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VANISHING THEOREM ON
SINGULAR MODULI SPACES

YoNG SEuNG CHO AND YooN Hi1 Hong

1. Introduction

Let X be a smooth, simply connected and oriented closed four-
manifold such that the dimension ] (X) of & maximal positive sub-
space for the intersection form is greater than or equal to 3. Suppose
X is a connected sum X,3X, with each b;(X,-) > 0. Donaldson con-
sidered a sequence of connected sums

(‘X]Hg:;))‘ﬂ (XQQ?-,) = (ngkn)

with a neck of radius A,, and studied the limiting behavior of the
moduli space as A, — 0. In [3] Donaldson got his celebrated theorem:

THEOREM. (Donaldson) Suppose X is a smooth, simply connected
and oriented closed four-manifold. If X is decomposed as a smooth
connected sum X = X,48X, with each b] (X;) > 0, 4c2(E)[X] > 3(1 +
b;"(X)), then the polynomial invariant gy x vanishes identically, where
gk, x Is defined by the moduli space of anti-self dual connections of an
SU(2)-bundle E over X with ¢y(E)[X] = k and bJ (X) is odd and not

less than 3.

In general a 2-dimensional homology class i a four manifold X can
not be represented as a smoothly embedded sphere. This raises the
problem of finding the smallest possible genus of the surfaces repre-
senting a given 2-dimensional homology class.
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To find a lower bound for the genus, Kronheimer and Mrowka con-
sidered the space A® of a-twisted, singular SU(2) connections which
have holonomy « along the embedded surface ¥ in X. They used
weighted Sobolev spaces and a singular metric with a cone like singu-
larity along ¥ to control effectively the moduli space. In [11, 12] they
got the following theorem:

THEOREM. (Kronheimer, Mrowka) Let X be a smooth closed, sim-
ply connected and oriented 4-manifold. Let b;(X) > 3, odd and let
X have non trivial polynomial invariants. Then the genus of any ori-
entable, smoothly embedded surface ¥, other than a sphere of self-
intersection —1 or 0, satisfies the inequality

29(¥)—-22

[

-3

Suppose the cyclic group Z, of order p acts on a smooth, orientable,
closed 4-manifold X. Then an oriented surface & in X can be the fixed
point set of the Z,-action on X.

In [1, 2] Cho considered the Z,-action on an SU(2) bundle £ — X
and its quotient bundle E' — X'. Then the fixed point set & of Z,-
action on X is appeared in the quotient space X' as « singular set.

THEOREM. (Cho) (1) Suppose w, : Hy(X,Z)% —» Hy(X'.Z) and
e (a;) = pay, i = 1,---,d, then gr(ay, - yag) = ¢'(af, o .dly)
where ¢ is the polynomial invariant defined on the invariant moduli
space on X and ¢' is the polynomial invariant defined on the moduli
space on the quotient setting X'.

(2) Let oy and a4 be the holonomy parameters of the Zy-action along
the fixed point set ¥.. For regular values oy and «; the polynomial
invariants q;’y = q; % are equal, where k is the instarton number and
¢ is the monopole number and the polynomial invariant gy, is defined
on the singular moduli space of holonomy parameter ¢; along the fixed
point set ¥.

Let X; and X, be smooth, closed, simply connercted, oriented 4-
manifolds, and let £; and £, be oriented embedded 2-dimensional
surfaces with genus g; and g, in X, and X, respectively. Suppose
brj(X,-) > 0 for ¢ = 1,2, and each intersection number ;- 3, is 0 for
1 =1,2.
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Choose two points p; and p; in ¥; and ¥, respectively. By cutting
out small open neighbourhoods of p; and p, in X, and X, and iden-
tifying their boundaries respectively, we have a connected sum of the
form (AX—l7 El)ﬁ(Xz, 22) = (Xlt)(g, ZlﬁZQ)

For a small positive number ¢ > 0 choose a holonomy parameter
o € [e, % - e] around the surface £. Let £ — X be an SU(2)-vector
bundle on X and N(X) be a small tubular neighbourhood of ¥ in X
and E| ) = L& L™ decomposed into complex line bundles. Let k =
c2(E)[X] be the instanton nunber and ¢ = --¢;(L)[Z] the monopole
number. Choose an orbifold metric on X along Y. We consider the
a-twisted singular moduli space (over the bundle £ — (X, X)) ¢,
(for details see the next section). Then the moduli space has the formal
dimension 8k — 3(1 + b5 (X)) -+ 4¢ — (2g — 2) where g = g + g, is the
genus of the surface .

In this paper we would like to prove a kind of Donaldson’s Vanishing
theorem, that is, the polynomial invariant g}, (defined on the singu-
lar moduli space) vanishes under certain conditions. Roughly we can
summarise as follow:

As Donaldson’s case we consider (X,%) = (X, %;)t(X;,¥2) and
2
gx = ¢illgs metrics on X depending on the neck parameter A. Then

the polynomial invariant, if diny , v = 2d,

Grex(ga)ar, - saq) = §MME , x(ga) NV NN V) = EI(A)

where the number is counted with sign, and 1; are the codimension 2
varieties defined by a; = [Z!], 1 =1,--- ,d.

For sufficiently small A we have I(A) = I;(A)JI;(\) where the energy
of the elements of I,{A) are supported in (X, %)\ (X;,5;), ¢ =1,2.

By the arguments of perturbations of anti self-dual equations and
Euler number of odd dimension we have the following theorem.

THEOREM. If (X, %) = (X, S)H( X, 52) (b5(X;) > 0) and I, -

A
, =0 fori =12, and if b;(X) > 3, odd and d > 2k + 1 where
2d = dim M3, . Then for sufficiently small ), and for generic metric
g» the signed number §I,(A)is0 for 1 = 1,2 ar.d hence the polynomial
invariant
Grex(ga) =0 on Hy(X\X,Z).
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In section 2 we will summerize the basic definitions, properties on
the singular moduli spaces, the necks of connected sums, and com-
pactification of the singular moduli spaces. In section 3 we will define
a polynomial invariant on the singular moduli space. We discuss the
behaviours of the moduli spaces when A goes to 0, and the statement
of our main theorem. In section 4, we will prove the main theorem by
considering the given parameters and constructing Lie algebra valued
self-dual 2-forms to cut out the 2¢g-dimension from the moduli space
which comes from the genus of ¥.

2. Preliminary steps

2.1. Singular moduli space

Let X; be a smooth, compact, simply connected, oriented four-
manifold and ¥; be a closed oriented embedded 2-dimensional surface
with genus g; and we will assume that the self intersection number
Y- Y,i13szerofor1=1,2

Let N(3;) be a tubular neighbourhood of ¥; ¢ X diffeomorphic
to the unit disk bundle of the normal bundle and Y, be boundary of
N(%;) which acquires the structure of a circle bundle over ¥, via this
diffeornorphism.

Consider an SU(2)-bundle E, on X, and choose a C'™ decomposition
of E;on N(¥;) as Ei|nz,) = L;® L7 and L, is a complex line bundle.
We need not suppose that L; is trivial bundle. See Diagram 2.1.1.

L;g L7 E,

l lsum)

N(E) ——— X,

Diagram 2.1.1

There are two topological invariants in the bundle, which we write

ki = co( B[ Xi] = g;lr' / tr(FaAF.)

i

€, = —c1(L;)[Z]
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where A is an SU(2)-connection on E;.
For this bundle, we define an “a-twisted”and locally nontrivial con-
nection near %;; choose any SU(2)-connection A; on E; such that

—o b; : L. :
Ailng) = (O' _Ob_) where b; is a smooth conection in L;,: = 1,2.

Finally choose a number « in the range o € [e,% - e] where ¢ > 0

is a small positive number, and define an a-twisted connection A on
Eilxiz by

—-a

A?:Z:'{’V—lﬁ,"f')(g 0 )T[, (Z:1~2)

where 3; is a smooth cut off function which equals to 1 in a neigh-
bourhood of 0, and equals to 0 for r > %, and v/—1n, and /=17, are
connection 1-forms for the circle bundle.

