VANISHING THEOREM ON SINGULAR MODULI SPACES

YONG SEUNG CHO AND YOON HI HONG

1. Introduction

Let X be a smooth, simply connected and oriented closed four-manifold such that the dimension $b_2^+(X)$ of a maximal positive subspace for the intersection form is greater than or equal to 3. Suppose X is a connected sum $X_1 \sharp X_2$ with each $b_2^+(X_i) > 0$. Donaldson considered a sequence of connected sums

$$(X_1, g_n^1) \sharp_{\lambda_n} (X_2, g_n^2) = (X, g_{\lambda_n})$$

with a neck of radius λ_n , and studied the limiting behavior of the moduli space as $\lambda_n \to 0$. In [3] Donaldson got his celebrated theorem:

THEOREM. (Donaldson) Suppose X is a smooth, simply connected and oriented closed four-manifold. If X is decomposed as a smooth connected sum $X = X_1 \sharp X_2$ with each $b_2^+(X_i) > 0$, $4c_2(E)[X] > 3(1 + b_2^+(X))$, then the polynomial invariant $q_{k,X}$ vanishes identically, where $q_{k,X}$ is defined by the moduli space of anti-self dual connections of an SU(2)-bundle E over X with $c_2(E)[X] = k$ and $b_2^+(X)$ is odd and not less than 3.

In general a 2-dimensional homology class in a four manifold X can not be represented as a smoothly embedded sphere. This raises the problem of finding the smallest possible genus of the surfaces representing a given 2-dimensional homology class.

Received April 17, 1996.

¹⁹⁹¹ AMS Subject Classification: Primary 57N13, 58A14.

Key words: four-manifold, Donaldson polynomial invariant, singular connection, vanishing theorem.

The present studies were supported in part by the Basic Science Research Institute program, Ministry of Education, 1996, project No.BSRI-96-1424, and GARC-KOSEF.

To find a lower bound for the genus, Kronheimer and Mrowka considered the space \mathcal{A}^{α} of α -twisted, singular SU(2) connections which have holonomy α along the embedded surface Σ in X. They used weighted Sobolev spaces and a singular metric with a cone like singularity along Σ to control effectively the moduli space. In [11, 12] they got the following theorem:

THEOREM. (Kronheimer, Mrowka) Let X be a smooth closed, simply connected and oriented 4-manifold. Let $b_2^+(X) \geq 3$, odd and let X have non trivial polynomial invariants. Then the genus of any orientable, smoothly embedded surface Σ , other than a sphere of self-intersection -1 or 0, satisfies the inequality

$$2g(\Sigma) - 2 \ge \Sigma \cdot \Sigma$$
.

Suppose the cyclic group \mathbb{Z}_p of order p acts on a smooth, orientable, closed 4-manifold X. Then an oriented surface Σ in X can be the fixed point set of the \mathbb{Z}_p -action on X.

In [1, 2] Cho considered the \mathbb{Z}_p -action on an SU(2) bundle $E \to X$ and its quotient bundle $E' \to X'$. Then the fixed point set Σ of \mathbb{Z}_p -action on X is appeared in the quotient space X' as a singular set.

THEOREM. (Cho) (1) Suppose $\pi_*: H_2(X,\mathbb{Z})^{\mathbb{Z}_p} \to H_2(X',\mathbb{Z})$ and $\pi_*(\alpha_i) = p\alpha_{i'}, i = 1, \dots, d',$ then $q^{\mathbb{Z}_p}(\alpha_1, \dots, \alpha_{d'}) = q'(\alpha'_1, \dots, d'_{d'})$ where $q^{\mathbb{Z}_p}$ is the polynomial invariant defined on the invariant moduli space on X and q' is the polynomial invariant defined on the moduli space on the quotient setting X'.

(2) Let α_1 and α_2 be the holonomy parameters of the \mathbb{Z}_p -action along the fixed point set Σ . For regular values α_1 and α_2 the polynomial invariants $q_{k,\ell}^{\alpha_1} = q_{k,\ell}^{\alpha_2}$ are equal, where k is the instanton number and ℓ is the monopole number and the polynomial invariant $q_{k,\ell}^{\alpha_i}$ is defined on the singular moduli space of holonomy parameter α_i along the fixed point set Σ .

Let X_1 and X_2 be smooth, closed, simply connected, oriented 4-manifolds, and let Σ_1 and Σ_2 be oriented embedded 2-dimensional surfaces with genus g_1 and g_2 in X_1 and X_2 respectively. Suppose $b_2^+(X_i) > 0$ for i = 1, 2, and each intersection number $\Sigma_i \cdot \Sigma_i$ is 0 for i = 1, 2.

Choose two points p_1 and p_2 in Σ_1 and Σ_2 respectively. By cutting out small open neighbourhoods of p_1 and p_2 in X_1 and X_2 and identifying their boundaries respectively, we have a connected sum of the form $(X_1, \Sigma_1) \sharp (X_2, \Sigma_2) = (X_1 \sharp X_2, \Sigma_1 \sharp \Sigma_2)$.

For a small positive number $\epsilon > 0$ choose a holonomy parameter $\alpha \in \left[\epsilon, \frac{1}{2} - \epsilon\right]$ around the surface Σ . Let $E \to X$ be an SU(2)-vector bundle on X and $N(\Sigma)$ be a small tubular neighbourhood of Σ in X and $E|_{N(\Sigma)} = L \oplus L^{-1}$ decomposed into complex line bundles. Let $k = c_2(E)[X]$ be the instanton number and $\ell = -c_1(L)[\Sigma]$ the monopole number. Choose an orbifold metric on X along Σ . We consider the α -twisted singular moduli space (over the bundle $E \to (X, \Sigma)$) $\mathfrak{M}_{k,\ell,X}^{\alpha}$ (for details see the next section). Then the moduli space has the formal dimension $8k - 3(1 + b_2^+(X)) + 4\ell - (2g - 2)$ where $g = g_1 + g_2$ is the genus of the surface Σ .

In this paper we would like to prove a kind of Donaldson's Vanishing theorem, that is, the polynomial invariant $q_{k,\ell}^{\alpha}$ (defined on the singular moduli space) vanishes under certain conditions. Roughly we can summarise as follow:

As Donaldson's case we consider $(X, \Sigma) = (X_1, \Sigma_1) \sharp (X_2, \Sigma_2)$ and $g_{\lambda} = g_{\lambda}^1 \sharp g_{\lambda}^2$ metrics on X depending on the neck parameter λ . Then the polynomial invariant, if $\dim \mathfrak{M}_{k,\ell,X}^{\alpha} = 2d$,

$$q_{k,\ell,X}^{\alpha}(g_{\lambda})(\alpha_1,\cdots,\alpha_d)=\sharp(\mathfrak{M}_{k,\ell,X}^{\alpha}(g_{\lambda})\cap V_1\cap\cdots\cap V_d)=\sharp I(\lambda)$$

where the number is counted with sign, and V_i are the codimension 2 varieties defined by $\alpha_i = [\Sigma'_i], i = 1, \dots, d$.

For sufficiently small λ we have $I(\lambda) = I_1(\lambda) \cup I_2(\lambda)$ where the energy of the elements of $I_i(\lambda)$ are supported in $(X, \Sigma) \setminus (X_i, \Sigma_i)$, i = 1, 2.

By the arguments of perturbations of anti-self-dual equations and Euler number of odd dimension we have the following theorem.

THEOREM. If $(X, \Sigma) = (X_1, \Sigma_1)\sharp(X_2, \Sigma_2)$ $(b_2^+(X_i) > 0)$ and $\Sigma_i \cdot \Sigma_i = 0$ for i = 1, 2, and if $b_2^+(X) \geq 3$, odd and $d \geq 2k + 1$ where $2d = \dim \mathfrak{M}_{k,\ell,X}^{\alpha}$. Then for sufficiently small λ , and for generic metric g_{λ} the signed number $\sharp I_i(\lambda)$ is 0 for i = 1, 2 and hence the polynomial invariant

$$q_{k,\ell,X}^{\alpha}(g_{\lambda}) \equiv 0$$
 on $H_2(X \setminus \Sigma, \mathbb{Z})$.

In section 2 we will summerize the basic definitions, properties on the singular moduli spaces, the necks of connected sums, and compactification of the singular moduli spaces. In section 3 we will define a polynomial invariant on the singular moduli space. We discuss the behaviours of the moduli spaces when λ goes to 0, and the statement of our main theorem. In section 4, we will prove the main theorem by considering the given parameters and constructing Lie algebra valued self-dual 2-forms to cut out the 2g-dimension from the moduli space which comes from the genus of Σ .

2. Preliminary steps

2.1. Singular moduli space

Let X_i be a smooth, compact, simply connected, oriented fourmanifold and Σ_i be a closed oriented embedded 2-dimensional surface with genus g_i and we will assume that the self intersection number $\Sigma_i \cdot \Sigma_i$ is zero for i = 1, 2.

