ON THE FUNCTIONAL CENTRAL LIMIT THEOREM FOR A CLASS OF 1ST-ORDER NONLINEAR AUTOREGRESSIVE PROCESSES

CHANHO LEE

ABSTRACT. A class of nonlinear Markov processes on the real line is considered, and a functional central limit theorem is proved for the functions of bounded variation on the real line by identifying a broad subset of the range of the generator.

1. Introduction

Consider a 1-dimensional Markov process $\{Y_n: n \geq 0\}$ on \mathbb{R}^1 defined by

$$(1) Y_{n+1} := f(Y_n) + \varepsilon_{n+1} (n \ge 0).$$

where f is \mathbb{R}^1 -valued Borel measurable function on \mathbb{R}^1 , and Y_0 is an arbitrarily specified random variable with values in \mathbb{R}^1 , independent of the random forcing terms, $\{\varepsilon_n : n \geq 1\}$.

Let \mathcal{B}^1 denote the Borel sigma field on \mathbb{R}^1 and λ_1 Lebesgue measure on $(\mathbb{R}^1, \mathcal{B}^1)$. Then $(\mathbb{R}^1, \mathcal{B}^1, \lambda_1)$ is the state space of (1).

Let $p^{(n)}(x, dy)$ denotes the n-step transition probability of $Y_n (n \ge 1)$ and $p(x, dy) \equiv p^{(1)}(x, dy)$.

A probability measure π on $(\mathbb{R}^1, \mathcal{B}^1)$ is said to be *invariant* for $\{Y_n : n \geq 0\}$, or for p(x, dy), if

(2)
$$\int_{\mathbb{R}^1} p(x,A)\pi(dx) = \pi(A), \quad \forall A \in \mathcal{B}^1.$$

Received July 8, 1996. Revised September 2, 1996.

1991 AMS Subject Classification: Primary 60J60, 60J65.

Key words and phrases: Invariant probability, functional central limit theorem.

Research supported in part by Hannam University Research Grant, 1995.

1118 Chanho Lee

The Markov process is λ_1 -irreducible, if for every $A \in \mathcal{B}^1$, $\lambda_1(A) > 0$ one has

(3)
$$\sum_{n>1} p^{(n)}(x,A) > 0.$$

It is simple to check that the process (1) is λ_1 -irreducible if $\varepsilon_n (n \ge 1)$ has a density function which is positive a.e. (λ_1) .

A set $B \in \mathcal{B}^1$ is said to be *small*(with respect to λ_1) if $\lambda_1(B) > 0$, and for every $A \in \mathcal{B}^1$ with $\lambda_1(A) > 0$ there exists $j \geq 1$ such that

(4)
$$\inf_{x \in B} \sum_{n=1}^{j} p^{(n)}(x, A) > 0.$$

Note that every nonempty compact subset in \mathbb{R}^1 is small(see,e.g,Bhattacharya and Lee[3], Lemma 1).

A ϕ -irreducible aperiodic Markov process with transition probability p(x, dy) is said to be (*Harris*) ergodic if there exists a probability measure π such that

(5)
$$||p^{(n)}(x, dy) - \pi(dy)|| \longrightarrow 0 \text{ as } n \to \infty, \forall x \in \mathbb{R}^1.$$

Here $\|\cdot\|$ denotes the variation norm on the Banach space of finite signed measure on $(\mathbb{R}^1, \mathcal{B}^1)$.

If the convergence in (5) is exponentially fast then the process is said to be geometrically (Harris) ergodic.

Recently there have been considerable works on kth-order nonlinear autoregressive models, most of which provide some verifiable criteria for geometric ergodicity (see, e.g., Chan and Tong [7], $Tj\phi$ stheim [12], Bhattacharya and Lee [2],[3], Lee [9]).

If (5) holds then π is necessarily the unique invariant probability for p(x, dy), and the process having π as the initial distribution is stationary.

We now assume that the process $\{Y_n : n \geq 0\}$ is (Harris) ergodic and that Y_0 has the unique invariant π as its distribution. Consider a

real-valued function ψ on \mathbb{R}^1 such that $E\psi^2(Y_0) < \infty$. Write $\tilde{\psi} = \psi - \bar{\psi}$, where $\bar{\psi} = \int \psi d\pi$.

