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Robust Output Feedback Control of LTI System
Using Estimated Output Derivatives

=
(Gun-Bok Lee)

Abstract — This work is concerned with the estimation of output derivatives and their use for the design of robust controller
for linear systems with system uncertainties due to modeling errors and disturbances. It is assumed that a nominal transfer
function model and guantitative bounds for system uncertainties are known. The developed control schemes are shown to
achieve regulation of the system output and ensures boundedness of the system states without imposing any structural

conditions on system uncertainties and disturbances. Qutput derivative estimation is first conducted through restructuring of
the plant in a specific parameterization. They are utilized for constructing robust nonlinear high-gain feedback controller of a
SMC(Sliding Mode Control) type. The performances of the developed controller are evaluated and shown to be effective and

useful through simulation study.

Key Words : Uncertainty Bound, Relative Degree, Minimurmn Phase, Nominal Model, Generalized Observer, Qutput Derivative
Estimation, Robust Nonlinear High-gain Feedback Control

1. Introduction

In the past decades, an extensive effort has been made to
improve dynamic performances of linear systems using a
number of feedback control schemes. The concept of
variable structure systems or the Sliding Mode Control
(SMC) belongs to one of them. The idea is to find an
attractive hyperplane in the state space such that the
motion there is independent of system uncertainties or
disturbances(invariance property). Then it is possible to
study the asymptotic behavior of the system in this
hyperplane using the usual linear technique. Since attracti—
veness is a local property, one has to add conditions that
guarantee either reaching the attractive hyperplane or
approaching the origin outside it. Another is the Ultimate
Boundedness Control(UBC). The two nonlinear high-gain
‘feedback controliers, SMC and UBC achieve state regulation
in the presence of system uncertainties and/or disturbances.
They require a nominal state space model and quantitative
bounds on system uncertainties and disturbances for
controller design. In addition the design also requires the
so—called "matching conditions”, i.e., system uncertainties be
structured in a particular form and the disturbances be in
the same channel as the control input(l, 2, 5, 8].

Another drawback is that they require full state measu-
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rement, restricting their applicability severely in practice.
This requirement, naturally, needs state estimation. An
observer design for state estimation imposes a different
structural condition on system uncertainties from the
matching conditions so that observer and controller design
can be done independently.

In view of these discussions, here, we set up a new
control objective and propose a control scheme which
ensures system stability, guarantees satisfactory system
output performance and can be applied to a large class of
systems through less restrictive conditions imposed on
system uncertainties. In order to achieve the new control
objective, a scheme is developed to estimate system output
derivatives. With the estimated output derivatives, a sliding
surface dynamics is constructed on which the dynamics of
system output are governed by an asymptotically stable
system subject to a small input and the boundedness of the
remaining system states follows from the assumption of
minimum phase system. The effectiveness of the proposed
scheme is demonstrated through a couple of numerical
examples.

2. Estimation of Output Derivatives

In this section, we establish the schemes for estimating
system output derivatives when states are not directly
accessible and only Asystem output is measured. They are
based on restructuring of the system dynamics which
simplify calculations and avoid accumulations of system
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uncertainties.

2.1. Reparameterization of System Dynamics

The system is considered to be represented by the
equation

(A(s) +4A(8)y, = (B(s) +4B(s))u+d (1)

where u is a control input, y, is the output and d is a
bounded external disturbance

ld(| <D )

A(s) and B(s) constitute a nominal system model as
described below

A =s"+a, ;s" '+ +a,
B(S)zbmsmﬁ-bm*]sm_l-{».... +by

AA(s) and AB(s) describe the parameter uncertainties
as follows

AA(=da,_;s" '+ +da,

AB(s)=Abus"+ -+ +4b

The following upper bounds on parameter uncertainties
are assumed to be known
| da;l <6a; , i=0,1, -, n—1
(3)
Labil<éb, , 7=0,1,, m

Before establishing the output derivative estimator,
restructuring of system dynamics and new signal generation
are necessary and introduced below.

We define new signals w;, w, and w4 as follows. First
of all, signal generators for w; w3 are considered in a
state-space  representation. Choose AER" "1 and
b,€R"" such that (A, 5,) is in a controllable form and
det(sI-A)= A (s).