Let $N(\Sigma_i)$ be a tubular neighbourhood of $\Sigma_i \subset X$ diffeomorphic to the unit disk bundle of the normal bundle and Y_i be boundary of $N(\Sigma_i)$ which acquires the structure of a circle bundle over Σ_i via this diffeomorphism.

Consider an SU(2)-bundle E_i on X_i and choose a C^{∞} decomposition of E_i on $N(\Sigma_i)$ as $E_i|_{N(\Sigma_i)} = L_i \oplus L_i^{-1}$ and L_i is a complex line bundle. We need not suppose that L_i is trivial bundle. See Diagram 2.1.1.

$$L_{i} \oplus L_{i}^{-1} \qquad E_{i}$$

$$\downarrow \qquad \qquad \downarrow_{SU(2)}$$

$$N(\Sigma_{i}) \longrightarrow X_{i}$$

Diagram 2.1.1

There are two topological invariants in the bundle, which we write

$$egin{align} k_i &= c_2(E_i)[X_i] = rac{1}{8\pi^2} \int_{X_i} tr(F_A \wedge F_{eta_i}) \ \ell_i &= -c_1(L_i)[\Sigma_i] \ \end{cases}$$

where A is an SU(2)-connection on E_i .

For this bundle, we define an " α -twisted" and locally nontrivial connection near Σ_i ; choose any SU(2)-connection \overline{A}_i° on E_i such that $\overline{A}_i^{\circ}|_{N(\Sigma_i)} = \begin{pmatrix} b_i & 0 \\ 0 & -b_i \end{pmatrix}$ where b_i is a smooth conection in L_i , i = 1, 2. Finally choose a number α in the range $\alpha \in [\epsilon, \frac{1}{2} - \epsilon]$ where $\epsilon > 0$ is a small positive number, and define an α -twisted connection A^{α} on

Finally choose a number α in the range $\alpha \in [\epsilon, \frac{1}{2} - \epsilon]$ where $\epsilon > 0$ is a small positive number, and define an α -twisted connection A_i^{α} on $E_i|_{(X_i \setminus \Sigma_i)}$ by

$$A_{i}^{\alpha} = \overline{A}_{i}^{\circ} + \sqrt{-1}\beta_{i}(r) \begin{pmatrix} \alpha & 0 \\ 0 & -\alpha \end{pmatrix} \eta, \quad (i = 1, 2)$$

where β_i is a smooth cut off function which equals to 1 in a neighbourhood of 0, and equals to 0 for $r \ge \frac{1}{2}$, and $\sqrt{-1}\eta_1$ and $\sqrt{-1}\eta_2$ are connection 1-forms for the circle bundle.

From now we will mean that (X_i, Σ_i) is a smooth, compact, simply connected, oriented four-manifold X_i which contains Σ_i and has our bundle structure mentioned above.

We now define an affine space of connections modelled on A_i^{α} by choosing some p > 2 and setting $\mathcal{A}_i^{\alpha} = \{A_i^{\alpha} + a_i | \nabla_{A_i^{\alpha}} a_i, \ a_i \in L^p(X_i \setminus \Sigma_i)\}.$

Similarly we define a gauge group $\mathcal{G}_i = \{g \in Aut(E_i) | \nabla_{A_i^{\alpha}} g, \nabla^2_{A_i^{\alpha}} g \in L^p(X_i \setminus \Sigma_i) \}.$

Then we can consider a Banach space $\mathcal{B}_{k_i,\ell_i,X_i}^{\alpha} = \mathcal{A}_i^{\alpha}/\mathcal{G}_i$ and a Banach manifold $(\mathcal{B}_{k_i,\alpha_i,X_i}^{\alpha})^*$. Here $(\mathcal{B}_{k_i,\ell_i,X_i}^{\alpha})^*$ is the space of irreducible α -twisted connections which is open in $\mathcal{B}_{k_i,\ell_i,X_i}^{\alpha}$ where k_i and ℓ_i are two topological invariants of our bundle.

We have been using a smooth metric on X_i to define a moduli space but this is not the only possibility. We can take a metric which, near to Σ_i , is modelled on

$$g^{i} = du_{i}^{2} + dv_{i}^{2} + dr_{i}^{2} + \left(\frac{r_{i}}{\nu}\right)^{2} d\theta_{i}^{2}$$

where (u_i, v_i) are coordinates on Σ_i and ν is a real parameter not less than 1 and (r_i, θ_i) are polar coordinates in some local trivialisation of the disk bundle.

Over $N(\Sigma_i)$ the metric g^i has a cone-angle of $\frac{2\pi}{v}$ in the normal planes to Σ_i and equal to a smooth one on the complement of $N(\Sigma_i)$, i = 1, 2.

Now consider an α -twisted singular moduli space (over the bundle $E_i \to (X_i, \Sigma_i)$), $\mathfrak{M}_{k_i, \ell_i, X_i}^{\alpha} = \{A \in \mathcal{A}_i^{\alpha} | F^+(A) = 0, F^+(A) \text{ is self-dual part of } F(A) \text{ with respect to the orbifold metric } g^i\}/\mathcal{G}_i \subset \mathcal{B}_{k_i, \ell_i, X_i}^{\alpha}$. Then Kronheimer and Mrowka computed the dimension of the α -twised singular moduli space.

$$\dim \mathfrak{M}_{k_i,\ell_i,X_i}^{\alpha} = 8k_i - 2(1 + b_2^+(X_i)) + 4\ell_i - (2g_i - 2),$$
and
$$\frac{1}{8\pi^2} \int_{X_i \setminus \Sigma_i} tr(F_A \wedge F_A) = k_i + 2\alpha\ell_i - \alpha^2 \cdot \Sigma_i \cdot \Sigma_i$$

$$(i = 1, 2). \quad \text{(For details see [11])}$$

We suppose that X_i is given a homology orientation Ω ; such a homology orientation is fixed, by choosing an orientation for the line $(\stackrel{\text{max}}{\wedge} H^1(X_i))^{-1} \otimes (\stackrel{\text{max}}{\wedge} H^+(X_i))$, where $H^+(X_i)$ is any maximal positive subspace of $H^2(X_i)$, i = 1, 2. Then the moduli spaces have orientations.

2.2. Connected Sums

In this section we will consider a smooth compact, simply connected, oriented four-manifold X with $b_2^+(X) \geq 3$, odd and a closed oriented embedded 2-dimensional surface Σ such that (X, Σ) can be decomposed as a smooth oriented connected sum $(X, \Sigma) = (X_1, \Sigma_1) \sharp (X_2, \Sigma_2)$, where $b_2^+(X_i) > 0$ and (X_i, Σ_i) is four-manifold as in (2.1) (i = 1, 2); fix points p_1, p_2 in Σ_1, Σ_2 respectively and put $Z_i(r) = (X_i, \Sigma_i) \setminus B(p_i, r)$ for r < 1. The ball $B(p_i, r)$ denote the image of the 4-dimensional ball with radius r under the exponential map at p_i and it is contained in $N(\Sigma_i)$, i = 1, 2.

Let Z(r) be the disjoint union of $Z_1(r)$ and $Z_2(r)$. Choose an orientation reversing isometry $I: T_{p_1}X_1 \to T_{p_2}X_2$. Then the map f_{λ} between punctured tangent space given by $f_{\lambda}(\xi) = \frac{\lambda}{|\xi|^2} \cdot I(\xi)$ identifies the annulus in $N(\Sigma_1)$, centered on p_1 , inner radius $N^{-1}\sqrt{\lambda}$ and outer radius $N\sqrt{\lambda}$ with the corresponding annulus in $N(\Sigma_2)$. (Here we take N such that N > 1 and $N\sqrt{\lambda} \ll 1$.)

We form the oriented connected sum $(X, \Sigma) = (X_1, \Sigma_1) \sharp (X_2, \Sigma_2)$ as

a quotient $Z(N^{-1}\sqrt{\lambda}) = Z_1(N^{-1}\sqrt{\lambda}) \coprod Z_2(N^{-1}\sqrt{\lambda})$ by the gluing map f_{λ} for small λ .

Now define an orbifold metric g_{λ} on the connected sum $(X, \Sigma) = (X_1, \Sigma_1) \sharp_{\lambda} (X_2, \Sigma_2)$; the key property is that it should agree with g^i on a large open set, for example on $Z_i(2\sqrt{\lambda})$, i = 1, 2. Over the neck in (X, Σ) we can define g_{λ} to be a weighted average of metrics g^1, g^2 on (X_1, Σ_1) , (X_2, Σ_2) respectively, compared via the identification map f_{λ} .

