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ON THE FUNCTIONAL CENTRAL LIMIT
THEOREM FOR A CLASS OF 1ST-ORDER
NONLINEAR AUTOREGRESSIVE PROCESSES

CHANHO LEE

ABSTRACT. A class of nonlinear Markov processes on the real line is
considered,and a functional central limit theorem is proved for the func-
tions of bounded variation on the real line by identifying a broad subset
of the range of the generator.

1. Introduction

Consider a 1-dimensional Markov process {Y, : n > 0} on R! defined
by

(1) Yot1:= f(Yo) + €ng1(n > 0).

where f is R!-valued Borel measurable function on R!, and Yj is an
arbitrarily specified random variable with values in R!, independent of
the random forcing terms, {¢, : n > 1}.

Let B! denote the Borel sigma field on R! and A1 Lebesgue measure
on (R',B'). Then (R!,B', \;) is the state space of (1).

Let p(™(z,dy) denotes the n-step transition probability of ¥,(n > 1)
and p(z,dy) = p'V(z, dy).

A probability measure 7 on (R',B') is said to be invariant for {Y, :
n > 0}, or for p(z,dy), if

(2) /}R plz, A)n(dz) = n(A), VA € B,

Received July 8, 1996. Revised September 2, 1996,

1991 AMS Subject Classification: Primary 60J60, 60J85.

Key words and phrases: Invariant probability, functional central limit theorem.
Research supported in part by Hannam University Research Grant, 1995,



1118 Chanho Lee

The Markov process is Aj-irreducible, if for every A € B!, A1(A) > 0
one has

(3) > p™(z,4) > 0.

n>1

It is simple to check that the process (1) is Aj-irreducible if £,(n > 1)
has a density function which is positive a.e.(A;).

A set B € B! is said to be small(with respect to \;) if A;(B) > 0,and
for every A € B! with A1(4) > 0 there exists j > 1 such that

j
4 inf (") (2, 4) > 0.
(4) inf HZZI p™(z, 4)
Note that every nonempty compact subset in R! is srnall(see,e.g,Bhattac-
harya and Lee[3], Lemma 1).

A ¢-irreducible aperiodic Markov process with transition probability
p(z,dy) is said to be (Harris) ergodic if there exists a probability measure
7 such that

(5) 1p"™(z,dy) — 7(dy)]| — 0 as n — oo.Vz € R

Here || - || denotes the variation norm on the Banach space of finite
signed measure on (R!, B!).

If the convergence in (5) is exponentially fast then the process is said
to be geometrically (Harris) ergodic.

Recently there have been considerable works on kth-order nonlinear
autoregressive models, most of which provide some verifiable criteria
for geometric ergodicity (see, e.g., Chan and Tong [7], Tj¢stheim [12],
Bhattacharya and Lee [2],[3], Lee [9]).

If (5) holds then 7 is necessarily the unique invariant probability for
p(z,dy), and the process having 7 as the initial distribution is stationary.

We now assume that the process {Y, : n > 0} is (Harris) ergodic
and that Y has the unique invariant 7 as its distribution. Consider a
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real-valued function ¥ on R! such that Ev?(Y)) < co. Write ¢ = o) — 1),
where ¢ = [ ¢dn.

In L*(R!, 7), consider the identity operator I and the transition op-
erator T,

(Tg)(z):= /.q(y)p(:v,dy)-

Then (T™9)(z) = (T™p)(z) — ¥ for all m > 0. Also, Ev(X,) = 0.
The ergodicity of the process {Y, : n > 0} implies that the kernel of
the operator I — T is one dimensional,

Ker(I —T)={A1}xer

(see, e.g., Gordin and Lifsic [8], Bhattacharya [1 ).
We shall need the following result of Gordin &nd Lifsic [8].

PROPOSITION 1. Assume p(x,dy) admits an invariant probability =
and, under the initial distribution 7, {Y,} is ergodic. Assume also that
) = ¢ — 4 is in the range of I — T. Then

[n1]
(6)  n7VE N (W(Y) ~ 6) + (nt — [t Vgar) = ¥) | (¢ > 0)

=0

converges weakly to a Brownian motion with mean zero and variance
parameter ||h||3 — || Th||3, where (I — T)h = v and [nt] is the integer part
of nt.

Our main result is the following theorem.

THEOREM 1. Assume that the process {Y, : r > 0} in (1) is (Harris)
ergodic and that the unique invariant probability = has a compact sup-
port containing the origin. Assume also that Y}, has 7 as its distribution.

Then for every i that may be expressed as the difference between two
monotone nondecreasing functions in L*(R', 7), v — [ vdr belongs to

the range of [ — T.

For the proof let us begin with two simple lemmas.
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LEMMA 1. Let u be a probability measure on (R!,B') such that
J z%u(dz) < co. Then

[autan) — ([ eu(dz)) =5 [ [y utanuay)

PrOOF. Expand the right-hand side and integrate. [

LEMMA 2. Let¢ € LR, m).If5 07, |[T“(1/)——y;)||2_< oo, then 1 —
belongs to the range of I — T'; indeed,(I — T)h = y — o, where

(7) Z (¥ — ¥).

PROOF. Apply (I —T) to the right side of (7). O

PROOF OF THEOREM 1. Let ¢y € L%(R!, 7). be monotone nonde-
creasing. By Lemma 1,

1T - $)ll3

/ /(w(w oz, dy) (d)

® / [ [ow-9ea-3 [ [ (w(y)—w(z))zp(z,dmp(x.dz)] r(dz)
==l 3 [ [ [ ) - ) sie duipte.a: )] o)

Let Cr denote the compact support of the distribution 7. Then for
z € Cp,

(9) / / ($(y) - ¥(=))*plz, dy)p(z. d)

/ / — 5(0))*p(z, dy)p(x, dz)
{z>0} {y<0}

[ — qf 2o(z, dyw(z. dz
+/{ZSO}/{yZO}(w(y) ¥(0)) p(z, dy ip(z,dz)
> min{C1, 1} [ (8() - 9(0)) bl
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where C1 = inf,cc p(,[0,00) N Cr), Cy =inf,cc p(z,(—00,0]NCr).
Since C is small,C; and C, are positive(see,e.g., Bhattacharya and
Lee (1995),Lemma 1). Hence

o [ [ww - vt anpe, iz | o

> min{Cy, Gy} / ) [ Jww- w(O))Zp(x,dy)] r(da)

= min{Cy,Cs) / ((y) — $(0))n(dy)
> min{C,, Cz}|[¥ — ¥; > (1= 8)|jv — %I,

where 6 = maz{l — C,,1— C3}. Note that é ‘s less than 1.Using (10)
in (8) one gets

(11) 1T = ¥)ll, < ey =4l
where
1 3
(12) C :(1——5(1~6)) < 1.

Next note that if ¥ is monotone nondecreasing,so is T ,and since T
is a contraction on L*(R!, r),one has

(13) 17" = DI < el 2" V.
It now follows from Lemma 2 that ¢ — ¢belongs to the range of I.-T.0

COROLLARY 1. Under the hypothesis of the Theorem above,(6) holds
for every function of bounded variation v in L*(R!, 7).

REMARK 1. Under the mild extra condition c¢n the process {Y,} that
for each n, sup, |P™(z,dy) — n(dy)| < c¢6™r(dy) for some constants
c>0, 0<d<1, with a little additional work, one can directly prove
that S22 HT™(¥ — ¥)||2 < oo for every % in L%(R!, ), that is, v — v
belongs to the range of I — T.

Details concerning the assertions in the above Remark will appear
elsewhere.
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