From now we will mean that (X;, £;) is a sinooth, compact, simply
connected, oriented four-manifold X; which contains ¥J; and has our
bundle structure mentioned above.

We now define an affine space of connections modelled on AY by
choosing some p > 2 and setting AY = {A7 + a;|V e a;, a; € LP(X;\
)}

Similarly we define a gauge group G, = {g € Aut(E;)|V 4«9, V?q?g €
LP(X:\ Z4)}.

Then we can consider a Banach space By, X A /G, and a Ba-
nach manifold (B, . x.)*. Here (B} ,. x,)* is the space of irreducible
a-twisted connections which is open in B?;,l.-.x.- where k; and ¢; are
two topological invariants of our bundle.

We have been using a smooth metric on X; to define a moduli space
but this is not the only possibility. We can take a metric which, near
to ¥;, 1s modelled on

g' = du? + dv?+dr?+ (5)1 de?

v

where (u;,v;) are coordinates on ¥; and v is a real parameter not less
than 1 and (r, 8;) are polar coordinates in sorne local trivialisation of

the disk bundle.
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Over N(Z;) the metric ¢* has a conc-angle of 27" in the normal planes
to X; and equal to a smooth one on the complement of N(X;). ¢ = 1,2.

Now consider an a-twisted singular moduli space (over the bundle
Ei — (Xi, %), MR 4. x, = 1A € AP|FH(A) =0, FH(A) is self-dual
part of F(A) with respect to the orbifold metric ¢'}/G; C Bg , «..
Then Kronheimer and Mrowka computed the dimension of the a-twised
singular moduli space.

dim M, ;. x, = 8ki — 2(1 + bJ (X)) + 46, -- (29: — 2),

1
and — tr(FaAFa) =k +2ab; —a*-3;- 5,
8r? Xi\Ei

(z =1,2). (For details see [11])

We suppose that X; is given a homology orientation §2; such a ho-
mology orientation is fixed, by choosing an orientation for the line
max . . e
(A HYX)! C&)(m/?\LXHJ”(Xi)), where H1(X;) is any maximal positive
subspace of H?(X;), ¢ = 1,2. Then the moduli spaces have orienta-
tions.

2.2. Connected Sums

In this section we will consider a smooth compact, sunply connected,
oriented four-manifold X with 47 (X) > 3, odd and a closed oriented
embedded 2-dimensional surface ¥ such that (X, ¥) can be decomposed
as a smooth oriented connected sum (X, ) = (X1, Z1)1(X2, X2 ) where
bF(X;) > 0 and (X;,%,;) is four-manifold as in (2.1) (z = 1,2); fix
points py, py in 3y, ¥y respectively and put Z;(r) = (X;, ;) \ B(pi.r]
for r < 1. The ball B(p;,r) denote the image of the 4 dimensional ball
with radius r under the exponential map at p; and it is contained in
N(E)), 1=1,2.

Let Z(r) be the disjoint union of Z(r) and Z,(r). Choose an ori-
entation reversing isometry I : T, Xy — T,,X;. Then the map fy
between punctured tangent space given by fa(€) = Té—y - I(€) identifies

the annulus in N(X}), centered on p,, inner radius N’ ~'v/A and outer
radius Nv/\ with the corresponding annulus in N(X;). (Here we take
N such that N > 1 and NVA <« 1.)
We form the oriented connected sum (X, %) = (X;. ¥)8(X2, ¥2)
A
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a quotient Z(N~1VX) = Z(N~1VA)II Zy(N-1V/X) by the gluing map
[ for small .
Now define an orbifold metric gy on the connected sum (X,3) =

(X1,21)8 (X3, X); the key property is that it should agree with ¢* on
A

a large open set, for example on Z,-(Z\/X), t == 1,2. Over the neck in
(X,X) we can define g to be a weighted average of metrics g', ¢% on
(X1,%1), (X2,X2) respectively, compared via the identification map
Fx.

Consider an SU(2) bundle E over the connected sum (X, ¥) such
that we have a C*° decomposition of E on N(Z) as E|yix) = L& L™!
where L is a complex line bundle. Then there are two toplological
invariants in our bundle £ — (X, 3) which we write k¥ = k; + k, and
¢ = €y + {5 where k; and #; are two topological invariants in the given
bundle E; — (X;,%;) as in (2.1), 1 = 1,2. As (2.1) we now define an
affine space of connections on (X \ ¥) and a gauge group by choosing
some p > 2 and setting

A% = {A° 4 a| a0, Vaeac LP(X\E)}
and G = {g € Aut(E)| Vaag, Via.g€ LP(X\ )},

clel
« 6,26.

Then the quotient A*/G = B, x is a Banach manifold over (X \Z)
except at points corresponding to the reducible connections. Now we
consider an a-twisted singular moduli space (over the bundle E —
(X,Z)) M7, x(9x) = {A € A*|F*(A) = 0, F(A) is self-dual part
of F(A) with respect to the metric g»}/G. Then dim(M7, x(g)) is
8k —3(14 b} (X)) +4¢ — (2g - 2) where the genus g of ¥ is the sum of
the genus g, of &) and g, of £,. Since b7 (X ) is odd, dim( ke x(9x))
becomes even. Now let dim(9g , x(g)) be 2d where d € Z*.

2.3. Compactification of the singular moduli space

In (2.2) we construc.d a smooth oriented connected sum (X, )
which depends on the ¢luing map fy. When A is small the gluing
part becomes small and the connected sum (X, T) = (X1, 21)§(X2, Z2)

A
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tends to (X1, ;) 11 (X2,£2) =Y and the metric g = ¢'f¢? tends to
A
(g',g%) over Y as A — 0. We have the following proposition

PROPOSITION 2.3.1. If Aon — 0 and A,, is a sequence of g x,-anti-
self-dual connections on a bundle E - (X, %) = (X, 51) § (X2,5,)
A

n
then there is a bundle E' — Y, a connection A’ on E' with chern
number k' and monopole number £ and a multi set (z1, - ,z,) In
Y\ {p1,p2} such that a subsequence [A'] of [A,] converges to a limit
[A'] over Y \ {p1,p2.21, - ,zn}. In this case we have k = k| + kj +
Sioiki + Ei_kj and € = €} + €, + X]_{; where ki = K'|x, z,) and

¢ = {x; v, (v = 1,2). And k; i an associated positive Integer
for points of concentration z; in X \ £, ¢ = 1,--- ,1, and (k F-) 13
an associated pair for points of concentration z; in U, j = 1.+ s,

where r and s be the number of poinis concentration in X \ and b
respectively (r + s = n).

Proof. By the Uhlenbeck’s compactness theorem and the gluing con-
struction for the connected sum (X, %) it is clear.

Now we have the compactification of the singular raoduli space.

LEMMA 2.3.2. We have a compactification of the singular moduli
space MY , (ga) over the connected sum (X, X) such that

o x X STHX)

=121

mg,l.,\'(g'\)c ‘U mk {r+si,f— "

where MYy v 6.x is an a-twisted singular moduli space with
=1
chern number k—(r + $) and monopole number { - %% £; over (X, T).

And ST*(X) is a multiset of degree v + s (unordered (r + s)-tuple) of
points of X.