Consider an SU(2) bundle E over the connected sum (X, Σ) such that we have a C^{∞} decomposition of E on $N(\Sigma)$ as $E|_{N(\Sigma)} = L \oplus L^{-1}$ where L is a complex line bundle. Then there are two topological invariants in our bundle $E \to (X, \Sigma)$ which we write $k = k_1 + k_2$ and $\ell = \ell_1 + \ell_2$ where k_i and ℓ_i are two topological invariants in the given bundle $E_i \to (X_i, \Sigma_i)$ as in (2.1), i = 1, 2. As (2.1) we now define an affine space of connections on $(X \setminus \Sigma)$ and a gauge group by choosing some p > 2 and setting

$$\mathcal{A}^{\alpha} = \{ A^{\alpha} + a | a, \quad \nabla_{A^{\alpha}} a \in L^{p}(X \setminus \Sigma) \}$$
and
$$\mathcal{G} = \{ g \in Aut(E) | \nabla_{A^{\alpha}} g, \quad \nabla^{2}_{A^{\alpha}} g \in L^{p}(X \setminus \Sigma) \},$$

$$\alpha \in \left[\epsilon, \frac{1}{2} - \epsilon \right].$$

Then the quotient $\mathcal{A}^{\alpha}/\mathcal{G} = \mathcal{B}_{k,\ell,X}^{\alpha}$ is a Banach manifold over $(X \setminus \Sigma)$ except at points corresponding to the reducible connections. Now we consider an α -twisted singular moduli space (over the bundle $E \to (X,\Sigma)$) $\mathfrak{M}_{k,\ell,X}^{\alpha}(g_{\lambda}) = \{A \in \mathcal{A}^{\alpha}|F^{+}(A) = 0, F^{+}(A) \text{ is self-dual part of } F(A) \text{ with respect to the metric } g_{\lambda}\}/\mathcal{G}$. Then $\dim(\mathfrak{M}_{k,\ell,X}^{\alpha}(g_{\lambda}))$ is $8k-3(1+b_{2}^{+}(X))+4\ell-(2g-2)$ where the genus g of Σ is the sum of the genus g_{1} of Σ_{1} and g_{2} of Σ_{2} . Since $b_{2}^{+}(X)$ is odd, $\dim(\mathfrak{M}_{k,\ell,X}^{\alpha}(g_{\lambda}))$ becomes even. Now let $\dim(\mathfrak{M}_{k,\ell,X}^{\alpha}(g_{\lambda}))$ be 2d where $d \in \mathbb{Z}^{+}$.

2.3. Compactification of the singular moduli space

In (2.2) we constructed a smooth oriented connected sum (X, Σ) which depends on the fluing map f_{λ} . When λ is small the gluing part becomes small and the connected sum $(X, \Sigma) = (X_1, \Sigma_1) \sharp (X_2, \Sigma_2)$

tends to $(X_1, \Sigma_1) \coprod (X_2, \Sigma_2) = Y$ and the metric $g_{\lambda} = g^1 \sharp g^2$ tends to (g^1, g^2) over Y as $\lambda \to 0$. We have the following proposition

PROPOSITION 2.3.1. If $\lambda n \to 0$ and A_n is a sequence of $g_{\lambda n}$ -antiself-dual connections on a bundle $E \to (X, \Sigma) = (X_1, \Sigma_1) \sharp (X_2, \Sigma_2)$ then there is a bundle $E' \to Y$, a connection A' on E' with chern number k' and monopole number ℓ' and a multi set (z_1, \dots, z_n) in $Y \setminus \{p_1, p_2\}$ such that a subsequence $[A'_n]$ of $[A_n]$ converges to a limit [A'] over $Y \setminus \{p_1, p_2, z_1, \dots, z_n\}$. In this case we have $k = k'_1 + k'_2 + \sum_{i=1}^r k_i + \sum_{j=1}^s k_j$ and $\ell = \ell'_1 + \ell'_2 + \sum_{j=1}^s \ell_j$ where $k'_i = k'_{\lfloor (X_i, \Sigma_i) \rfloor}$ and $\ell'_i = \ell'_{\lfloor (X_i, \Sigma_i) \rfloor}$ (i = 1, 2). And k_i is an associated positive integer for points of concentration z_i in $X \setminus \Sigma$, $i = 1, \dots, r$, and (k_j, ℓ_j) is an associated pair for points of concentration z_j in Σ , $j = 1, \dots, s$, where r and s be the number of points concentration in $X \setminus \Sigma$ and Σ respectively (r + s = n).

Proof. By the Uhlenbeck's compactness theorem and the gluing construction for the connected sum (X, Σ) it is clear.

Now we have the compactification of the singular moduli space.

LEMMA 2.3.2. We have a compactification of the singular moduli space $\mathfrak{M}_{k,\ell,X}^{\alpha}(g_{\lambda})$ over the connected sum (X,Σ) such that

$$\overline{\mathfrak{M}_{\boldsymbol{k},\ell,X}^{\alpha}(g_{\lambda})} \subset \underset{r+s>0}{\cup} \mathfrak{M}_{\boldsymbol{k}-(r+s),\ell-\Sigma_{j=1}^{s}\ell_{j},X}^{\alpha} \times S^{r+s}(X)$$

where $\mathfrak{M}_{k-(r+s),\ell-\Sigma_{j=1}^s\ell_j,X}^{\alpha}$ is an α -twisted singular moduli space with chern number k-(r+s) and monopole number $\ell-\Sigma_{j=1}^s\ell_j$ over (X,Σ) . And $S^{r+s}(X)$ is a multiset of degree r+s (unordered (r+s)-tuple) of points of X.

Proof. If $[A_n]$ is a sequence of $\mathfrak{M}_{k,\ell,X}^{\alpha}(g_{\lambda})$ for small λ then a subsequence $[A'_n]$ of $[A_n]$ converges weakly to a limit $([A'], \{z_1, \dots, z_n\})$. (That is $[A'_n]$ converges to a limit $[A'] \in \mathfrak{M}_{k',\ell',X}^{\alpha}$ over $(X,\Sigma) \setminus \{z_1, \dots, z_n\}$.)

The instanton number k' and monopole number ℓ' of [A'] have properties such that $k = k' + \sum_{i=1}^r k_i + \sum_{j=1}^s k_j$ and $\ell = \ell' + \sum_{j=1}^s \ell_j$. Then we have $k \geq k' + r + s$. Here r and s be the number of points of

concentration in $X \setminus \Sigma$ and Σ (r+s=n). So the infinite sequence in $\mathfrak{M}_{k,\ell,X}^{\alpha}(g_{\lambda})$ has a weakly convergent subsequence with a limit point in

$$\underset{r+s>0}{\cup}\mathfrak{M}_{k-(r+s),\ell-\Sigma_{j=1}^{s}\ell_{j},X}^{\alpha}\times S^{r+s}(X).\quad \Box$$

3. A polynomial invariant over the connected sum (X, Σ)

In this section we will define an invariant $q_{k,\ell,X}^{\alpha}$, a polynomial of degree d in $H^2(X \setminus \Sigma; \mathbb{Z})$, assuming that k is in a "stable range" $d \geq 2k + 1$.

Fix a generic orbifold metric g_{λ} on $(X, \Sigma) = (X_1, \Sigma_1) \sharp (X_2, \Sigma_2)$ and choose compact 2-dimensional surfaces $\Sigma'_1, \dots, \Sigma'_d$, such that Σ'_i is embedded in $X \setminus \Sigma$ and $N(\Sigma'_i) \cap \Sigma = \phi$ $(i = 1, \dots, d)$. We can choose Σ'_i , $i = 1, \dots, d$ such that $N(\Sigma'_i) \cap N(\Sigma'_j) \cap N(\Sigma'_k) = \phi$ for distinct i, j, k.

Let $\mathcal{B}_{N(\Sigma_{i}')}^{\alpha} = \mathcal{B}_{k,\ell,X}^{\alpha}|_{N(\Sigma_{i}')}$ be the space of gauge equivalence classes of α -twisted SU(2) connections on $N(\Sigma_{i}')$ and $(\mathcal{B}_{N(\Sigma_{i}')}^{\alpha})^{*} \subset \mathcal{B}_{N(\Sigma_{i}')}^{\alpha}$ be the Banach manifold of irreducible connections.

Let $\mathcal{L}_{N(\Sigma_i')} \to (\mathcal{B}_{N(\Sigma_i')}^{\alpha})^*$ be the determinant line bundle with $c_1(\mathcal{L}_{N(\Sigma_i')}) = \mu([\Sigma_i'])$ in $H^2((\mathcal{B}_{N(\Sigma_i')}^{\alpha})^*; \mathbb{Z})$ and fiber $[A] \times det(indD_A)$ = $[A] \times (\stackrel{\max}{\wedge} kerD_A \otimes (\stackrel{\max}{\wedge} cokerD_A)^*)$ where $\mu : H_2(X \setminus \Sigma; \mathbb{Z}) \to H^2((\mathcal{B}_{k,\ell,X}^{\alpha})^*; \mathbb{Z}), i = 1, \dots, d.$

Let s_i be any smooth section of $\mathcal{L}_{N(\Sigma_i')}$ and let V_i be $s_i^{-1}(0)$. Since the elements in $\mathfrak{M}_{k,\ell,X}^{\alpha}(g_{\lambda})$ are α -twisted, anti-self-dual connections on (X,Σ) , there is a well-defined restriction map $r_i; \mathfrak{M}_{k,\ell,X}^{\alpha}(g_{\lambda}) \to \mathcal{B}_{N(\Sigma_i')}^{\alpha}$ and image of r_i is contained in $(\mathcal{B}_{N(\Sigma_i')}^{\alpha})^*$ by the unique continuation theorem. (For details see [6]). We shall write $\mathfrak{M}_{k,\ell,X}^{\alpha}(g_{\lambda}) \cap V_i$ in the place of $\{[A] \in \mathfrak{M}_{k,\ell,X}^{\alpha}(g_{\lambda}) | r_i([A]) \in V_i\}, i = 1, \dots, d.$

The smooth section s_i can be choosen such that it is transverse to r_i . Then $\mathfrak{M}_{k,\ell,X}^{\alpha}(g_{\lambda}) \cap V_i$ is a smooth codimension 2-submanifold of $\mathfrak{M}_{k,\ell,X}^{\alpha}(g_{\lambda})$. We can further arrange transversality for $\mathfrak{M}_{k,\ell,X}^{\alpha}(g_{\lambda}) \cap V_{i_1} \cap \cdots \cap V_{i_c}$ $(c \leq d)$ such that it is a smooth (2d-2c)-dimensional manifold.