0 1 0 0
0 0 1 0
A=
0 0 0 1
— 4y : — A ez n
0
b}z
0
1
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W, = ¥y 5
wy = Awy+b,y, (6)
wy = Awy+b, u n

where the states w, ,w3 € R"™ ' and their initial condit
ions are arbitrary.
It follows that

1

S

—A) My, =L -
I-M) b =215 | ®

Sn—Z

For numerical considerations, we require that A(s) is a
Hurwitz polynomial. We now conduct a reparameterization
of the system dynamics resulting in output derivative
estimators. We reformulate (1) as

A(s) y,=B(s) u— 4 A(s) y,+ 4B(s) u+d (9)

Replacing the uncertainty terms by #», that is, 7= -4
A(s)y+4B(s)u and dividing (9) by A(s), we obtain the
first derivative of the output as follows

¥,=(sA() =AWy, + B(du, +7 ,+d, (10)

where the subscript “ A" denotes the filtered signal by A(s),
1/A(s). The right-hand side can be expressed using the
signals defined earlier, as follows

y',, =0]w1+62w2+63w3+77,+d1

3 (11-a)
= Z}H,‘ w,-+7l ]+d]

where
01= A pp—a,
Oo=[—ap+ Ap(@a,1— 4 ,—3),

Ao—ar+ 2@,y — A ),

©, A n—S_an~2+ A n—Z(an—] = A n—Z)] € Rn_l

4=y, by, b, - - b,,0,---,001 &R’
71= 7,
d=d,
711=A491w1+402w2+4103w3
3
=Zld¢9,vw,»
(11-b)



with
46, =—4da.
40;,=[—day+ Aoda,,
—day+ i day, - 0,
—day3t+ A ,-3da,,
—da,3+ A ypda, ]

.,Abm'o,. . ’0]

.463=[Ab0. Ab], Abz o
(11-c)

Note that from (2),(3) and A(s), 7: and di are bounded,
respectively, by

I w)l < 7, (w)= 46, w,
(11-d)

GRS d = d,

where 2—9_,' denotes a vector whose components are upper
bounds of the absolute values of the corresponding
components of 46 ; (=1, 2, 3) and w; denotes the vector
function whose components are the absolute values of the

corresponding components of w; (=1, 2, 3.
Differentiating equation (11-a) continuously, we obtain the
following expressions
. i1 - L
yﬂ(x): 9])’[;(, 1) +§102A; ]b,l yp(x =D
40,1477 w634 wyt+ 7 t+d; (12-a)

i=1,2,---,r-1

where r represent the relative degree, n—m, and

X i—1 . .
— A6 . yp(z‘l)+ Z]A 02A’_‘b, yp(t"l“l)
~
FA6 A  \wat 4634wy (12-b)

di=d, """
7 ; and d; are bounded by

70—1 §p(‘_])

It

| 77," = Ti(w)

—(i—j-1)

+3 26,4778, y,

—I;g+ 4863 Ii—l w3

— -l

(12-c)
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The objective is to develop the estimators for the output
derivatives, y,,('). To do so, naturally, the uncertain terms
7 ;+d; in equation (12-a) have to be estimated To
estimate y,,('), we propose the following estimators with

uncertainty estimators, 8 ;

. . il . L
g: = olyp(x 1)+§162A(l Db,\ yp(z -1

+0,4 5 Vw4 834w+ 8 nee
ei= v," " —q; (13-b)
Bi= v e;+M{w) h(e)) (13-c)
Mw) > 7 (w+ d; (13-d)

where
g; is the estimator of ¥,
¢; is the estimation error
8 ; is the estimator of 7 ;+d;
7 is an arbitrary positive constant

7 (w ), d; are defined in (12-c).

h(e;) is a smooth function of any form having the
following properties, ie, A(—e;)= —h(e),and their values
increasing monotonically from -1 to +1.

Theorem 1 : Consider the output derivative estimators
given by (13) for the system (1). If the system input u
meets the regularity conditions, then given any & ;> 0,
there exist a sufficiently large M; and a finite time 7 such

that

l el = | gi—y?| ey i=1,,7—1 after =T,
(Proof)
See Appendix.

2.2 Realizable Output Derivative Estimator

In implementation of the estimators (13), the estimation
error e¢; is not available except for ;=1. However,
estimates for y,,(i_l) are obtained from previous estimators.
Therefore, we define a new set of estimation errors and

replace the estimators (13) by the followings.