Proof. If [Ay] is a sequence of MF, x(ga) for smell A then a sub-

sequence [A' ] of [4,] converges weakly to a limit ([A'], {21, -+ .za}).
(That is [A]] converges to a limit [A'] € MY ,  over | X, E)\ {2,

;n}')
The instanton number &' and monopole number ¢’ ¢f | 4'] have prop-
erties such that k = k' + £7_ k; 4+ 07 k; and £ = €' + T35, {;. Then

we have k¥ > k' + r + s. Here r and 3 be the number of points of
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concentration in X \ ¥ and ¥ (r + s = n). So the infinite sequence in
ﬁ)?‘kf‘l’x(g)\) has a weakly convergent subsequence with a limit point in

U mt"::_(r_}_s)'[_);; £.X X Sr+-9(X) D

r+s>0 =1

3. A polynomial invariant over the connected sum (X,Y)

In this section we will define an invariant 4% ¢.xs & polynomial of
degree d in H*(X \ ©;Z), assuming that k is in a “stable range”d >
2k + 1.

Fix a generic orbifold metric gy on (X,X) == (X7, Z)(X,, 82) and

A

choose compact 2-dimensional surfaces £i,--- L', such that X! is em-
bedded in X\ X and N(ZH)NC =g (¢ =1, -+ ,d). We can choose 3!,
¢t =1, - ,dsuch that N(X!) N(:E;») N N(X}) = ¢ for distinct 1, j, k.
Let Bﬁ/(x” = By ; xIn(sy) be the space of gauge equivalence classes
of a-twisted SU(2) connections on N(Z!) and ( N > C BK,(EH be
the Banach manifold of irreducible connections.
Let Ly — (BY, N(E!) }* be the determinant line bundle with

L) = p(|S)]) in H2(([”f{,(‘ 7). *.Z) and fiber [A]| x det(indD 4)

= [A] x ( A kerDA C?J( A cok(rDA) ) where 1 Hy( X \ 2. Z) —
H?( (B, x)5Z),1=1,---.d

Let s; be any smooth section of £z and let V] be s;l(()). Since
the elements in My, (ga) are a-twisted, anti-self-dual connections on
(X.X), there is a well-defined restriction map 15 ML e x(ga) — BJO\"(EQ)
and image of r, is contained in (B% N ,))* by the unique continuation
theorem. (For details see [6]). We shall write Sﬂ“ <{gx) NV, in the
place of {[A] € MY, (ga)|ri({A]) e Vi}, e =1 - d.

The smooth section s; can be choosen such that it is transverse to
r. Then MY, (gx) N Vi is a smooth codimension 2-submanifold of
MZ o x(gr). We can further arrange transversality for ME ex(ga) 0
Viin - NV (e £d) such that it is a smooth (2d ~ 2¢)-dimensional
manifold.

Specially we consider a O-dimensional space Mg , (ga)NViN---NVy
and let this be I(A) for small values of A. Then I{)) is a collection of

signed points. For I{A), we have the following Lemma.
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LEMMA 3.1. We can find A\q such that for all A\ > A\, the intersection
IN) =M%, x(gx)NViN---N Vg is compact.

Proof. Suppose [A,] is a sequence in I(A) and there is no strongly
convergent subsequence. Then there is a subsequence [A}] of [4,] such
that [A’] converges to a limit [A'] € M}, , x(gx) with chern number &’
and monopole number ¢ over (X \ L)\ {z1,-- ,zn} where p is a small
positive real number and z; € (X,Z), ¢ = 1,--- ,n. Let the number
of points z; of concentration in X \ ¥ and £ be r and s respectively
(r + s =n). Then we have

k=k"+ E:___lk,‘ + Ejzlkj = k"l + ké + Z::]ki + E;_.:lkj

C=0 4+ =0+ + 20,

where k| = k'|(x, £,y and £, = ¥'|(x, x,), 1 =1,2.

Let the set of tubular neighbourhoods N(X}) which contain no point
z; of intersection be {N(E/,), -, N(Z!)} (¢ < d). Then we conclude
that ¢ > d — 2r and MY , v (ga) N Vi N--- N Vi is non empty.

Suppose first that 0 <n<k.

Then we have dim(IF, ’[,’X(gx)ﬂV,]ﬂ- < NVie) = dmMY, 0 y(92)—
2c = dimfm?,f’x(g,\)—SElek,-—42;:1(2kj+£j)—2c < 2d—8r—4s—2c¢
<2~ 8 —4s —2d+4r = —4(r + s) = —4n < 0. So we obtain a
contradiction.

Now consider the case when n = k.

In this case the limit [A'] is a flat a-twisted connection over (X \ £).

Now we use the following Alternative;

ALTERNATIVE 3.2. [6]. For each i, either
(i) [A'] is non trivaial and [A'] € V; or
(i) N(Z!) (¢ =1,---,d) contains one of the points zj, ] = 1,--- ,n.
By Alternative 3.2 each N(T!) contains one of the points z; in our
case, j =1,---,n, 1=1,---,d
But there is a N(!), which contains none of the points z;,7 =
1,--- ,n; if we let the number of suchh N(Z})'s be c then we have

e>d—2r>d—-2n=d-2k>1 (by stable range d > 2k + 1).
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Thus there is a N(Z}), which contains none of the point z;. So we have
a contradiction and the only possibility is n == 0. And we conclude
that suppose [A,] is a sequence in I(\) then [4,] converge strongly to
a limit [A’] in I(A). Hence I()) is a compact -dimensional space for
all A < Xy, O

DEFINITION 3.3. By Lemma 3.1 we know that the intersection I(\)
is a finite set of points. So we can define a polyr.omial invariant qrex

d )
®Hy(X \ E;Z) — Z such that
G e x (B3], [Za]) = 4R, x NViN---NVy).

where [Y!] € Hy( X\ 5;Z), 1 =1,--- ,d.

REMARK 3.4. As long as a remains in an interval [e, 3 - e] the
invariant ¢3 , y defined by above is independent of a, the choice of the
orbifold metric, and the choice of the smooth section s;. And 9o x
depends on the surface [£!],7 = 1,--- ,d, only through their homology
class in (X \ ¥) and as a function ¢f , y is mult: linear and symmetric.

Proof. Refer to [12].

To understand the properties of ¢g, y, we consider the following;
let f: Rt — R* be smooth monotone function with f(z) = z? for
small 2 and f(z) = « for large .

If Ais any a-twisted, SU(2)-connection over X \ I, we put

Ey(A) = /Z HUEDHIPH A)Pdy where Z1(p) = X1\B(py.p)
1(p

and B(p;,p) is a a 4-dimensional ball with radius p centered at p;
which is contained in N(Z;). And p is a small real number such that
N-'WXA<p<l.

For ¢ > 0 we let Uj(e) C By, x be the open sets E;'0,¢]. The
function E; does measure the distance to the flat connection over
(X,2)(x,,5,)- (Also we define Us(e) as E; '[0,€] where Ey(4) =
fzz(p) FUFCA)) + |F+(A)’Pd#-:]
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PROPOSITION 3.5. For any p, Ao there is an €y(p, o) such that
IA)NU(e)NTUz(e) =0 for all A < Ay and € < €g(p, Ao).

Proof. If the result were false we could find a sequence [A4,] in
I{A,) N U(e,) N Usgley) with €, — 0 and A, € (0,)) with A, —
0. Then we can suppose that a subsequence [A/] of [4,] such that
[Al] converges to a trivial a-twisted flat connection [A'] over Y (=
(X1, )0 (X2, Z2)\ {p1,P2, 21, y#n} asn — oo. (That is [A]] con-
verges weakly to a limit ([A'];(z, -+ ,2,)) and E(A],) - 0as A\, — 0
over Y \ {p1,pz, 21, -+ . 2n} where 2z, € Y\ {p1,p2}, 1 = 1,-- ,n.) Let
[A'] be [6;,82] and the number of the points of the concentration in
X \ ¥ and ¥ be r and s where 6; is a flat a-twisted connection over

(X, Z;), 1 = 1,2. Since 6, and 8; are a-twisted trivial flat connec-
tions, each N(2!) contains one of the points z; € (X;\Z1) (X2 \ Z2),
t =1,---,r. (See Alternative 3.2.) But there must be a tubular neigh-

bourhood N(X4 ), which does not contain any of these points. Thus we
have a contradiction. [

PROPOSITION 3.6. For any fixed €, p there is a »;(e, p) such that
I(A) is contained in Uy(€) U Uz(e€) for all A < Ai(e, p).