Specially we consider a 0-dimensional space $\mathfrak{M}_{k,\ell,X}^{\alpha}(g_{\lambda}) \cap V_1 \cap \cdots \cap V_d$ and let this be $I(\lambda)$ for small values of λ . Then $I(\lambda)$ is a collection of signed points. For $I(\lambda)$, we have the following Lemma.

LEMMA 3.1. We can find λ_0 such that for all $\lambda \geq \lambda_0$ the intersection $I(\lambda) = \mathfrak{M}_{k,\ell,X}^{\alpha}(g_{\lambda}) \cap V_1 \cap \cdots \cap V_d$ is compact.

Proof. Suppose $[A_n]$ is a sequence in $I(\lambda)$ and there is no strongly convergent subsequence. Then there is a subsequence $[A'_n]$ of $[A_n]$ such that $[A'_n]$ converges to a limit $[A'] \in \mathfrak{M}^{\alpha}_{k',\ell',X}(g_{\lambda})$ with chern number k' and monopole number ℓ' over $(X \setminus \Sigma) \setminus \{z_1, \dots, z_n\}$ where ρ is a small positive real number and $z_i \in (X, \Sigma), i = 1, \dots, n$. Let the number of points z_i of concentration in $X \setminus \Sigma$ and Σ be r and s respectively (r+s=n). Then we have

$$k = k' + \sum_{i=1}^{r} k_i + \sum_{j=1}^{s} k_j = k'_1 + k'_2 + \sum_{i=1}^{r} k_i + \sum_{j=1}^{s} k_j$$

$$\ell = \ell' + \sum_{j=1}^{s} \ell_j = \ell'_1 + \ell'_2 + \sum_{j=1}^{s} \ell_j$$

where $k'_{i} = k'|_{(X_{i}, \Sigma_{i})}$ and $\ell'_{i} = \ell'|_{(X_{i}, \Sigma_{i})}$, i = 1, 2.

Let the set of tubular neighbourhoods $N(\Sigma'_j)$ which contain no point z_i of intersection be $\{N(\Sigma'_{i1}), \dots, N(\Sigma'_{ic})\}$ $(c \leq d)$. Then we conclude that $c \geq d - 2r$ and $\mathfrak{M}^{\alpha}_{k',\ell',X}(g_{\lambda}) \cap V_{i1} \cap \dots \cap V_{ic}$ is non empty.

Suppose first that 0 < n < k.

Then we have $\dim(\mathfrak{M}_{k',\ell',X}^{\alpha}(g_{\lambda}) \cap V_{i1} \cap \cdots \cap V_{ic}) = \dim \mathfrak{M}_{k',\ell',X}^{\alpha}(g_{\lambda}) - 2c = \dim \mathfrak{M}_{k,\ell,X}^{\alpha}(g_{\lambda}) - 8\sum_{i=1}^{r} k_i - 4\sum_{j=1}^{s} (2k_j + \ell_j) - 2c \leq 2d - 8r - 4s - 2c \leq 2d - 8r - 4s - 2d + 4r = -4(r+s) = -4n < 0.$ So we obtain a contradiction.

Now consider the case when n = k.

In this case the limit [A'] is a flat α -twisted connection over $(X \setminus \Sigma)$. Now we use the following Alternative;

ALTERNATIVE 3.2. [6]. For each i, either

- (i) [A'] is non trivaial and $[A'] \in V_i$ or
- (ii) $N(\Sigma_i)$ $(i=1,\dots,d)$ contains one of the points z_j , $j=1,\dots,n$.

By Alternative 3.2 each $N(\Sigma_i')$ contains one of the points z_j in our case, $j = 1, \dots, n, i = 1, \dots, d$.

But there is a $N(\Sigma'_k)$, which contains none of the points $z_j, j = 1, \dots, n$; if we let the number of such $N(\Sigma'_k)'s$ be c then we have

$$c > d - 2r \ge d - 2n = d - 2k \ge 1$$
 (by stable range $d \ge 2k + 1$).

Thus there is a $N(\Sigma'_k)$, which contains none of the point z_j . So we have a contradiction and the only possibility is n=0. And we conclude that suppose $[A_n]$ is a sequence in $I(\lambda)$ then $[A_n]$ converge strongly to a limit [A'] in $I(\lambda)$. Hence $I(\lambda)$ is a compact 0-dimensional space for all $\lambda \leq \lambda_0$. \square

DEFINITION 3.3. By Lemma 3.1 we know that the intersection $I(\lambda)$ is a finite set of points. So we can define a polynomial invariant $q_{k,\ell,X}^{\alpha}$: $\overset{d}{\otimes} H_2(X \setminus \Sigma; \mathbb{Z}) \to \mathbb{Z} \text{ such that}$

$$q_{k,\ell,X}^{\alpha}([\Sigma_1'],\cdots,[\Sigma_d']) = \sharp(\mathfrak{M}_{k,\ell,X}^{\alpha}\cap V_1\cap\cdots\cap V_d).$$

where $[\Sigma_i'] \in H_2(X \setminus \Sigma; \mathbb{Z}), i = 1, \dots, d.$

REMARK 3.4. As long as α remains in an interval $\left[\epsilon, \frac{1}{2} - \epsilon\right]$ the invariant $q_{k,\ell,X}^{\alpha}$ defined by above is independent of α , the choice of the orbifold metric, and the choice of the smooth section s_i . And $q_{k,\ell,X}^{\alpha}$ depends on the surface $\left[\Sigma_i'\right]$, $i = 1, \dots, d$, only through their homology class in $(X \setminus \Sigma)$ and as a function $q_{k,\ell,X}^{\alpha}$ is multi-linear and symmetric.

Proof. Refer to [12].

To understand the properties of $q_{k,\ell,X}^{\alpha}$, we consider the following; let $f: \mathbb{R}^+ \to \mathbb{R}^+$ be smooth monotone function with $f(x) = x^2$ for small x and f(x) = x for large x.

If A is any α -twisted, SU(2)-connection over $X \setminus \Sigma$, we put

$$E_1(A) = \int_{Z_1(\rho)} f(|F(A)|) + |F^+(A)|^p d\mu \quad \text{where} \quad Z_1(\rho) = X_1 \backslash B(p_1, \rho)$$

and $B(p_1, \rho)$ is a 4-dimensional ball with radius ρ centered at p_i which is contained in $N(\Sigma_1)$. And ρ is a small real number such that $N^{-1}\sqrt{\lambda} < \rho < 1$.

For $\epsilon > 0$ we let $U_1(\epsilon) \subset \mathcal{B}^{\alpha}_{k,\ell,X}$ be the open sets $E_1^{-1}[0,\epsilon]$. The function E_1 does measure the distance to the flat connection over $(X,\Sigma)|_{(X_1,\Sigma_1)}$. (Also we define $U_2(\epsilon)$ as $E_2^{-1}[0,\epsilon]$ where $E_2(A) = \int_{Z_2(\rho)} f(|F(A)|) + |F^+(A)|^p d\mu$.)

PROPOSITION 3.5. For any ρ, λ_0 there is an $\epsilon_0(\rho, \lambda_0)$ such that $I(\lambda) \cap U_1(\epsilon) \cap U_2(\epsilon) = \emptyset$ for all $\lambda \leq \lambda_0$ and $\epsilon \leq \epsilon_0(\rho, \lambda_0)$.