. L .
q;= 0, Qi—1+?=:a] 6,077 by qija

_ ) (14-a)
+ 0,4 w034 w8
— _— = 2] ——— .
7= 40, ¢t X 40,47 'bs ai-jy
T _ (14-b)
+ d0,A T wat 40347 ws
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e =e=y,—q (14-c)
€= qi-1—q; (14-d)

2.3 Simulation Study

Performance of the proposed output derivative estimator is
simulated for two example systems whose relative degrees
are 2 and 3, respectively.

System 1 (r=2) :

A()=s*+s"+13s+10 ., B(s)=s+2

AA(s)=8s"+10s+5 , JB(s)=s+3

A(s)=s*+3s+2

d(t)= (-4 +3) (2sin0.29
u(f)=3 cos0.5¢

We use the estimators given by (14). For given system
and systern  uncertainties, the estimator and the
corresponding parameters are as follows.

M](W):BlypI +ll| wlll +14l w12
+3| le I + I u)gz I +8
a1 =y—q;

__&a
le ] +68,

Bi=re+M (w) ke

h(€1)=

The simulated responses for the system described are
shown in Fig.l and Fig.2. Fig.l shows that an accurate
estimate of 3},, is obtained in a very short time. In Fig.2,
we can see that uncertainty estimator £, also tracks the
system uncertainty 7 ; +d, reasonably well..
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Fig. 1 Estimation of output derivative (Relative degree = 2)
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Fig. 2 Estimation of uncertainty term (Relative degree = 2)

System 2 (r= 3)

A(s), 4A(s), A(s), d(D, u(?); same as casel

B(s)=1 , 4B(s)=10

We estimate vy, and ¥, with the following parameters

My(w)=81ly,| +11] w' | +14| w,?|

+101 wy' | +8

¥,and its estimate g,
=] -t

1
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(b)

Fig. 3 Estimation of output derivative y, and y,(Relative
degree = 3)
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Fig. 4 Estimation of uncertainty term 7;+di(Relative de-
gree=30

M,(w)=81 ¢, | +28] w’' | +311 w’|
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Fig.3 (a) and (b) show that accurate estimates of y, and
yp are achieved within a few seconds. Shown in Figd (a),
(b) are the uncertainty terms estimated, resulting in
accurate output derivative estimation,

From the simulation results, we can see that the proposed
derivative estimator is very effective and has the strong
possibility to be used for control purpose.

3. Controller Design

In this section, we synthesize a nonlinear high-gain
feedback controller utilizing the estimated output derivatives
partially known input-output
representation and disturbances. The controller is shown to

for systems with a
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achieve regulation of the system output and ensure
boundedness of the system states.

3.1. Robust Nonlinear Output Feedback Controller
Consider a linear system described by

(A(s)+ 4A(s)y,= K, B(s) + 4B(s))utd (15)

where K, is a unknown high frequency gain. However, it is
assumed that a nominal system gain K and an upper bound
on K, is known. Also we assume that K, and K are
positive and satisfy

K
7’ < Ky (16)

K, <

The ultimate objective is to design a control to constrain
the system dynamics to the following surface

S=y" P+ a, 9P+ gy, an

Where a; s are chosen such that when S equals zero,
equation (17) defines an asymptotically stable (r-1D" order
differential equation of ¥,. To be implementable, we have
to use the output derivative estimators, g; instead of y,(,’)
in (17).

Accordingly, we define another sliding surface

S= g, 1t @,5 Gat - taoy, (18

A control law must be designed to satisfy the fall
condition to the sliding surface. Here, we propose the
control law of the following form

Q5+ T (W) +K0 A" wy+ M(w)h(S)

u= - K (19-a)
Gl +my 7, (w)+
)= my| o (w) | sz 7, (w)+my (19-b)
m
m1> Kk, m2>10 and M3> 3,
where
~ i r=1 i—1 .
g (w)=0, a1+ 2 024" bs 4y
=1 ] (19-c)
= .
+ 6 2/1 r_lle+ 2] a ,‘_]q,'
=
< —_— r—l___._..__T—__,
7 (w)= 486, Qy-l'*';l 46,A77°b; qr—j-
+ 0,4 wo KKy 46347 wy
(19-d)
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t =max( | 1-Kyl|, [1-K,|)

#(S) is the smooth function defined previously.

Theorem 2 : Let the system (15) be a minimum phase
system with a relative degree #» and bounded parameter
errors and disturbances. If the control input (19) is applied
to the system, then the output y,, the states x and the
control input u remain bounded.