In $L^2(\mathbb{R}^1, \pi)$, consider the identity operator I and the transition operator T,

$$(Tg)(x):=\int g(y)p(x,dy).$$

Then $(T^m\tilde{\psi})(x) = (T^m\psi)(x) - \bar{\psi}$ for all $m \geq 0$. Also, $E\tilde{\psi}(X_0) = 0$. The ergodicity of the process $\{Y_n : n \geq 0\}$ implies that the kernel of the operator I - T is one dimensional.

$$Ker(I-T) = {\lambda, 1}_{\lambda \in R}$$

(see, e.g., Gordin and Lifsic [8], Bhattacharya [1]).

We shall need the following result of Gordin and Lifsic [8].

PROPOSITION 1. Assume p(x, dy) admits an invariant probability π and, under the initial distribution π , $\{Y_n\}$ is ergodic. Assume also that $\tilde{\psi} = \psi - \bar{\psi}$ is in the range of I - T. Then

(6)
$$n^{-1/2} \left[\sum_{j=0}^{[nt]} (\psi(Y_j) - \bar{\psi}) + (nt - [nt])(\psi(Y_{[nt]+1}) - \bar{\psi}) \right] (t \ge 0)$$

converges weakly to a Brownian motion with mean zero and variance parameter $||h||_2^2 - ||Th||_2^2$, where $(I-T)h = \tilde{\psi}$ and [nt] is the integer part of nt.

Our main result is the following theorem.

THEOREM 1. Assume that the process $\{Y_n : n \geq 0\}$ in (1) is (Harris) ergodic and that the unique invariant probability π has a compact support containing the origin. Assume also that Y_0 has π as its distribution.

Then for every ψ that may be expressed as the difference between two monotone nondecreasing functions in $L^2(\mathbb{R}^1, \pi)$, $\psi = \int \psi d\pi$ belongs to the range of I = T.

For the proof let us begin with two simple lemmas.

1120 Chanho Lee

LEMMA 1. Let μ be a probability measure on $(\mathbb{R}^1, \mathcal{B}^1)$ such that $\int x^2 \mu(dx) < \infty$. Then

$$\int x^2 \mu(dx) - \left(\int x \mu(dx)\right)^2 = \frac{1}{2} \int \int \left(x-y\right)^2 \mu(dx) \mu(dy).$$

PROOF. Expand the right-hand side and integrate.

LEMMA 2. Let $\psi \in L^2(\mathbb{R}^1, \pi)$. If $\sum_{n=0}^{\infty} \|T^n(\psi - \bar{\psi})\|_2 < \infty$, then $\psi - \bar{\psi}$ belongs to the range of I - T; indeed, $(I - T)h = \psi - \bar{\psi}$, where

(7)
$$h = -\sum_{n=0}^{\infty} T^n(\psi - \bar{\psi}).$$

PROOF. Apply (I - T) to the right side of (7). \square

PROOF OF THEOREM 1. Let $\psi \in L^2(\mathbb{R}^1, \pi)$, be monotone nondecreasing. By Lemma 1,

$$||T(\psi - \bar{\psi})||_{2}^{2}$$

$$= \int \left(\int (\psi(y) - \bar{\psi})p(x, dy)\right)^{2} \pi(dx)$$

$$= \int \left[\int (\psi(y) - \bar{\psi})^{2} p(x, dy) - \frac{1}{2} \int \int (\psi(y) - \psi(z))^{2} p(x, dy) p(x, dz)\right] \pi(dx)$$

$$= ||\psi - \bar{\psi}||_{2}^{2} - \frac{1}{2} \int \left[\int \int (\psi(y) - \psi(z))^{2} p(x, dy) p(x, dz)\right] \pi(dx).$$

Let C_{π} denote the compact support of the distribution π . Then for $x \in C_{\pi}$,

(9)
$$\int \int (\psi(y) - \psi(z))^{2} p(x, dy) p(x, dz)$$

$$\geq \int_{\{z \geq 0\}} \int_{\{y \leq 0\}} (\psi(y) - \psi(0))^{2} p(x, dy) p(x, dz)$$

$$+ \int_{\{z \leq 0\}} \int_{\{y \geq 0\}} (\psi(y) - \psi(0))^{2} p(x, dy) p(x, dz)$$

$$\geq \min\{C_{1}, C_{2}\} \int (\psi(y) - \psi(0))^{2} p(x, dy),$$

where $C_1 = \inf_{x \in C_{\pi}} p(x, [0, \infty) \cap C_{\pi}), C_2 = \inf_{x \in C_{\pi}} p(x, (-\infty, 0] \cap C_{\pi}).$ Since C_{π} is small, C_1 and C_2 are positive (see, e.g., Bhattacharya and Lee (1995), Lemma 1). Hence