Proof. If the result were false we could find a sequence $[A_n]$ in $I(\lambda_n) \cap U_1(\epsilon_n) \cap U_2(\epsilon_n)$ with $\epsilon_n \to 0$ and $\lambda_n \in (0, \lambda_0)$ with $\lambda_n \to 0$. Then we can suppose that a subsequence $[A'_n]$ of $[A_n]$ such that $[A'_n]$ converges to a trivial α -twisted flat connection [A'] over $Y(=(X_1, \Sigma_1) \coprod (X_2, \Sigma_2)) \setminus \{p_1, p_2, z_1, \cdots, z_n\}$ as $n \to \infty$. (That is $[A'_n]$ converges weakly to a limit $([A']; (z_1, \cdots, z_n))$ and $E(A'_n) \to 0$ as $\lambda_n \to 0$ over $Y \setminus \{p_1, p_2, z_1, \cdots, z_n\}$ where $z_i \in Y \setminus \{p_1, p_2\}, i = 1, \cdots, n$.) Let [A'] be $[\theta_1, \theta_2]$ and the number of the points of the concentration in $X \setminus \Sigma$ and Σ be r and s where θ_i is a flat α -twisted connection over $(X_i, \Sigma_i), i = 1, 2$. Since θ_1 and θ_2 are α -twisted trivial flat connections, each $N(\Sigma'_i)$ contains one of the points $z_i \in (X_1 \setminus \Sigma_1) \coprod (X_2 \setminus \Sigma_2), i = 1, \cdots, r$. (See Alternative 3.2.) But there must be a tubular neighbourhood $N(\Sigma'_k)$, which does not contain any of these points. Thus we have a contradiction. \square

PROPOSITION 3.6. For any fixed ϵ, ρ there is a $\lambda_1(\epsilon, \rho)$ such that $I(\lambda)$ is contained in $U_1(\epsilon) \cup U_2(\epsilon)$ for all $\lambda \leq \lambda_1(\epsilon, \rho)$.

Proof. If the statement were false there would be an ϵ , a sequence $\lambda_n \to 0$ as $n \to \infty$ and g_{λ_n} -anti self dual connection $[A_n]$ in $I(\lambda_n)$ but $[A_n] \notin U_1(\epsilon) \cup U_2(\epsilon)$. We can suppose the sequence $[A_n]$ converges weakly to a limit $([A']; (z_1, \cdots, z_n))$ and $[A'] \in \mathfrak{M}_{k'-\ell', Y}^{\alpha}$ is not an α -twisted flat connection over either component $(X_1 \setminus \Sigma_1), (X_2 \setminus \Sigma_2)$ since $[A_n] \notin U_1(\epsilon) \cup U_2(\epsilon)$. Let the number of points of concentration in $X \setminus \Sigma$ and Σ be r and s and the chern number k' of the limit [A'] has component $k'_1 = k'|_{(X_1,\Sigma_1)}, k'_2 = k'|_{(X_2,\Sigma_2)}$ and the monopole number ℓ' of [A'] has component $\ell'_1 = \ell'|_{(X_1,\Sigma_1)}, \ell'_2 = \ell'|_{(X_2,\Sigma_2)}$ respectively.

Then we have $k = k'_1 + k'_2 + \sum_{i=1}^r k_i + \sum_{j=1}^s k_j = k' + \sum_{i=1}^r k_i + \sum_{j=1}^s k_j$ and $\ell = \ell'_1 + \ell'_2 + \sum_{j=1}^s \ell_j = \ell' + \sum_{j=1}^s \ell_j$. Let $[A'] \in \mathfrak{M}_{k',\ell',Y}^{\alpha} \cong \mathfrak{M}_{k'_1,\ell'_1,X_1}^{\alpha} \times \mathfrak{M}_{k'_2,\ell'_2,X_2}^{\alpha}$ be $[A_1,A_2]$ and the number of the surface \sum_i' in $X_1 \setminus \Sigma_1$ and $X_2 \setminus \Sigma_2$ be d_1,d_2 ($d = d_1 + d_2$). And let the number of the points of concentration in $X_1 \setminus \Sigma_1$ and $X_2 \setminus \Sigma_2$ be r_1, r_2 respectively $(r_1 + r_2 = r)$.

If $[A_1] \in \mathfrak{M}_{k'_1,\ell'_1,X_1}^{\alpha} \cap V_{i1} \cap \cdots \cap V_{ip}$ then $p \geq d_1 - 2r_1$ and if $[A_2] \in \mathfrak{M}_{k'_2,\ell'_2,X_2}^{\alpha} \cap V_{j1} \cap \cdots \cap V_{jq}$ then $q \geq d_2 - 2r_2$. Since $[A_1]$ and $[A_2]$ are

not α -twisted flat connections, both $\dim(\mathfrak{M}_{k'_1,\ell'_1,X_1}^{\alpha} \cap V_{i_1} \cap \cdots \cap V_{i_p})$ and $\dim(\mathfrak{M}_{k'_2,\ell'_2,X_2}^{\alpha} \cap V_{j_1} \cap \cdots \cap V_{j_q})$ are non negative.

Thus $\dim(\mathfrak{M}_{k'_1,\ell'_1,X_1}^{\alpha}) - 2p \ge 0$ and $\dim(\mathfrak{M}_{k'_2,\ell'_2,X_2}^{\alpha}) - 2q \ge 0$. Then

$$\begin{split} (3.7) & d_1 \leq p + 2r_1 \leq 2r_1 + \frac{1}{2}\dim(\mathfrak{M}^{\alpha}_{k'_1,\ell'_1,X_1}), \\ & d_2 \leq q + 2r_2 \leq 2r_2 + \frac{1}{2}\dim(\mathfrak{M}^{\alpha}_{k'_2,\ell'_2,X_2}) \quad \text{and} \\ & \dim(\mathfrak{M}^{\alpha}_{k,\ell,X}(g_{\lambda_n})) = 2d \leq 4r + \dim(\mathfrak{M}^{\alpha}_{k'_1,\ell'_1,X_1}) + \dim(\mathfrak{M}^{\alpha}_{k'_2,\ell'_2,X_2}). \end{split}$$

Since $k = k' + \sum_{i=1}^{r} k_i + \sum_{j=1}^{s} k_j$, $\ell = \ell' + \sum_{j=1}^{s} \ell_j$ and α remains in an interval $\left[\epsilon, \frac{1}{2} - \epsilon\right]$, we have an associated pair (k_j, ℓ_j) for a point of concentration z_j in $\sum_{1} \sharp \sum_{2}, j = 1, \dots, s$, and now we can use the following Lemma.

LEMMA 3.8. [11]. For each $\epsilon > 0$, there is a ν such that, provided α in the interval $\left[\epsilon, \frac{1}{2} - \epsilon\right]$, $k_j + 2\epsilon \ell_j \geq 0$ and $k_j + (1 - 2\epsilon)\ell_j \geq 0$ where (k_j, ℓ_j) is an associated pair for a point of concentration z_j in $\Sigma = \sum_1 \sharp \sum_2$ and ν is a real parameter not less than 1 which is associated

with the metric $g_{\lambda} = du^2 + dv^2 + dr^2 + \left(\frac{r}{\nu}\right)^2 d\theta^2$. The two inequalities yield $2k_j + \ell_j \geq 0$.

Using Lemma 3.8 we have

$$(3.9)$$

$$2d = \dim(\mathfrak{M}_{k,\ell,X}^{\alpha}(g_{\lambda_n}))$$

$$= 8k + 4\ell - 3(1 + b_2^+(X)) - (2g - 2)$$

$$= 8k' + 8\sum_{i=1}^{s} k_i + 8\sum_{j=1}^{s} k_j + 4\ell' + 4\sum_{j=1}^{s} \ell_j$$

$$- 3(1 + b_2^+(X)) - (2g - 2)$$

$$= \dim(\mathfrak{M}_{k'_1,\ell'_1,X_1}^{\alpha}) + \dim(\mathfrak{M}_{k'_2,\ell'_2,X_2}^{\alpha}) + 1 + 8\sum_{i=1}^{r} k_i$$

$$+ 4\sum_{j=1}^{s} (2k_j + \ell_j)$$

$$\geq \dim(\mathfrak{M}_{k'_1,\ell'_1,X_1}^{\alpha}) + \dim(\mathfrak{M}_{k'_2,\ell'_2,X_2}^{\alpha}) + 8r + 1.$$

By (3.7) and (3.9), $\dim(\mathfrak{M}^{\alpha}_{k'_1,\ell'_1,X_1}) + \dim(\mathfrak{M}^{\alpha}_{k'_2,\ell'_2,X_2}) + 8r + 4s + 1 \le 2d \le \dim(\mathfrak{M}^{\alpha}_{k'_1,\ell'_1,X_1}) + \dim(\mathfrak{M}^{\alpha}_{k'_2,\ell'_2,X_2}) + 4r.$

Then we have $1 + 8r + 4s \le 4r$ and so $1 + 4(r + s) = 4n + 1 \le 0$. So we have a contradiction. \square

REMARK 3.10. Proposition 3.5 and 3.6 imply that when ϵ and λ are small we can write $I(\lambda) = \mathfrak{M}_{k,\ell,X}^{\alpha}(g_{\lambda}) \cap V_1 \cap \cdots \cap V_d$ as the union of $I_1(\lambda) \subset U_1(\epsilon)$ and $I_2(\lambda) \subset U_2(\epsilon)$ respectively. Here $I_1(\lambda)$ is corresponding to $(\mathfrak{M}_{k,\ell,X}^{\alpha}(g_{\lambda}) \cap U_1(\epsilon)) \cap V_1 \cap \cdots \cap V_d$ and $I_2(\lambda)$ is corresponding to $(\mathfrak{M}_{k,\ell,X}^{\alpha}(g_{\lambda}) \cap U_2(\epsilon)) \cap V_1 \cap \cdots \cap V_d$.