Proof. If the statement were false there would be an €, a sequence
An — 0 as n — oo and gy, -anti self dual connection [A,] in I(Ay)
but [4,] € U;(e) UU,(e). We can suppose the sequence [A4,] converges
weakly to a limit ([A'}; (2. ,2,)) and [A'] € MY, 4 y is not an a-
twisted flat connection over either component (X;\2:),(X2\X;) since
[An] ¢ Uqi(e) U Us(e). Let the number of points of con(‘entratlon in
X\E and V‘ be r and s and the cheru number k' of the limit [A'] has
component ky = k'|(x, v,), k5 = k’|(x,5,) and the monopole number
{' of [A'] has component &} = {'|(x, x,), £y = {'|(x, s.) respectively.

Then we have & =k} + k) + 7 _ |k + Z;zlkj K+ X7 ]l.,
Eicikjand £ =6 + 0, + X34 = 0+ 27,4 Let A"l € MY, 4 =

MG o ox, % My, o x, be (A1, 2] and the number of the surface £} in

X \ ¥, and )(2\22 be dy,ds {(d = di +d3). And let the number of the
points of concentration in X; \ £, and X, \ &, be ry, 7y respectively
('T‘] + ra = )

If [4, ] € Dﬂk, eox, VVa NV, then p > dy — 2ry and if [4,] €
Dn;;,z X NV N--NVj, then ¢ > dy — 2r;. Since A} and [A,] are
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not a-twisted flat connections, both dim(i)infc”,1 ex, "Van---n Vip)
and dim(ﬂﬁ?,z’l, x, N Vi1 N+~ NVj,) are non negative.
Thus dim(mk, X - 2p > 0 and dim(93, e x,) —2¢ = 0. Then

(3.7)
1
dy <p+2ry <2r; + 3 dim(fm?; yf'qu)’

1
d2 S q + 21‘2 S 2T2 + 5 dlm(m:; 'llz’x2) anc
dim(9M , x(9x,)) = 2d < 4r + dim(MZ o x, ) + AmMNG o x, )

Since k = k' + Z:=1 kit Do ks £=2+ > ;=1¢; and a remains
in an interval [ €3 e], we have an associated pair (kj,¢;) for a point
of concentration z; in £1§¥,, j = 1,--- ,s, and now we can use the

A

following Lemma.

LEMMA 3.8. [11]. For each € > 0, there is a v such that, provided
« in the interval [f, 5= e], k; +.2¢€; > 0 and k; + (1 — 2¢)¢; > 0
where (k;,£;) is an associated pair for a point of concentration z; in

¥ = ¥,4%Y, and v is a real parameter not less than 1 which is associated
by

with the metric gy = du® + dv* + dr? + (%)2 d#?. The two inequalities
yield 2k; + ¢; > 0.

Using Lemma 3.8 we have
(3.9)
2 = dim(MZ ; x(92,)
= 8k 4+ 46 — 3(1 + b (X)) — (29 — 2)
= 8k' + 8L ki + 8%j_,k; + 44" +48]_ ¢,
~3(1+ (X)) — (20— 2)
= dim(9MG, o x, )+ dm(D o0 0+ 1+ 85 _ ki
+457_,(2k; + ¢5)
> dim(MG, o x, )+ dm(D o« 1+ 8+ 1
By (3.7) and (3.9), dlm(imk, oox) T d1rn(93"(‘,c o x,) t8r+ds+1<
2d < dlm(DJI:,1 ,Z’I.Xl) + dlm(fmk;,z;, ,)+4r.
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Then we have 1+ 8r+4s < 4r andso 1+4(r+s)=4n+1<0. So
we have a contradiction. O

REMARK 3.10. Proposition 3.5 and 3.6 imply that when ¢ and A
are small we can write I(A) = MY, (g2)NV1N---NV; as the union of
Ii(A) C Uy(e) and I3(A) C Usy(e) respectively. Here I1( ) is correspond-
ing to (Mg, x(gx) NU1(e)) N V1N --- NV and I(A) is corresponging
to (MF o x(ga) NUa(e))NViN---NVy

Let §I;(A) be 71(A) and §1,(A) be i3(A). Then our polynomial invari-
ant gg o x(9x) ([Z1] -+ [Z3) = 4(MY ¢ x (g)NVIN -0 Va) = §I(A) is
equal to 21(A)+i5(A) for all sufficiently small values of A. The integers
711(A) and i5(A) are independent of the parameters A, € p provided these
are suitably small.

Thus we can define a polynomial irvariant g , y. From now we will
prove our main result for gy, y by establishing the following theorem.

THEOREM 3.11. Suppose (X,X) is a connected sum (X1, E1)8(X>,
A

¥9) and the self intersection number ¥; - £; 1s 0 for 1 = 1,2. Also
suppose that b} (X;) > 0,7 =1,2, and b (X) > 3, odd and d > 2k + 1
where 2d = dim(9M} , \(91)). Then for sufficiently small A, the signed
number §I;(A) = ?,(/\) is 0 for © = 1,2 and hence the polynomial
invariant g ; x(gx) =0 on Ho(X \ ¥. Z).

4. The proof of Theorem 3.11

4.1. Preliminary works for the proof

LEMMA 4.1.1. If [A,]is a sequence of I(A,) = MZ , x(gx,) N V1N
-+« N V4 with A\, — 0 then there is a subsequence [An'] of [Ay] such
that [An'] converges to a limit [A'] = [A;, A;] € MY,y over ((Xi1\
SO X\ Z2))\ {21, -, 2n} and the limit [A] is of the form [6;, A,
or [A1,6;] where 6, and 8, are a-twisted flat connections over (X \
Yy), (X2 \ X2) and A, A; are non trivial, anti-self-dual, a-twisted
connections over (X \ £,), (X, \ £, respectively.

Proof. First suppose that the limit [A'] is of the form [A4;, A5] where
both A4, and A, are non trivial a-twisted anti-self-dual connections.
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Let the Chern number k' of [A'] has components k] = k'|(x, x,),
ky = k'|(x,.,) and the monopole number ¢ of [A'] has components
K’l - Ell(xl 1) EIZ = ell(szzz)‘

Also let each number of points z; of concentration in X \ ¥ and &
be r and s, respectively (r + s = n).

Then we have

k=k +ky+ 3 ki + D5k
(=0 +6,+%3_,¢;, and
[A'] = [A1, Aa] € MG oy, X TG o -

Let each number of the surface £f, 7 = 1.--- | d, in X; \ ¥; and
X3\ £3 be dy,d; respectively (d = d| + ds) and each number of the
points z; of concentration in X\ £; and X3\ £, be r1, 73, respectively
(r=r1+ra).

If [4,4] € imk, ex, NV Nn---NViyp = p>d —2r; and [4g] €
M o x, VVi N---NVjg = g 2 dy — 2ry. Since [A] and [A4,] are not

a-twisted flat connections,
dirn(Dﬂz,1 e x, N Van---nV,,) and dim(ﬁ)’lzlyl,wx2 NV;in---NVj,)

are non negative.
Thus dlm(ﬂT(k, £, x,) —2p > 0 and dlm(fmiéye,z,xz) —2q > 0. Then

we have

1,
di <p+2ry <2r + 3 dim(ME o x,)

1 : 83
do <q+2r; <2rp+ 3 dlm(mﬂ,z’[,?')“).