Proof : When the output derivative estimators (13) are
used, we obtain from theorem 1 that

lai=v” 1 Ce =1, -, -l

within  a finite period of time and &; can be made
arbitrarily small if sufficiently large M,’s are used in

(13-d).
Define another control input

RS+ 0 (w)+ KO 34" 'wy+M(w)h(S)

u=- K (20-a)
My = L () i 7w+ (20-b)
(r—-1 o~ i—1 -j-1
o(w)=0 9" P+ 2 0,47,y
= (20-c)
+ 0,47 hw,+ 2 a Y
~
From (19), (20) and the following relationships
er= Gu- —yf(:k) (21-a)
§—S: H 1(€k) (21-b)
o (w)— o (w)= (e (21-¢)
Muw)—Muw)= p4(e) k=1, - - -, r—1 (2-d)
We can obtain the following relationships
u=u+¢,+ ¢ Muw) (21-¢)

where

§1=F wi(ed + u e +L waled) W(S)

£r=g mile) K (9

#(9 =L s

S is between S and S
£, and ¢, approach zero when ¢;'s approach to zero.
We now show that the control law (19) ensures the
reaching condition of the sliding surface S.

Let V3 = %Sz and take the derivative of V;

Then

Vg = S(y;')-% a ,_2}1;,_])4‘ R ol ()y-p )
=S(o (W) +Ku+K,0 34" 'wy+ 7 (w)+d,)
=S(o (W) +K,u+K,0 34" 'wy+ 7 (w) +d,

~K,t 1 —K,¢ .Mw))
(22-a)

from the control law (20)

V=S 22 05K weons + 1~ K)o ()
+7],+d,—Kp§1_ p{zM(W))
< -K, 28" —K,.Mw) | S| {(h(] S])

£ lo@| + 7 ,(w)
K, .Mw)

+ d,+KK,( T+ TZM(w))]

<-K,Q8&% for all S Ly

(22-b)
where 13 is defined by

Lyi={ S:|Sl<¢&,

hlo(w)l + 7 ,(w)
K, M(w)

£ =h~1{ S:}P(

d,+ KK\ T+ T ,Mw)) }

Equation (22) implies that within a finite period of time,
say, Ty(<V3(0)/K,R6%2), S enters Ls and stays there

permanently. Then, equation (17) implies that the dynamics
of y, are governed by an asymptotically stable system
subject to small input S inside the neighborhood defined by
Ls. Therefore [v,, v,, - -+, ¥ 217 is regulated to
remain small by the controller. Then, boundedness of the
system states follows from the assumption of a minimum-
phase system. This concludes the proof. Fig. 5 represents
overall structure of the developed control scheme with
integrated output derivative estimator and controller.
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3.2 Simulation Study
Performances of the proposed output feedback sliding 0.8
mode controller are simulated. As was discussed, sliding -: 0.6
mode control requires feedback of output derivatives up to ?
(r—1)* order. .3: 0.4
Three performance criteria have been numerically “
examined @ (1) accuracy of output derivative estimation (2) 0'2\
sensitivity to parameter uncertainty (3) sensitivity to P
. 0 1 2 3 4 ]
disturbance. Time (zsec)
10 .
Fig. 8 System output
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Fig. 9 System states (Xz Xa)
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Example System
< 500 Exact A(s) = +s* +13s+10, 4A(s)=85"+10s+5
2
8 B(9)=1 : 4B(s)=10
E ol
2 . Estimat .
2 —atmate 4D = (2 +3) (2 sin0.29)
s dt
. 500
Shown in Fig6 (a) and (b) are the system output
| -1000; o3 o o6 o8 ! derivatives ¥, , ¥, and their estimates 4, ¢ .
Time (sec) The estimates track the true values in about 0.2 second.

(b)

Fig. 6 Estimation of output derivative ¥, and Vs
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Sliding surface variable in Fig.7 shows that system states
reach the surface at about 0.2 second. The system output
then starts approaching zero asymptotically as seen in Fig.8.
The other two states are shown in Fig9 and remain
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Fig. 10 Control input (a) Long time view (b) short time
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Fig. 11 Tracking control (reference input R(t)=2sin0.5t0

bounded as seen. The control inputs are shown in Fig. 10
(@), (b). When the output is regulated to zero, it is shown
that the control inputs are almost chatter-free due to the
introduction of smooth function and counteracts the system
uncertainties appropriately. Fig. 11 represents the tracking
control result for time-varying reference input. We can see
that good performance is archieved as expected.

