Communications of the Korean Mathematical Society (대한수학회논문집)
- Volume 11 Issue 1
- /
- Pages.57-62
- /
- 1996
- /
- 1225-1763(pISSN)
- /
- 2234-3024(eISSN)
Convergence and the Riemann hypothesis
Abstract
For $1 < p \leq 2$ it is shown that a certain sequence of functions converges to -1 in $L^{p-\varepsilon}(0, 1)$ for any small $\varepsilon > 0$ if and only if the Riemann zeta function satisfies $\zeta(s) \neq 0$ for $\sigma = Re s > 1/p$.