So
(4.1.2)
2d = dim(MF , x(gx,))

= 2d1 + 2d2 S 47‘1 + 47"2 + d]m(ﬂﬁg,l sf,l ')_‘rl) + dlm(im%;lgxz)
=4r 4+ dim(gﬂa ‘[llyx1> + dirn(imig 8, X ).
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And, by Lemma 3.8, we have

(4.1.3)
2d = dim(ME , x(gx,))

= lel(m?; ‘['1 ,XI) + dim(mg«w%’xz) + 1 + SE::]k,
2 dim(My o x, )+ Am(OG o k) + 8+ ds + 1.

Thus, by (4.1.2) and (4.1.3), we have

dinl(’mzi o)t dim(ﬁﬁa '5,2“,(2) + 1+ 8r 4 4s
S 2d S 47‘ -+— dun(gﬁa vé’l X, ) + d]IIl(iDT:;2 ,1«”2.X2 )

Then 8 +4s+1 < 4r and 4n+1 < 0. Thus we have a contradition.
Secondly suppose that the limit [A’] is of the form [6,,6,] where 6 is
an a-twisted flat connection over (X;, ¥;), 7 = 1,2. Then each N(ZT!),
i =1,--+,d, contains one of the point z;, j = 1,--- ,n, by Alternative
3.2 and n is equal to k. But there is a N(X}) such that N(Z}) contains
none of the point z;, j = 1,--- .n. (Sec the proof of Lemma 3.1.) Thus
we have a contradiction. By above two steps, we conclude that the
limit [A'] is of the form [6), A;] or [A;. 62] where §; is an a-twisted flat
connection and A, is an a-twisted, non trivial. anti-self-dual connection

over (X;,%;),1=1,2. O

4.2. Simple case

From now we will fix attention on [4'] of the form [#, A;]. (Similary
for the form [A,,6,].) If [4;] € 9312,21,2 x, N Vii N NVi (¢ <d) then
dimension formula gives

(4.2.1)
dim(m?y(’)"(gxn)) N I/] n---nN ‘/d) - (hm(ﬂnz’; ,5’2 X, N Vi] n---N 17“3)

= 8k} + 8EI_ ki + 85Ik, + 40, +4T5_ 4,
— 3bF(X,) — 2¢, — 2d + 2.

Now we use the following theorem.
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THEOREM 4.2.2. [11]. Let the self intersection number of ¥ be
n # 0 and let A be a flat a-twisted connection over (X \ £). Then the
holonomy parameter o is of the form 2 and the instanton number and
the monopole number are given by { = a, k =- —i‘ni. If on the other
hand ¥ - ¥ is zero then k and ¢ are zero.

Applying Theorem 4.2.2 to surface &, since £,-%; is 0, we conclude
that k] and ¢} are zero and the dimension formular (4.2.1) becomes
8YI_ ki + 452, (2k; + ¢;) — 3b] X,) ~ 2gy — 2d + 2¢.

So we have dlm(mkl’x(g,\) NViN---NVy)-- dim( img; Al Vil N

N Vie) = 857 ki + 4535, (2k; + £]-) —3b5(X1) — 2¢; — 2d + 2.

Since dim(ﬂﬁ}c’ye’x(g,\) NnVi---NVy)is 0, dim(f]ﬂ?,2 .x, N Vin---nN
Vie) = 3b3(Xy) + 2g; + 2d — 2¢ — 881 k; — «%2_1(2k; + £;). Since
dim(MY, 0 Vi --NVie) > 0, 367 (X1)+2¢1 +2d—2¢ > 8Tk, +
4T3_, (2K + £,).

If 5(X,) =1, g = 0 and d = ¢ then 857, k; + 47, (2k; +
€;) = 0 and the sequence [4,] € MY, x(gx,) N Vi N-- NV, converges
strongly to a limit [A'] = [0, 4,). In this casc we have k), = k and
£3 = ¢ where kj is Chern number and ¢} is monopole number of [4,)].
So img,z X is corresponding to My,  and MY, v NViN---NV,
becomes a compact 3-dimensional manifold. In this case we can apply
the following proposition.

PROPOSITION 4.2.3. [6]. For A sufficiently small, the moduli space
My, x(gx) for the Riemannian metric g5 over an oriented, compact,
simply connected, 4-dimensional Riemannian manifold X can be iden-
tified with the zero set of a smooth section v of the bundle H — M, x,
where H — My x, is an associated vector bundle with fiber H}l so(3)
and H;l is the space of self dual harmonic forras on X, and My x, is
an anti-self-dual moduli space over an oriented, smooth, simply con-
nected, compact, four manifold X, with Chern number k.

In our case the space MMy x(gy) is correspoading to ML x(ga) N
Ui(e) and My x, is corresponding to zmg,”f Thus we can construct
an associated vector bundle H — My, x, with fiber H;l ® s0(3) and
the local model for the space (DJTk 6X (g)NU(eNNVIN---NVy is the

zero set of a local section ¥ : U — H where U is a neighbourhood in a
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compact 3-dimensional submanifold Mo x, Wi NVaof MY, «,.

Then 71(A) = §51(A) = §(MF, x(gx) N Ui{e)) N Vi N - N Vy) is
equal to the Poincare dual of the rational Euler class of the bundle
H— My, x, " ViN---NVy for all suitably small values of A. But
the rational Euler class of an odd-dimensional vector bundle is always
Z€T0.

So we deduce that 7;(A) is zero. Thus we can show that 71(\) =
#1;(A) = 0 when b} (X,) =1 and g, == 0. (Similarly i5(A) = 3I2(\) =0
when b;L(Xg) =1 and g; = 0.)

From now we must show that ¢,(A} i1s zero in general case (i.e.
b;(X]) > 0 and ¢; > 0). Then we can prove that i;(A) is zero for
all case (similarly for i3(A)) and we conclude that our polynomial in-
variant ¢§ , (gx) = 0 for suitably small values of A.

4.3. Extended equations in general case

Next we will prove that ¢,(A) = 0 in general case (bj(Xl) > 0,
g1 > 0). To prove this, we will construct a larger family of equation and
show how the anti-self-dual equations F} = 0 over Uj(e) = E; 1[0, €]
can be embedded in a larger family of equations and we complete the
proof of Theorem 3.11 using the extended equatious. (Similarly for
Usa(€))

To construct a larger family of equation which contains the anti-
self-dual equation F} = 0 over U (€). we will consider a 3-dimensional
subspace S4 in le(p)(gg), a self-dual 2-form w € H}El C Q}l (it
is possible since b (X;) > 0 by assumption) which are considered by
Donaldson. And we will construct a self dual 2-form 1,(A) € Q}] (GE)
supported in N(Z ;)\ ¥;. Let ¢ > 0 be the first eigenvalue of the lapla-
cian A on the functions on X;. And define a function R on (X;,.%,).
equal to 20 on B(p;,r) and supported in B(p;,2r) ard r is a real num-
ber such that Vol(B(p1,2r)) < %V()Z(Xl) where p < %r. We define
a form ¢ on the sections s which lie in le(p)(gE) and vanish on the

boundary of Z,(p) as
g(s) = / \Vas|® + Rls*dpu, s € Q% (GE)
Zy(p)

where A = A +a € A%, Vgea € LP(X\ Z), p> 2.



Vanishing theorem on singular moduli spaces 1087

The associated eigenvalue problem is to find sections and constant

such that A 4s+Rs = 7s. Let S4 be the space of sections in QOZ] (p)(gE)

1

spanned by equations s belong to the eigenvalues 7 with 7 < 3o,

vanishing on 0Z;(p).

LEMMA 4.3.1. There is py with 37 > py >> 0 and a function €(p)
such that if p < po, N™IWX < p < 1, € < ¢(p) and [A] is an a-twisted
connection in Uy(€) C Bl?,l,x then S84 is 3-dimensional.

