The Transactions of the Korea Information Processing Society (한국정보처리학회논문지)
- Volume 3 Issue 3
- /
- Pages.429-438
- /
- 1996
- /
- 1226-9190(pISSN)
Efficient Construction and Training Multilayer Perceptrons by Incremental Pattern Selection
점진적 패턴 선택에 의한 다충 퍼셉트론의 효율적 구성 및 학습
Abstract
An incremental learning algorithm is presented that constructs a multilayer perceptron whose size is optimal for solving a given problem. Unlike conventional algorithms in which a fixed size training set is processed repeat-edly, the method uses an increasing number of critical examples to find a necessary and sufficient number of hidden units for learning the entire data. Experimental results in hand- writtern digit recognition shows that the network size optimization combined with incremental pattern selection generalizes significantly better and converges faster than conventional methods.
본 논문에서는 주어진 문제를 해결하기 위해 사용될 최적의 다충 퍼센트론을 구성 하기 위한 하나의 점진적 학습 방법을 제시한다. 고정된 크기의 트레이닝 패턴 집합을 반복적으로 사용하는 기존의 알고리즘들과는 달리, 제시되는 방법에서는 학습 패턴의 수를 점차 증가시키면서 전체 데이터를 학습하기 위해 필요하고도 충분한 은닉뉴런의 수를 찾는다. 이와 같이 신경망 크기의 최적화에 학습 패턴을 점차적으로 선택하여 늘려나감으로써 일반화 능력과 학습 속도가 기존의 방법에서보다 향상됨을 필기체 숫자인식 문제에 있어서 실험적으로 보여준다.
Keywords