대한수학회논문집 (Communications of the Korean Mathematical Society)
- 제11권1호
- /
- Pages.139-145
- /
- 1996
- /
- 1225-1763(pISSN)
- /
- 2234-3024(eISSN)
A class of infinite series summable by means of fractional calculus
초록
We show how some interesting results involving series summation and the digamma function are established by means of Riemann-Liouville operator of fractional calculus. We derive the relation $$ \frac{\Gamma(\lambda)}{\Gamma(\nu)} \sum^{\infty}_{n=1}{\frac{\Gamma(\nu+n)}{n\Gamma(\lambda+n)}_{p+2}F_{p+1}(a_1, \cdots, a_{p+1},\lambda + n; x/a)} = \sum^{\infty}_{k=0}{\frac{(a_1)_k \cdots (a_{(p+1)}{(b_1)_k \cdots (b_p)_k K!} (\frac{x}{a})^k [\psi(\lambda + k) - \psi(\lambda - \nu + k)]}, Re(\lambda) > Re(\nu) \geq 0 $$ and explain some special cases.