Proof. For the proof see the paper [4], he proved the same results
for the case [A] is not an a-twised cannection in Uj(e) C By, x, from
our all discussion we can go over word for word, as does the analogue
of [4]. By Lemma 4.3.1 we have a 3-dimensional space S4 for all [A] €
U,(€). Next we consider a self-dual 2-form w € H}l and a 3b; (X1)-
dimensional space W4 for all [A] € U;(e). Let W4 be the space {s @
wls € S4,w € HY } for all [A] = [A* + a] € Uy(€). Then dim(W,) is
367 (X)) and we can regard s ¢)w as a Gg-valued self dual 2-form over
the connected sum (X, T) = (X, £1)§(Xs, L2), extending by 0 outside
Z1(1) \ &y (for details see [4]}. Finally we will construct a self-dual
2-form 7,(A) for all [A] € Uile€) supported on N(Z;)\ Iy; since ¥,
is a closed, oriented, 2-dimensional surface with genus ¢g; and &; \ py
is homotopic to a 2¢;-leaved rose Ga4,, m1(X; \ p1) is represented by
independent 2g;-loops 71, -, ¥24, in L representing Gag, .

If we deform v; C ¥; into a loop 7] in N{3;)\ £; then we may
think it as a map 7! : §' > NiZ)\ 81,1 =1.---,2¢;.

For each a-twisted connection 4 = A® +a = A% o € [e, % — e], we
have a holonomy element h.;(A) of A along the curve v} C N(Z;)\Ey,
i=1,--,2¢;.

For all [A] € Ui(e) C B, x define amap h: {y1, - ,724,} =

homotopic
{71, +7hg, } — SU(2) such that h(v}) = hy (A) for all [A] € Ui(e).
If Ais a flat o-twisted connection over (X;,%;) then the map h is
well-defined since h.(A) is independent of the choice of v; which is
homotopic to 7;, ¢ = 1,--- ,2¢;. However each a-twisted connection
[A] € U,(e) is close to a flat «-twisted connection over (X;,X;) part
of (X,X) and [A] converge weakly to a limit A'] which is splitted in
(X1,2) I (X,,%,) and is an a-twisted flat connection over (X;,3,)
part. Thus the map h is well-defined. Suppose h.;(A4) is not —1 €
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SU(2). This is possible since we have the holonomy parameter « in
the region [e, -;— — e]; by the definition of holonomy, the holonomy of
each a-twisted connection A € A® along the curve 7! is approximately

exp 2me (g —0a>’ a € [e,4 — €], we have

hy(A) = exp2m (g —0a> # (_01 _01) =--1€ 5U(2)
for all a € [e, -;— - e}.

Now we consider a map exp™' : SU(2) — su(2) which invert the
exponential map when restricted to the complement of —1 € su(2).
The map exp™' sends hy(A) € SU(2) to exp~'(hy(A)) € SU(2)
for all [A] € Uj(e) and exp™'(hy(A)) is defined over v/ C N(Z;) \
Yy, 1 =1,---,2¢;. Next consider a surface LY C N(X;)\ £; which
is represented by {v;, - ,73, } and a small tubular neighbourhood
Ne'(y ) of v/ in N(Z;)\ X which is dlffeornorphlc to a disk D-bundle
over ! where D is a disk with small radius ¢/ > 0.

We can extend the value exp™'(hy(A)) to a small tubular neigh-
bourhood of 4! using the parallel transport along the radial geodesics.

Now we consider a self-dual 2-form v; such that supp(vi) C Ne (7)),
t = 1,---,2¢1. Then vy,- - ,vq, are linearly ind(pendent. Using
the 2-forms, define a self-dual 2-form v as v = %] glso,v, where p; is
partition of unlty supported in N (v!). Then we can define a section
7(vi,vi, A) € Q%(Gr) by T(vi,vi, A) = exp~!(h, (A ® v where the
loop ~! € N( ) \ ¥; is a deformation of ¥; (: = 1, -+ ,2¢;) and the
set {71, - ,7Yag, } i1s the standard basis of the free group m1(Z; \ p1).

The section 7(v;,7v;, A) is a Gg-valued self-dual 2-form, supported
in a small tubular neighbourhood N, (4!) of v/ in N(£¢)\ £,.

For a vector t = (t;, -+ ,t3, ) in a compact 2¢;-dimensional ball
B%91(§) with small radius & > 0 we consider

m(A) = D28 tir(vi,vi, A) for all  [A] € Uy (e)

Then 7,(A) becomes a Gg-valued self-dual 2-form supported in
N(ZN\ L.
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Now we can construct a larger family of equation which contains the
anti-self dual equation F*(A) = 0 over U;(¢) as follows;

(4.3.2)
Ft(A) +s®@w+ 1(A) =0 in the three variables (A4,s,1?)

where s®w € Wya, t=(t1, - tag)€ B*91(6).

The extended equation F*(A)+s®@w+1(A4) = 0 is gauge invariant
and we can pass to the corresponding quotient space. Consider a space
C whose points consist of ([A],s.?) where [4] € Ui(e), s € Sa and
t = (t1, - ,t2g ) € B*9(6) C R*¥'. Then there is a projection map
m:C — Uy(e) C By, x sending ([A],s,t) to [A].

Recall that the anti-self dual equation F7(A) = 0 can be viewed
as the zero set of a section of an infinite dinensional bundle F =

AO‘EQ}(QE) over By , . (Here F = AO‘EQ;(QE) = (A*xQL(GE))/~

where (Ag, g7 ') ~ (A,¢) forall v € Q% (Gp). A€ A% and g € G.)

The fiber of F over [A] € U(e€) is a copy of Q%(Gr) and we let
#([A4],s,t) = ([Al, FT(A) + s 2w + 7(A)) then we can regard ¢ as
a section of 7*(F) over C. This is possible because ¢([A],s,t) =
(AL F*(4) + 5@ w + 7 A)) = (gA4g=", g(F(4) + 5w + 7(A))g )
= (Ag L g(FH(A)+sQuw + r(A))) = (A4, FT(A) + s @ w + 1(A))
over 7*F — C [Lf{] ([A] x Sa x B%91(§)).

*F F

l l

¢71(0) C ¢ —— Ui(e),
([4],5.1) 4]
Diagram 4.3.3.

LEMMA 4.3.4. The section ¢ of n*F over C is Fredholm of index

Proof. We can construct local models for C. We write the elements
in U;(€) in a neighbourhood of [A?] using the standard slice;

—

A=A%+4a, dha=0, A“:A°+\f—fﬂ(r)<3 O)n,
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where A° is an SU(2) connection on the bundle £ — (X, ¥)and Jisa
smooth cut off function equal to 1 in a neighbourhood of 0, equal to 0
forr > 1, and v/—1n is a connection 1-form for the circle bundle. (For
details see 2.1 and 2.2.)

Let S be a bundle over U;(e) with fiber S4 for all [A] in U;(e).
Define v4 as a spectral formula [, (A4 + R — z)"'dz where A is a
contour in the complex plane running around the interval [0, 20] and
not meeting the spectrum of A4+ R and (A4 + R —z)"! is a Green’s
operator. (That is (A4 + R — z)7!(¢) is equal to the unique solution
zof Az = ¢ — H(¢) in (H%)* for all { in QUZ ( )(QE\ to S a; to prove
this we must show that (A4 + R)(74(¢)) < 20 - 7a(¢) for all ¢ in

mp)(gb) This 1s true for all contours in the compl 2x plane running

around the interval [ 50] and not meeting the spectrum of A4 + R.

(See [4]). Now we 1dent1fy the fibers of S in a small neighbourhood
With S« using the restriction of 44a t0 Sgay, for all A =A% +ain
the small neighborhood of A*. (That is yaal|ssa,, * SActa — S g«

Sactar Sae COY (Gr).)

Consider

S([A],s,1) = FHA) + va(s) @ w + 74(A)
= FT(A® 4+ a) + vae 4a(s) ®w + 74(A% + a)
:F+(kA")+d+aa a a] +ya(s) w4+ Te(A)

where s € Spe, t € B291(4).
Let 6+ 4 be the derivative of v 4 with respect to a, evaluated at a = 0.
This gives

d
0v4 = a|t=0(/(AA°+ta + R - 2)7dz)
A
*/ dl A +R-z)"'d
= df t=0(D A2 +1a - z) z
. d .