Let $\sharp I_1(\lambda)$ be $i_1(\lambda)$ and $\sharp I_2(\lambda)$ be $i_2(\lambda)$. Then our polynomial invariant $q_{k,\ell,X}^{\alpha}(g_{\lambda})$ ($[\Sigma'_1], \dots, [\Sigma'_d]$) = $\sharp (\mathfrak{M}_{k,\ell,X}^{\alpha}(g_{\lambda}) \cap V_1 \cap \dots \cap V_d) = \sharp I(\lambda)$ is equal to $i_1(\lambda) + i_2(\lambda)$ for all sufficiently small values of λ . The integers $i_1(\lambda)$ and $i_2(\lambda)$ are independent of the parameters λ, ϵ ρ provided these are suitably small.

Thus we can define a polynomial invariant $q_{k,\ell,X}^{\alpha}$. From now we will prove our main result for $q_{k,\ell,X}^{\alpha}$ by establishing the following theorem.

THEOREM 3.11. Suppose (X, Σ) is a connected sum $(X_1, \Sigma_1)\sharp(X_2, \Sigma_2)$ and the self intersection number $\Sigma_i \cdot \Sigma_i$ is 0 for i=1,2. Also suppose that $b_2^+(X_i) > 0$, i=1,2, and $b_2^+(X) \geq 3$, odd and $d \geq 2k+1$ where $2d = \dim(\mathfrak{M}_{k,\ell,X}^{\alpha}(g_{\lambda}))$. Then for sufficiently small λ , the signed number $\sharp I_i(\lambda) = i_i(\lambda)$ is 0 for i=1,2 and hence the polynomial invariant $q_{k,\ell,X}^{\alpha}(g_{\lambda}) \equiv 0$ on $H_2(X \setminus \Sigma, \mathbb{Z})$.

4. The proof of Theorem 3.11

4.1. Preliminary works for the proof

LEMMA 4.1.1. If $[A_n]$ is a sequence of $I(\lambda_n) = \mathfrak{M}_{k,\ell,X}^{\alpha}(g_{\lambda_n}) \cap V_1 \cap \cdots \cap V_d$ with $\lambda_n \to 0$ then there is a subsequence [An'] of $[A_n]$ such that [An'] converges to a limit $[A'] = [A_1, A_2] \in \mathfrak{M}_{k,\ell,Y}^{\alpha}$ over $((X_1 \setminus \Sigma_1) \coprod (X_2 \setminus \Sigma_2)) \setminus \{z_1, \cdots, z_n\}$ and the limit [A'] is of the form $[\theta_1, A_2]$ or $[A_1, \theta_2]$ where θ_1 and θ_2 are α -twisted flat connections over $(X_1 \setminus \Sigma_1)$, $(X_2 \setminus \Sigma_2)$ and A_1, A_2 are non trivial, anti-self-dual, α -twisted connections over $(X_1 \setminus \Sigma_1)$, $(X_2 \setminus \Sigma_2)$ respectively.

Proof. First suppose that the limit [A'] is of the form $[A_1, A_2]$ where both A_1 and A_2 are non trivial α -twisted anti-self-dual connections.

Let the Chern number k' of [A'] has components $k'_1 = k'|_{(X_1,\Sigma_1)}$, $k'_2 = k'|_{(X_2,\Sigma_2)}$ and the monopole number ℓ' of [A'] has components $\ell'_1 = \ell'|_{(X_1,\Sigma_1)}$, $\ell'_2 = \ell'|_{(X_2,\Sigma_2)}$.

Also let each number of points z_i of concentration in $X \setminus \Sigma$ and Σ be r and s, respectively (r + s = n).

Then we have

$$\begin{split} k &= k_1' + k_2' + \Sigma_{i=1}^r k_i + \Sigma_{j=1}^s k_j \\ \ell &= \ell_1' + \ell_2' + \Sigma_{j=1}^s \ell_j \quad \text{and} \\ [A'] &= [A_1, A_2] \in \mathfrak{M}_{k_1', \ell_1', X_1}^{\alpha} \times \mathfrak{M}_{k_2', \ell_2', X_2}^{\alpha}. \end{split}$$

Let each number of the surface Σ_i' , $i = 1, \dots, d$, in $X_1 \setminus \Sigma_1$ and $X_2 \setminus \Sigma_2$ be d_1, d_2 respectively $(d = d_1 + d_2)$ and each number of the points z_i of concentration in $X_1 \setminus \Sigma_1$ and $X_2 \setminus \Sigma_2$ be r_1, r_2 , respectively $(r = r_1 + r_2)$.

If $[A_1] \in \mathfrak{M}^{\alpha}_{k'_1,\ell'_1,X_1} \cap V_{i_1} \cap \cdots \cap V_{ip} \Rightarrow p \geq d_1 - 2r_1$ and $[A_2] \in \mathfrak{M}^{\alpha}_{k'_2,\ell'_2,X_2} \cap V_{j_1} \cap \cdots \cap V_{jq} \Rightarrow q \geq d_2 - 2r_2$. Since $[A_1]$ and $[A_2]$ are not α -twisted flat connections,

$$\dim(\mathfrak{M}^{\alpha}_{k'_1,\ell'_1,X_1}\cap V_{i1}\cap\cdots\cap V_{ip})\quad\text{and}\quad \dim(\mathfrak{M}^{\alpha}_{k'_2,\ell'_2,X_2}\cap V_{j1}\cap\cdots\cap V_{jq})$$

are non negative.

Thus $\dim(\mathfrak{M}^{\alpha}_{k'_1,\ell'_1,X_1})-2p\geq 0$ and $\dim(\mathfrak{M}^{\alpha}_{k'_2,\ell'_2,X_2})-2q\geq 0$. Then we have

$$d_1 \leq p + 2r_1 \leq 2r_1 + \frac{1}{2}\dim(\mathfrak{M}^{\alpha}_{k'_1,\ell'_1,X_1})$$

$$d_2 \leq q + 2r_2 \leq 2r_2 + \frac{1}{2}\dim(\mathfrak{M}^{\alpha}_{k'_2,\ell'_2,X_2}).$$

So
$$(4.1.2)$$

$$2d = \dim(\mathfrak{M}^{\alpha}_{k,\ell,X}(g_{\lambda_n}))$$

$$= 2d_1 + 2d_2 \le 4r_1 + 4r_2 + \dim(\mathfrak{M}^{\alpha}_{k'_1,\ell'_1,X_1}) + \dim(\mathfrak{M}^{\alpha}_{k'_2,\ell'_2,X_2})$$

$$= 4r + \dim(\mathfrak{M}^{\alpha}_{k'_1,\ell'_1,X_1}) + \dim(\mathfrak{M}^{\alpha}_{k'_2,\ell'_2,X_2}).$$

And, by Lemma 3.8, we have

Thus, by (4.1.2) and (4.1.3), we have

$$\begin{split} &\dim(\mathfrak{M}^{\alpha}_{k'_{1},\ell'_{1},X_{1}}) + \dim(\mathfrak{M}^{\alpha}_{k'_{2},\ell'_{2},X_{2}}) + 1 + 8r + 4s \\ &\leq 2d \leq 4r + \dim(\mathfrak{M}^{\alpha}_{k'_{1},\ell'_{1},X_{1}}) + \dim(\mathfrak{M}^{\alpha}_{k'_{2},\ell'_{2},X_{2}}). \end{split}$$

Then $8r+4s+1 \leq 4r$ and $4n+1 \leq 0$. Thus we have a contradition. Secondly suppose that the limit [A'] is of the form $[\theta_i, \theta_2]$ where θ_i is an α -twisted flat connection over (X_i, Σ_i) , i=1,2. Then each $N(\Sigma_i')$, $i=1,\cdots,d$, contains one of the point z_j , $j=1,\cdots,n$, by Alternative 3.2 and n is equal to k. But there is a $N(\Sigma_k')$ such that $N(\Sigma_k')$ contains none of the point z_j , $j=1,\cdots,n$. (See the proof of Lemma 3.1.) Thus we have a contradiction. By above two steps, we conclude that the limit [A'] is of the form $[\theta_1,A_2]$ or $[A_1,\theta_2]$ where θ_i is an α -twisted flat connection and A_i is an α -twisted, non trivial, anti-self-dual connection over (X_i,Σ_i) , i=1,2. \square

4.2. Simple case

From now we will fix attention on [A'] of the form $[\theta_1, A_2]$. (Similary for the form $[A_1, \theta_2]$.) If $[A_2] \in \mathfrak{M}_{k'_2, \ell'_2, X_2}^{\alpha} \cap V_{i1} \cap \cdots \cap V_{ic} \ (c \leq d)$ then dimension formula gives

$$\begin{aligned}
(4.2.1) \\
\dim(\mathfrak{M}_{k,\ell,X}^{\alpha}(g_{\lambda_n})) \cap V_1 \cap \cdots \cap V_d) - \dim(\mathfrak{M}_{k'_2,\ell'_2,X_2}^{\alpha} \cap V_{i_1} \cap \cdots \cap V_{i_c}) \\
&= 8k'_1 + 8\sum_{i=1}^r k_i + 8\sum_{j=1}^s k_j + 4\ell'_1 + 4\sum_{j=1}^s \ell_j \\
&- 3b_2^+(X_1) - 2g_1 - 2d + 2c.
\end{aligned}$$

Now we use the following theorem.