4. Conclusions

Presented in this paper are the schemes to estimate
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system output derivatives in the presence of system
uncertainties. The systems should be described in the
frequency domain where only the system output is
measured. Based on the estimated output derivatives, a
nonlinear high-gain  output feedback controller was
developed. The controller achieves almost perfect output
regulation and ensures boundedness of the system states in
the presence of system uncertainties. The assumptions
required are that the system be minimum phase and the
external disturbances be smooth in terms of having bounded
derivatives up to (r—1 )™ order. Structural conditions, say,
matching conditions are not imposed on the system
uncertainties. In practical situations, parameter uncertainty
bound and disturbance magnitude can be easily obtained to
a certain degree of specified accuracy in terms of proper
measuraments or from the system characteristics. Therefore,
the developed controllers can be applied to a larger class of
systems compared with previously proposed SMC or UBC.

Future attention will focus on extending the developed
scheme to certain nonlinear systems. In addition, theoretical
and experimental work is planned to compare the
performance of this output feedback control scheme against
an observer based method.

Appendix
Definition :

ref. [7])
When a signal is expressed as

Regularity Conditions (for more details, see

(D= T ADxD+&O=FOXD+el)  (AD

where

f](f) x}(t)
F(H= . ., X(H=
§7.4)) xL1)
it is “strictly regular” if the following conditions are
satisfied
(i) gl <G, |g®l=G
Gi) 1FOI < H (D, | FOI < H() (A2

i) |1 X1 <al X +5 , a,b>0

from (A-2)

le() | <H'| X +G° (A-3)



We start with the error dynamics derived from (12-a)
(13-a).

e;=—B8+n;td; , i=1,-,r=1 (A-4)

Since from equations. (11), (12) and (13), y, "

and g;
consist of a linear combination of signals, w;, and filtered
disturbance, &, and its derivatives which are all bounded,
they are “strictly regular” by definition. Therefore, we can
write 7 ;+d; into the form of (A-1) through algebraic

manipulations.

7 i+d;=F()TX(8) +(8) (A-5)
Then,

e=—8,+F'X+g (A-6)
(Part 1)
Llet V= % e,~2 and take the derivative along the

trajectories (A-6)
Vi=e e=e;(—7e—~M{(Xh(e)+ 1 ;+d)

<—yel— el M{XDh( | e;l)
+ el (HI X1 +G%

0 0
S.—ye?— | e,|M,(X'){h( ‘ eil)_ﬂ—]Ml_‘l)il)(_;—G_

< —yp? forall e;€LS

(A-T)

where L{ is the compliment of L,

o [ sup HIX| +G°
Ll“[ei'leil Cpi pi=h (X M{X )]

Equation (A-7) implies that as long as | e;| =p; , the
magnitude of e; is decreasing with a nonzero rate.

Therefore, we conclude that e; enters L, within a finite
period of time, say T, (Vy(0)/7#?) and stays inside
L, thereafter.
(Part 2)

Let V2=% éiz and differentiate V5,

v, = e;e;

=¢;(—7 e;—M{(X)h (e)e;

—M,»'(X)% | X1 ke)+ FTX+FTX+g)

B AlBH A~ EHAE &3 HE MO

L)
I
=]
A
£
_|2
H
o
<
©
o
et
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using the inequality
L yx11<1 x|
from (A —2)
Vo< —7 e.,-z-— | e; | 2MAX) k' (e))
+le | M (X)) XA e])
+lel HIXI +1 el H I X1 + 1 el G
where
h’(e,')=diei h(e;)
M (30 = M(X)
From Part 1, after > T,
Vo< —7 el =1 e | "M R
+1e M COL X1 R
+le | H' X+ el H I X1 + 1 €| G

where
T_ inf _d .
h = e,ELl[ de; h(e)]
= S (e

e,

Since X satisfies regularity conditions from the signal
generator dynamics (6), (7), and (A-2)

2

V, <—7 e
. — . RIX|+R
—|ei|Mi(X)h[|ei|——'l—£'H%‘X)—z]
<—ye? for all e € Lj
where

=]e:: . . . sup RIJX" 1R,
L, {e,.le,|<s,,s, X—'_—_hM,(X) }
Ry=akM; (X)+aH"+H'

R,= bhM; (X)+bH +G!

Now, we can conclude that e} is driven into L, after a

finite period of time, To(T,+V5(0)/7 €%) , and stays
there permanently. This concludes the proof.
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