Z/—(Am FR=2)7 Sl Do ria)ds

A

= —/(AAa +R—2)"26Aadz = —/ G .6A4G,dz
A A
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where G, = (Aae + R— Z)"! and 6A,4 = %Itzg(AAa+ta) is the
derivative of A 4 with respect to a evaluated at a = 0.

We then have

(4.3.5)
(dg)o(a, s,t)

= dj,,a +s5sQw — / G.0AAG.(8)dz @ w + E?illtﬁ(v,-,*y,-, AY)
N

=dliat+s@uw- / G.(d%e + a*dae )G (s)dz @w
A
+ SE (v, vi, A%
where a € kerdj.,s € Spaand t = (t1,--- 1, ) € B*91(§),
6> 0.

For fixed z in A and s in S 4« the map
(4.3.6) a— G (d%a(G.s) + a*d4e(G;s))

is compact.

We call a section Fredholm if it is represented in the local triviali-
sations by maps with Fredholm derivatives and we have a fact that a
sum F + K of a Fredholm operator F and a compact operator KA is
also Fredholm and index

(4.3.7) index(F + K) = index(F'.

By (4.3.5), (4.3.6) and (4.3.7) we have index (d¢) = index(¢) =
index(h) where h is the map (a,s,t) — daa+s@w+7,(A%). And the
map h is Fredholm of index(h) = index(d}.) + 3+ 2¢1 = 2d + 3 + 2¢;.
Thus we conclude that the section ¢ of 7*F over C is Fredholm of index
24+ 3+ +2¢;. O

To achieve transversality we must construct a family of perturba-
tions - section of F.

Let h be a monotone cut off function, equal to 1 on [0, B] and
supported in [0, 2B] for a finite real number. For all [A] € U;(¢) define

hi(A) = h(f, |F(A)|Pdp). We are now able to define a family of
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perturbations parametrised by a ball B*(¢') C R®; For a vector z =
(21, - ,74) € B*(8'") we let

0.(A) = Lisiz,hi(A)pi(A)

where pi(A), - ,ps(A) are sections of 7*F which are supported on
aset {G1,---, G| G} is a neighbourhood of a loop £, in (X \T),G.N
G, =0for: # j}. And pi(A), - ,p.(A) generates the harmonic rep-
resentitive of szé,s,t = Q}(QE)/Imdo.

So we conclude that o,(A4) is a well-defined self-dual 2-form which
generates H% , , C Q% (Gg). (For details see [4])

REAMRK 4.3.8.
(1) Theloops €1, , €, can, by general position, be taken to avoid
the surfaces £7,--- | X/,

(2) Let ¢' be a section of #*F over C such that ¢'([A],s.t) =
FHA)+s@w+ m(A) + 0.(A). Since ¢’ differ from ¢ by a
compact perturbation term o ,(A), the section ¢’ has Fredholm

of index 2d + 3 + 2g¢;.

4.4. End of the proof of Theorem 3.11

In this section we will complete the proof of Theorem 3.11 and hence

a Vanishing theorem. We again consider the space U')(€) of a-twisted

connections over (X, Y) = (X, £)t( X9, X2) which are almost flat over
A

most of Z,(p), and the bundle C-"-U;(¢) C B¢ x- Withw € H;’
and z € B*(¢') fixed, we can now consider the extended equation
FHA)+ s w+ 1(A) 4+ 0,(A) = 0 over the extended space C.

We denote the solution space by L2, x(A). Then L3, x(A) is a
2d + 3 + 2g,-dimensional manifold. If we consider the intersection
of L{, x(A) with the zero section in the bundle C-5U;(€). we can
regard it as being obtained from the singular moduli space My , «(gr)N
Ui(e€) by perturbing the anti-self dual equation F*( A} = 0 by the term
o.(A).

With V; fixed, : = 1, -+, d, we consider the intersection E?,i,x(’\) N

1 N---NVy and denote it by S(A). Then S(\) is a 34-2g;-dimensional
manifold.
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Let I7()) be the intersection of S(A) with the zero section in the bun-
dle C—5U(e); it is obtained from the intersection Li(A) = (M7, x(92)
NU1(e)) N Vi N --- N Vy by perturbing the equation F+(A4) = 0 by the
term o,(A).

By these constructions we conclude that S(A) is a (3+2g; )-dimensional
manifold which contains 0-dimensional space I} () and $I}()) is equal

to §I;(A) = ¢1(A) for all small values of \.

T F F = A“éﬂ}(gz«:)

| J

c — Ui(e)

U U

L3e(N) =(¢)71(0) (F)7H0) = Mg, x(g2) N Ui(e)
U U
S(A) Ii(N)
U
Ii(A)
Diagram 4.4.1

To complete the proof of Theorem 3.11, we will apply the Euler
number argument. But it can not be applied if our manifold containing
I{()) is not compact. In general the 34 2¢,-dimensional manifold S(A)
which contains I{()) is not compact and so we must show that, if X is
small enough, there is a compact 3 + 2¢;-dimensional submanifold of
S(A) which contains I{(A). Finally let S*()) be the union of the path
components of S(A) which contain points of I} ().

Remark 4.4.2 For small values of ), I{(}) is ~ontained in the space
whose elements consist of equivalence classes [4] € mfl‘x(g,\) N (e)

such that E4(A) € [0, ;i—e] where mie x(gx) 1s obtained from the mod-
uli space My ¢ x(9x) by perturbing the anti-sel’-dual equation by the
term o (A).

Now we have the following key Lemma.
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LEMMA 4.4.3. For small values of A, S*() is contained in the space
{([A],s,t) € SQ)|E1(A) € [0, 3¢] }.

Proof. The proof is similar with Donaldson’s construction (see [4])
but we have some difference. We will check the difference caused by our
special cases. We must show that if A is small enough, the component
of S(A) which reach the level E; = %E can not be joined by paths in
S(A) to I{ ().

So suppose we have a sequence A, — 0 and points ([An], sn,tn)
in S(An) which converge to a limit ([4'],s',¢') with E;(A') = §e on
the complement of a finite set {zy, -+ ,zp} in Zy(r) II Zy(r) where
Zyr)=X;\ B(pi,r), 1 =1,2.

Since E(A’) = %e # 0, A' is a nontrivial, a-twisted, anti-self-dual
connection over either component (X, %;),(X2,Z2). And it satisfies
the following equation

(4.4.4) F+(A') +s8' @uw+ (A" +c*o,(A) =0

where c*o,(A') is a “contraction”of a section o, by ¢ € R”.

REMARK 4.4.5. The equation of (4.4.4) is well defined; Recall that
the points ([A,], $n,tn) € S(A,) satisfy the extended equation FH(A,)
+8n @ w4 7, (An) + 0-(A,) = 0. Since [4,] converge to [A'] on the
complement of a finite set {z1,--- ,z,} in (Z1(r) I Za(r)) 0.(4,) is
supported away from the points in {zy,--- ,z,} for large n.

Going to a subsequence we can suppose that;

0:(An) — S cxihi(A)pi(A")

where ¢; = 0 if there is a point z; in the interior of G}.

¢; € (0,1) if there is a point z; on the boundary of G.

¢; = 1 if no points z; lies in the closure of G.
and z = (2, ,z,) € B*(§'") C R®* and B*(¢') is a small ball of radius
6" > 0 in R°.

We define “contraction”of a section o, by ¢ to be the section;
(4.4.6) c*o (A =L jexhi(A)pi(A").

Suppose that the m points z, on where convergence fails, p points
lie on at least one of the surfaces £/, 7 = 1,--- ,d, and ¢ points lie in
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closure of one of the disjoint neigbourhood G/ in (X, ) used to define
oz. Then if k' is the Chern class of [A’] we have p+ ¢ + k' < k.