THEOREM 4.2.2. [11]. Let the self intersection number of Σ be $n \neq 0$ and let A be a flat α -twisted connection over $(X \setminus \Sigma)$. Then the holonomy parameter α is of the form $\frac{a}{n}$ and the instanton number and the monopole number are given by $\ell = a$, $k = -\frac{a^2}{n}$. If on the other hand $\Sigma \cdot \Sigma$ is zero then k and ℓ are zero.

Applying Theorem 4.2.2 to surface Σ_1 , since $\Sigma_1 \cdot \Sigma_1$ is 0, we conclude that k_1' and ℓ_1' are zero and the dimension formular (4.2.1) becomes $8\Sigma_{i=1}^r k_i + 4\Sigma_{j=1}^s (2k_j + \ell_j) - 3b_2^+(X_1) - 2g_1 - 2d + 2c$.

So we have $\dim(\mathfrak{M}_{k,\ell,X}^{\alpha}(g_{\lambda}) \cap V_{1} \cap \cdots \cap V_{d}) - \dim(\mathfrak{M}_{k'_{2},\ell'_{2},X_{2}}^{\alpha} \cap V_{i1} \cap \cdots \cap V_{ic}) = 8\sum_{i=1}^{r} k_{i} + 4\sum_{j=1}^{s} (2k_{j} + \ell_{j}) - 3b_{2}^{+}(X_{1}) - 2g_{1} - 2d + 2c.$

Since dim($\mathfrak{M}_{k,\ell,X}^{\alpha}(g_{\lambda}) \cap V_{1} \cdots \cap V_{d}$) is 0, dim($\mathfrak{M}_{k'_{2},\ell'_{2},X_{2}}^{\alpha} \cap V_{i1} \cap \cdots \cap V_{ic}$) = $3b_{2}^{+}(X_{1}) + 2g_{1} + 2d - 2c - 8\sum_{i=1}^{r} k_{i} - 4\sum_{j=1}^{s} (2k_{j} + \ell_{j})$. Since dim($\mathfrak{M}_{k'_{2},\ell'_{2},X_{2}}^{\alpha} \cap V_{i1} \cap \cdots \cap V_{ic}$) ≥ 0 , $3b_{2}^{+}(X_{1}) + 2g_{1} + 2d - 2c \geq 8\sum_{i=1}^{r} k_{i} + 4\sum_{j=1}^{s} (2k_{j} + \ell_{j})$.

If $b_2^+(X_1)=1$, $g_1=0$ and d=c then $8\sum_{i=1}^r k_i+4\sum_{j=1}^s (2k_j+\ell_j)=0$ and the sequence $[A_n]\in \mathfrak{M}_{k,\ell,X}^{\alpha}(g_{\lambda_n})\cap V_1\cap\cdots\cap V_d$ converges strongly to a limit $[A']=[\theta_1,A_2]$. In this case we have $k'_2=k$ and $\ell'_2=\ell$ where k'_2 is Chern number and ℓ'_2 is monopole number of $[A_2]$. So $\mathfrak{M}_{k'_2,\ell'_2,X_2}^{\alpha}$ is corresponding to $\mathfrak{M}_{k,\ell,X_2}^{\alpha}$ and $\mathfrak{M}_{k,\ell,X_2}^{\alpha}\cap V_1\cap\cdots\cap V_d$ becomes a compact 3-dimensional manifold. In this case we can apply the following proposition.

PROPOSITION 4.2.3. [6]. For λ sufficiently small, the moduli space $\mathfrak{M}_{k,X}(g_{\lambda})$ for the Riemannian metric g_{λ} over an oriented, compact, simply connected, 4-dimensional Riemannian manifold X can be identified with the zero set of a smooth section $\overline{\psi}$ of the bundle $\mathcal{H} \to \mathfrak{M}_{k,X_2}$ where $\mathcal{H} \to \mathfrak{M}_{k,X_2}$ is an associated vector bundle with fiber $H_{X_1}^+ \otimes so(3)$ and $H_{X_1}^+$ is the space of self-dual harmonic forms on X_1 and \mathfrak{M}_{k,X_2} is an anti-self-dual moduli space over an oriented, smooth, simply connected, compact, four manifold X_2 with Chern number k.

In our case the space $\mathfrak{M}_{k,X}(g_{\lambda})$ is corresponding to $\mathfrak{M}_{k,\ell,X}^{\alpha}(g_{\lambda}) \cap U_1(\epsilon)$ and \mathfrak{M}_{k,X_2} is corresponding to $\mathfrak{M}_{k,\ell,X_2}^{\alpha}$. Thus we can construct an associated vector bundle $\mathcal{H} \to \mathfrak{M}_{k,\ell,X_2}^{\alpha}$ with fiber $H_{X_1}^+ \otimes so(3)$ and the local model for the space $(\mathfrak{M}_{k,\ell,X}^{\alpha}(g_{\lambda}) \cap U_1(\epsilon)) \cap V_1 \cap \cdots \cap V_d$ is the zero set of a local section $\overline{\psi}: U \to \mathcal{H}$ where U is a neighbourhood in a

compact 3-dimensional submanifold $\mathfrak{M}_{k,\ell,X_2}^{\alpha} \cap V_1 \cap \cdots \cap V_d$ of $\mathfrak{M}_{k,\ell,X_2}^{\alpha}$. Then $i_1(\lambda) = \sharp I_1(\lambda) = \sharp (\mathfrak{M}_{k,\ell,X}^{\alpha}(g_{\lambda}) \cap U_1(\epsilon)) \cap V_1 \cap \cdots \cap V_d$ is equal to the Poincare dual of the rational Euler class of the bundle $\mathcal{H} \to \mathfrak{M}_{k,\ell,X_2}^{\alpha} \cap V_1 \cap \cdots \cap V_d$ for all suitably small values of λ . But the rational Euler class of an odd-dimensional vector bundle is always zero.

So we deduce that $i_1(\lambda)$ is zero. Thus we can show that $i_1(\lambda) = \sharp I_1(\lambda) = 0$ when $b_2^+(X_1) = 1$ and $g_1 = 0$. (Similarly $i_2(\lambda) = \sharp I_2(\lambda) = 0$ when $b_2^+(X_2) = 1$ and $g_2 = 0$.)

From now we must show that $i_{\perp}(\lambda)$ is zero in general case (i.e. $b_2^+(X_1) \geq 0$ and $g_1 \geq 0$). Then we can prove that $i_1(\lambda)$ is zero for all case (similarly for $i_2(\lambda)$) and we conclude that our polynomial invariant $q_{k,\ell,X}^{\alpha}(g_{\lambda}) \equiv 0$ for suitably small values of λ .

4.3. Extended equations in general case

Next we will prove that $i_1(\lambda) = 0$ in general case $(b_2^+(X_1) \geq 0, g_1 \geq 0)$. To prove this, we will construct a larger family of equation and show how the anti-self-dual equations $F_A^+ = 0$ over $U_1(\epsilon) = E_1^{-1}[0, \epsilon]$ can be embedded in a larger family of equations and we complete the proof of Theorem 3.11 using the extended equations. (Similarly for $U_2(\epsilon)$)

To construct a larger family of equation which contains the antiself-dual equation $F_A^+=0$ over $U_1(\epsilon)$, we will consider a 3-dimensional subspace \mathcal{S}_A in $\Omega^0_{z_1(\rho)}(\mathcal{G}_E)$, a self-dual 2-form $w\in H_{X_1}^+\subset \Omega_{X_1}^+$ (it is possible since $b_2^+(X_1)>0$ by assumption) which are considered by Donaldson. And we will construct a self dual 2-form $\tau_t(A)\in \Omega_{X_1}^+(\mathcal{G}_E)$ supported in $N(\Sigma_1)\setminus \Sigma_1$. Let $\sigma>0$ be the first eigenvalue of the laplacian Δ on the functions on X_1 . And define a function R on (X_1,Σ_1) , equal to 2σ on $B(p_1,r)$ and supported in $B(p_1,2r)$ and r is a real number such that $Vol(B(p_1,2r))<\frac{1}{8}Vol(X_1)$ where $\rho<\frac{1}{2}r$. We define a form g on the sections s which lie in $\Omega^0_{z_1(\rho)}(\mathcal{G}_E)$ and vanish on the boundary of $Z_1(\rho)$ as

$$g(s) = \int_{Z_1(
ho)} |
abla_A s|^2 + R|s|^2 d\mu, \quad s \in \Omega^0_{Z(
ho)}(\mathcal{G}_E)$$

where $A = A^{\alpha} + a \in \mathcal{A}^{\alpha}$, $\nabla_{A^{\alpha}} a \in L^{p}(X \setminus \Sigma)$, p > 2.

