Abstract
This paper presents a parameter adaptive control law that stabilizes and asymptotically regulates any single-input, linear time-invariant, controllable and observable, discrete-time system when only the upper bounds on the order of the system is given. The algorithm presented in this paper comprises basically a nonlinear state feedback law which is represented by functions of the state vector in the controllable subspace of the model, an adaptive identifier of plant parameters which uses inputs and outputs of a certain length, and an adaptive law for feedback gain adjustment. A new psedu-inverse algorithm is used for the adaptive feedback gain adjustment rather than a least-square algorithm. The proposed feedback law results in not only uniform boundedness of the state vector to zero. The superiority of the proposed algorithm over other algorithms is shown through some examples.