Abstract
A thin film of aluminum for ultra large scale integrated circuits metalization has been deposited on TiN and SiO$_{2}$ substrates by plasma assisted chemical vapor deposition using DMEAA (dimenthylethylamine alane) as a precursor. The effects of plasma on surface topology and growth characteristics were investigated. Thermal CVD Al could not be got continuous films on insulating subsrate such as SiO$_{2}$. However, it was found that Al films could be deposited on SiO$_{2}$ substate without any pretreatments by the hydrogen plasma for pyrolysis of DMEAA. Compared to the thermal CVD, PACVD films showed much better reflectance and resistance on TiN and SiO$_{2}$ substrate. We obtained mirror-like PACVD Al film of 90% reflectance and resistance on TiN and SiO$_{2}$ substrates. We obtained mirror-like PACVD Al film of 90% reflectance on TiN substrate. Excellent conformal step coverage was obtained on submicron contact holes ;by the PACVD blanket deposition.