266
. d
V(x)= gl Vilx)
= B~ DA (-0 i)
~ (g —2) T f(x) 0i(t)
~ (x4 —x) Tfi(x)Ki tanh (s;) }
= él(—szi —s;7,(t) —s;K, tanh (s,))
<0, (2.13)
B

if |s;) <T;_% . From the above equation, the typical

plot of V; versus s; is shown in Fig.2.
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Fig. 2. The typical plot of V; vs s;.

As we can see in Fig.2, if the absolute value of s; is
i
1+K;’
zero. Therefore we can guarantee that the following

inequality holds as time goes to infinity

greater than then the value of V; is less than

3;
Isil <97F,
sl = 1 (xg —0) A |
= (g =2 i) | ¢ =2 (2.14)
= (xg —x) flxa) 1+ K, .
Let the angle between x;—x and f,(x;) be 6;.
Then we can obtain the following inequalities
g —x 1 1 7,(xa) | cos 6, < ——i
xg—x| | fi{xa) || cos 8 17K,
I xg—xh ¢ TP 5. (2.15)
Xa =X iel | fi(xy) | cos 6:(1 +K)) ‘

where I=1,2,--,d. Therefore if K; is selected to be

large, then || x, — x | becomes small.

. Dynamics of Two-Link Robot Manipulator

In this section, we derive the dynamics of two-link
rigid robot manipulator with an end-effector. In deri-
vation of dynamics, we consider end-effector as point-
mass.
When we apply Euler-Lagrangian equation to the robot
manipulator shown in Fig.3, we obtain the inertia matrix
term as follows
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Fig. 3. The two-link robot manipulator.

Dy=¥[ % m +% my +2m;+mycy +2myc; 1

DlZ = 12[ é‘ my + —é‘ my Cy +m,+m,cz ]
Dy = Dy,

and the Coriolis and centrifugal matrix terms as follows
Ch=— % my 123242 - m,lzsz(jg
Cp= — '%‘ mzlzsz(dx + liz) - m;lzsz((jl + dz)

C21 = %‘ m21252 cil + m11232 (il
0

Cp= (32)
and the gravity vector terms as follows
G(q)= % myglc; + % myglep +mygle,
+mlcig+mlc,g
Gy(q) = % maglcy +mylcpg. 33
where ¢; = cosq;, ¢ = c0s8qy, s =sing;, cp=cos

(g, +4q;),m; denotes point mass of an end-effector.
Therefore the resulting dynamic equation of two-link
robot manipulator considering the normal force of the

end-effector can be expressed as

D(g) ¢+ Clg, @) a+G(a)+J (g)F,(¢)=u (34)

where F,(g) is normal force(or contact force) of the

end-effector on frictionless surface.

IV. Controller Design

In this section, we propose new force/position control
law for the robot manipulator based on the motion
equation discussed in section II. The new force/position
control law guarantees that closed-loop system has the
uniformly bounded stability. The mathematics that relate
the world coordinate to the joint angle coordinate is
inherently nonlinear and can be expressed by a nonlinear
vector valued function as

x=H(q) 4.D

where x=R® and g¢eR". The velocity of the end-

effector is related to the joint velocity ¢ as follows,

x=J(q) q. (42)

where J(¢) 1is the manipulator’s Jacobian. The end-
effector and joint accelerations are related by the
following equation

x=J(g)a+J(a)q (43)

Now, we design the force/position control law such that
above equation is the same as motion equation suggested
in Lemma 2.2, ie,

£=J(g)q+ Hq)ag=F(H(q),](q)q)
=F(x,x,¢) (4.4)

From (3.4), we obtain

g+D 7 (q)C(a, 9) g+ D (q)G(q)
+D7(g)] (q)F.(q)
=D7(q)u. 45)
If we premultiply J(g), then (4.5) becomes
Ka)a+XKa)D Yq)Clq, @) a+Ka)D ' (q)G(a)
+Xa)D " (q) ] (a)F.(q)
=Ka)D Ng)u. (46)
From (4.3) and (4.6), we get
x=Ka)a+Xa)D Hg)Cla, @) q
+Xa)D (g)G(q) +Ka)D (a)](q)F,(q)
=Xa)D q)u. 47

If we apply (4.4) to above equation, we get

F(x,x, )~ J(a)a+J(a)D " (q)Clq, a) q
+J(q@)D(q)G(q)
+J(g)D @) (a) F,(q)
=J(@)D Nq)u. (4.8)

Let us define vector v as follows

D Ng)u=J"(q)v (4.9

Then, we can find the vector v as follows by using
pseudo inverse of J7(q)

v=(@)JT (@) NF(x, xt)—Ha)q
+J(g)D 7 (q)Cq, q)a+J(q)D (a)G(q)

+J(a)D (@) (q)F,(g) ] (4.10)

Therefore a new force/position controller of robot ma-
nipulator as follows

u= D) () J(@)] (@) [ Fx,x't)— [(g)q
+J(a)D a)Clq, ) a+J(a)D (g)G(q)

+7(a)D N g)J (a)F.(a) 1. (4.11)
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V. Computer Simulations

Computer simulations are conducted to verify the
validity, effectiveness and performance of the proposed a
new force/position control scheme. We simulated the
proposed a new force/position controller to control the
joint angle 6,,8, of the two-link rigid robot
manipulator. Table.l show the physical parameters of
two-link robot manipulator. We set the task plane of
end-effector to elliptic function

(x> +4y*=12) and set the initial angles and velocities

of the link 1 and link 2 to 6,=-F,6,=0,6,= -7, 6,

=0. Hence the initial location and velocity of end-
effector is (V2,0) and 0 respectively. We also set the
desired location and velocities of end-effector to

(\/_%‘\/%j ) and 0. Fig4 shows the state trajectory of

motion equation. Figb and Fig6 show the angular
displacements of link 1 and link 2. As we already
comment in the previous section II, we can see from
Fig4 that end-effector moves along the trajectory from
an initial point to the desired point on the constrained
task plane which can be represented by elliptic function.

Table 1. Physical parameters of two-link robot
manipulator.
parameters values units
m, 2 kg
my 1.2 kg
l 1 m
g 9.8 Nikeg
2 T T i 4
e e
0 ’\ wor kspac ;
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Fig. 5. The joint angle 8, of link one.
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Fig. 6. The joint angle §, of link two.

VI. Conclusions

In this paper, we propose a new force/position control
scheme to perform force and position control of the robot
manipulator when the end-effector is moving along a
frictionless surface represented by algebraic equation. The
presented control scheme is based on the motion equation
that can be obtained by using differential geometry. The
magnitude of -vector fields that charaterize the motion
equation is designed by using Lyapunov-like function.
The uniformly ultimate boundness of the control scheme
is guaranteed and has been demonstrated by a si-
mulation. In near future, we will study and develop the
adaptive version of the proposed control law which can
be applied in real situation when a part of parameters of
robot dynamics are unknown.
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