Now the size of the set defining the contraction in (4.4.6) is ¢. The
space of solutions (([A'],s',#'),c) € C x R® to equation (4.4.4) has
dimension 8k’ + 40" — 3(1 + b (X)) — (20— 2) — 14+ 3+ 2¢; + q.

(4.47) If [A’] S mt:l Y M ‘/ll n---N ‘/,'C then C 2 d— 2p
Since the limit [A'] is a non trivial, a-twisted, anti-self-dual connection
over either component (X;,%,),(X2,%,), dim(MG py O Ve, N -oo
Vie) 2 0. Thus we have
(4.4.8) dim(9My, 4 y) > 2c.

By (4.4.7) and (4.4.8)

dim(Lg, x(An)) =2d +3+2g; <2c+4p+ 3+ 2¢4
S dim(mgf'elyy) + 4p "I" 3 + 29]

So we have

Since 2d = dim(IMZ , y(ga,)) = 8k +4¢ — 3(1 + bF (X)) — (29 — 2) and
by (4.4.9) we get that

(4.4.10) 8k + 40 < 8k’ + 40' — 1 + 4p.

Now decompose the number r of the points {z;,- - ,z,} on which
convergence fails in X \ ¥ part and s in T part (r + s = m). Recall
that p is the number of the points z; which lie on at least one of the
surfaces ¥}, 7 = 1,--- ,d, and ¢ is the number of the points z; which
lie in the closure of one of the disjoint neighbourhood Gioi=1,--- s,
in (X, X) (used to define ¢,). Thus we have

(4.4.11) p<r and ¢<m-p
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In section 3, we get that 8k + 4¢ = 8k' 4 8L7_ k; + 8% _k; +4¢' +
4N3_ 165 > 8k' + 40+ 8r + 4.
Then, by (4.4.10) and (4.4.11), we have
8k + 46"+ 8r +4s <8k +4¢ < 8k' + 40 — 1 + 4p.

So 8 +4s < —1+4p < 4p+ g (¢ > 0) and by (4.4.11) we have
8 +4s < 4dp+q < 4r +m — p. Then 3m + p < 0 and we deduce
that m = p = 0. Since 0 < ¢ <m, p = ¢ = m = 0. So we conclude
that as A\, — 0 the sequence ([A,], sn.tn) € S(An) converges strongly
to a limit ([A’],s',#') which satisfies E1(A') = fe and the equation
FHAY+s' Qw4 mo(A) + 0,(A4") = 0.

Specially the Chern number k' of the limit [A’] becomes k and the
monopole number ¢ of the limit [A'| becomes ¢ where & and /¢ are
Chern number and monopole number [A,] respectively.

In this case we can apply Donaldson’s argument (see [4]) and the
result is following; let F : T — M3, be a fiber bundle with fiber
S0O(3) consisting of isomorphism classes of pairs ([A'], p) where ML oy
is a singular, a-twisted moduli space over Y = (X, X1) (X2, 3o) with
the Chern number & and the monopole number ¢.

Let O be an open set in MY,y with compact closure and D be a
2n-neighbourhood of O for a small positive number 5. We introduce
a notion of strong convergence; for » given A, and n > 0 say that
[An] € MY, ((ga,) is (7, An) close to [A'] if there is a bundle map
©; E| z(ry = E'| z(ry such that ||An — ¢*(A")||r(2(r)) < 1 where Z(r) =
Z,(r) 11 Zy(r) for suitably small r and E' is an SU(?)-bundle over Y
with Chern number k and monopole number £.

Now we can consider smooth maps 7 from the open set F~'(D) in
T to the moduli space MY, ((gx) such that 7,([4'],p) € ML x(9x)
is (17, A) close to [A'] and we have two maps from F~'(D) to ( ko) Tim
given by the composites;

FYD)CT - ML x(9x)

I“JV [{z(r)J(

Rers
( ?,z,y)* = (B?,t):(r)
where Rz, is a restriction map to Z(r) = Zy(r) I Zy(r). From this
we have the following proposition.

X
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PROPOSITION 4.4.12. Suppose that b7 (X;) > 0, i = 1,2. Let O
be a precompact open set in M, . For n < n(O) and A < A\O)
there is a diffeomorphism 1) from F~Y(D) C T to an open set S , in
MY o x(gx) such that

(1) 7A([A'], p) is (n, A) close to [A']

(2) Sxq contains all points in M , (gx) which are (n, \) close to
a point of O o

(3) As A — 0. the composites R,(,)7x converge in C' to R, F.

Proof. See proposition 4.6.[4] O

By Proposition 4.4.12 we deduce that for small values of A we can
construct from ([A'], s’) of the limit ([A'], s’,t'} of the points ([4,], sx,
tn) a 3-dimensional family Sy , parametrized by SO(3).

Let S , be the space {([A],s,¢) € S(A) = LY, x(M)NnViN---N
Vil ([A],s) € Say, t € B?9(8) C R?9 for small number 6} C S(A).
Then we conclude that S' is a complete component of S{A) and for
large n the sequence ([An] sn, n) liein S} .

But we have that for all [A] of ([4], s,t ) € 84 E1(A) lies in partly

above and partly below the level F; = -2-6 and as A — 0 the variation
of E; goes to 0 - so with e fixed and A approaching zero, this com-
ponent SSW eventually lies, say, between the levels %e and -Z—e. Such
S} ;> however, can not contair. points in My , x(gx) N Ui(e), because,
by Lemma 4.1.1 and Remark 4.4.2, we know that E; goes to 0 on
M3, x(gx) N Ui(e) as A — 0, so Ey is eventually less than fe for
suitably small values of A. Thus the sequen(e ([An], 5nsta) € S(/\ )
converging to ([A'],s',') with E;(A') = 1€ can not be _]omed by paths
in S(A) to I;(\) C E'l“1 [0, 1¢€] for small Values of A. This complete the
proof of Lemma 4.4.3 [

Finally we will complete the proof of Theorem 3.11. We can fix A
in accordance with Lemma 4.4.3 and consider the space L{, y(A\) =
{([A4),s,t) € CIF*(A) + s @ w + 7(A) + 0,(A) = 0}. Then we can
say that £, x(A) is a 2d + 3 + 2¢;-dimensional smooth manifold and
S(A) = L3, x(A)NViN--- V4 is a 3+ 2g;-dimensional smooth manifold.
Then we can show that the space {([4].s,t) € S(A)|E{(A) € [0, 3¢]} C
S(A) is a compact 3+ 2g,-dimensional subset of S(\). By Lemma 4.4.3
the union of path components 5*(\) containing all the points of I{() is



1098 Yong Seung Cho and Yoon Hi Hong

contained in {([A],s,t) € S(A\)|E1(A) € [0, 3¢]}. Thus $*(\) is a closed
3+2g,-dimensional manifold for suitably small values of A. By the defi-
nition of I7(A), I{()) is the intersection of S(A) with the zero section in
the bundle C-5U;(¢) (See Diagram 4.4.1). Thus I1(A) is the set of zeros
of a section of a 3 4 2¢;-dimensional bundle over a 3 4 2¢,-dimensional
compact, oriented manifold S*(XA). So I}(\) represents the Euler class
of this bundle and hence £I{()) is 0 by the Euler number argument. Be-
cause Ij(A) is obtained from I;(\) = (MR, x(g2)NT1(e))NVIN---NVy
by perturbing the term o,, we have §/{(A) = §;(A) = ¢;(}) and hence
11{A) 1s 0 for all suitably small values of \.

Similarly for £12(A\) = i2()\) we conclude that i,(A) is 0. Thus
we prove that the polynomial invariant ¢g, y(gx) ([Z1],--,[84]) =
11{A) + 12(A) is 0 for all suitably small values of A. [J
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