(10)
$$\int \left[\int \int (\psi(y) - \psi(z))^2 p(x, dy) p(x, dz) \right] \pi(dx)$$

$$\geq \min\{C_1, C_2\} \int_{C_{\pi}} \left[\int (\psi(y) - \psi(0))^2 p(x, dy) \right] \pi(dx)$$

$$= \min\{C_1, C_2\} \int (\psi(y) - \psi(0))^2 \pi(dy)$$

$$\geq \min\{C_1, C_2\} \|\psi - \bar{\psi}\|_2^2 \geq (1 - \delta) \|\psi - \bar{\psi}\|_2^2,$$

where $\delta = max\{1 - C_1, 1 - C_2\}$. Note that δ is less than 1.Using (10) in (8) one gets

(11)
$$||T(\psi - \tilde{\psi})||_2 \le c||\psi - \bar{\psi}||_2,$$

where

(12)
$$c = \left(1 - \frac{1}{2}(1 - \delta)\right)^{\frac{1}{2}} < 1.$$

Next note that if ψ is monotone nondecreasing, so is $T\psi$, and since T is a contraction on $L^2(\mathbb{R}^1, \pi)$, one has

$$||T^n(\psi - \bar{\psi})||^2 \le c^n ||\psi - \bar{\psi}||^2 \quad \forall \ n.$$

It now follows from Lemma 2 that $\psi - \bar{\psi}$ belongs to the range of I-T.

COROLLARY 1. Under the hypothesis of the Theorem above, (6) holds for every function of bounded variation ψ in $L^2(\mathbb{R}^1, \pi)$.

REMARK 1. Under the mild extra condition on the process $\{Y_n\}$ that for each n, $\sup_x |P^{(n)}(x,dy) - \pi(dy)| \leq c\delta^n \pi(dy)$ for some constants c > 0, $0 < \delta < 1$, with a little additional work, one can directly prove that $\sum_{n=0}^{\infty} ||T^n(\psi - \bar{\psi})||_2 < \infty$ for every ψ in $L^2(\mathbb{R}^1, \pi)$, that is, $\psi - \bar{\psi}$ belongs to the range of I - T.

Details concerning the assertions in the above Remark will appear elsewhere.

References

- 1. Bhattacharya, R. N., On the funtional central limit theorem and the law of iterated logarithm for Markov processes, Z. Wahr. Verw. Geb. 60 (1982), 185-201.
- 2. Bhattacharya, R. N. and Lee, C. H., Ergodicity of Nonlinear First Order Autoregressive Models, J. Theoretical Probability 8 (1995), 207-219.
- 3. _____, On geometric ergodicity of nonlinear autoregressive models. Statistics & Probability Letters 22 (1995), 311-315.
- 4. Bhattacharya, R. N. and Lee, O., Asymptotics of a class of Markov processes which are not in general irreducible, Ann. Probab. 16 (1988), 1333-1347.
- 5. _____, Ergodicity and Central Limit Theorems for a class of Markov Processes, J. Multivariate Analysis 27 (1988), 80-90.
- 6. Billingsley, P., Convergence of Probability Measures, Wiley, New York., 1968.
- Chan, K. S. and H. Tong, On the use of the deterministic Lyapunov function for the ergodicity of stochastic difference equations, Adv. Appl. Probab. 17 (1985), 666-678.
- 8. Gordin, M. I., Lifšic, B. A., The central limit theorem for stationary ergodic Markov process, Dokl. Akad. Nauk. SSSR 19 (1978)), 392-393.
- 9. Lee, C. H., Asymptotics of a class pth-order Nonlinear Autoregressive processes, preprints., 1996.
- 10. _____, On the functional central limit theorem for a class of nonlinear autoregressive processes, preprints., 1996.
- 11. Nummelin, E., General Irreducible Markov chains and Nonnegative Operators, (Cambridge Univ. Press. New York)., 1984.
- Tjφstheim, D., Nonlinear time series and Markov chains, Adv. Appl. Probab.
 22 (1990), 587-611.

Department of Mathematics Hannam University Taejon 300-791, Korea