The associated eigenvalue problem is to find sections and constant τ such that $\Delta_A s + Rs = \tau s$. Let \mathcal{S}_A be the space of sections in $\Omega^0_{Z_1(\rho)}(\mathcal{G}_E)$ spanned by equations s belong to the eigenvalues τ with $\tau < \frac{1}{2}\sigma$, vanishing on $\partial Z_1(\rho)$.

LEMMA 4.3.1. There is ρ_0 with $\frac{1}{2}r > \rho_0 > 0$ and a function $\epsilon(\rho)$ such that if $\rho < \rho_0$, $N^{-1}\sqrt{\lambda} < \rho < 1$, $\epsilon < \epsilon(\rho)$ and [A] is an α -twisted connection in $U_1(\epsilon) \subset \mathcal{B}_{k,\ell,X}^{\alpha}$ then \mathcal{S}_A is 3-dimensional.

Proof. For the proof see the paper [4], he proved the same results for the case [A] is not an α -twised cannection in $U_1(\epsilon) \subset \mathcal{B}_{k,X}$, from our all discussion we can go over word for word, as does the analogue of [4]. By Lemma 4.3.1 we have a 3-dimensional space \mathcal{S}_A for all $[A] \in U_1(\epsilon)$. Next we consider a self-dual 2-form $w \in H_{X_1}^+$ and a $3b_2^+(X_1)$ -dimensional space W_A for all $[A] \in U_1(\epsilon)$. Let W_A be the space $\{s \otimes w | s \in \mathcal{S}_A, w \in H_{X_1}^+\}$ for all $[A] = [A^{\alpha} + a] \in U_1(\epsilon)$. Then $\dim(W_A)$ is $3b_2^+(X_1)$ and we can regard $s \otimes w$ as a \mathcal{G}_E -valued self dual 2-form over the connected sum $(X, \Sigma) = (X_1, \Sigma_1) \sharp (X_2, \Sigma_2)$, extending by 0 outside $Z_1(1) \setminus \Sigma_1$ (for details see [4]). Finally we will construct a self-dual 2-form $\tau_t(A)$ for all $[A] \in U_1(\epsilon)$ supported on $N(\Sigma_1) \setminus \Sigma_1$; since Σ_1 is a closed, oriented, 2-dimensional surface with genus g_1 and $\Sigma_1 \setminus p_1$ is homotopic to a $2g_1$ -leaved rose G_{2g_1} , $\pi_1(\Sigma_1 \setminus p_1)$ is represented by independent $2g_1$ -loops $\gamma_1, \cdots, \gamma_{2g_1}$ in Σ_1 representing G_{2g_1} .

If we deform $\gamma_i \subset \Sigma_1$ into a loop γ_i' in $N(\Sigma_1) \setminus \Sigma_1$ then we may think it as a map $\gamma_i': S^1 \to N(\Sigma_1) \setminus \Sigma_1$, $i = 1, \dots, 2g_1$.

For each α -twisted connection $A = A^{\alpha} + a \in \mathcal{A}^{\alpha}$, $\alpha \in \left[\epsilon, \frac{1}{2} - \epsilon\right]$, we have a holonomy element $h_{\gamma_i}(A)$ of A along the curve $\gamma_i' \subset N(\Sigma_1) \setminus \Sigma_1$, $i = 1, \dots, 2g_1$.

For all $[A] \in U_1(\epsilon) \subset \mathcal{B}^{\alpha}_{k,\ell,X}$ define a map $h: \{\gamma_1, \cdots, \gamma_{2g_1}\} \cong_{\text{homotopic}} \{\gamma'_1, \cdots, \gamma'_{2g_1}\} \to SU(2)$ such that $h(\gamma'_i) = h_{\gamma'_i}(A)$ for all $[A] \in U_1(\epsilon)$. If A is a flat α -twisted connection over (X_1, Σ_1) then the map h is well-defined since $h_{\gamma'_i}(A)$ is independent of the choice of γ'_i which is homotopic to γ_i , $i=1,\cdots,2g_1$. However each α -twisted connection $[A] \in U_1(\epsilon)$ is close to a flat α -twisted connection over (X_1, Σ_1) part of (X, Σ) and [A] converge weakly to a limit [A'] which is splitted in $(X_1, \Sigma_1) \coprod (X_2, \Sigma_2)$ and is an α -twisted flat connection over (X_1, Σ_1) part. Thus the map h is well-defined. Suppose $h_{\gamma'_i}(A)$ is not $-1 \in$

SU(2). This is possible since we have the holonomy parameter α in the region $\left[\epsilon, \frac{1}{2} - \epsilon\right]$; by the definition of holonomy, the holonomy of each α -twisted connection $A \in \mathcal{A}^{\alpha}$ along the curve γ_i' is approximately $\exp 2\pi i \begin{pmatrix} \alpha & 0 \\ 0 & -\alpha \end{pmatrix}$, $\alpha \in \left[\epsilon, \frac{1}{2} - \epsilon\right]$, we have

$$h_{\gamma_i'}(A) \approx \exp 2\pi i \begin{pmatrix} \alpha & 0 \\ 0 & -\alpha \end{pmatrix} \neq \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} = -1 \in SU(2)$$

for all $\alpha \in \left[\epsilon, \frac{1}{2} - \epsilon\right]$.

Now we consider a map $\exp^{-1}: SU(2) \to su(2)$ which invert the exponential map when restricted to the complement of $-1 \in su(2)$. The map \exp^{-1} sends $h_{\gamma'_i}(A) \in SU(2)$ to $\exp^{-1}(h_{\gamma'_i}(A)) \in SU(2)$ for all $[A] \in U_1(\epsilon)$ and $\exp^{-1}(h_{\gamma'_i}(A))$ is defined over $\gamma'_i \subset N(\Sigma_1) \setminus \Sigma_1$, $i = 1, \dots, 2g_1$. Next consider a surface $\Sigma''_1 \subset N(\Sigma_1) \setminus \Sigma_1$ which is represented by $\{\gamma'_1, \dots, \gamma'_{2g_1}\}$ and a small tubular neighbourhood $N\epsilon'(\gamma'_i)$ of γ'_i in $N(\Sigma_1) \setminus \Sigma_1$ which is diffeomorphic to a disk $D_{\epsilon'}$ -bundle over γ'_i where $D_{\epsilon'}$ is a disk with small radius $\epsilon' > 0$.

We can extend the value $\exp^{-1}(h_{\gamma'_i}(A))$ to a small tubular neighbourhood of γ'_i using the parallel transport along the radial geodesics.

Now we consider a self-dual 2-form v_i such that $\operatorname{supp}(v_i) \subset N_{\epsilon'}(\gamma_i')$, $i=1,\cdots,2g_1$. Then v_1,\cdots,v_{2g_1} are linearly independent. Using the 2-forms, define a self-dual 2-form v as $v=\sum_{i=1}^{2g_1}\varphi_iv_i$ where φ_i is partition of unity supported in $N_{\epsilon'}(\gamma_i')$. Then we can define a section $\tau(v_i,\gamma_i,A)\in\Omega_X^+(\mathcal{G}_E)$ by $\tau(v_i,\gamma_i,A)=\exp^{-1}(h_{\gamma_i'}(A))\otimes v$ where the loop $\gamma_i'\in N(\Sigma_1)\setminus\Sigma_1$ is a deformation of γ_i $(i=1,\cdots,2g_1)$ and the set $\{\gamma_1,\cdots,\gamma_{2g_1}\}$ is the standard basis of the free group $\pi_1(\Sigma_1\setminus p_1)$.

The section $\tau(v_i, \gamma_i, A)$ is a \mathcal{G}_E -valued self-dual 2-form, supported in a small tubular neighbourhood $N_{\epsilon'}(\gamma'_i)$ of γ'_i in $N(\Sigma_1) \setminus \Sigma_1$.

For a vector $t=(t_1,\cdots,t_{2g_1})$ in a compact $2g_1$ -dimensional ball $B^{2g_1}(\delta)$ with small radius $\delta>0$ we consider

$$\tau_t(A) = \sum_{i=1}^{2g_1} t_i \tau(v_i, \gamma_i, A)$$
 for all $[A] \in U_1(\epsilon)$.

Then $\tau_t(A)$ becomes a \mathcal{G}_E -valued self-dual 2-form supported in $N(\Sigma_1) \setminus \Sigma_1$.

Now we can construct a larger family of equation which contains the anti-self dual equation $F^+(A) = 0$ over $U_1(\epsilon)$ as follows;

$$F^+(A) + s \otimes w + \tau_t(A) = 0$$
 in the three variables (A, s, t)
where $s \otimes w \in W_A$, $t = (t_1, \dots, t_{2g}, t_1) \in \mathcal{B}^{2g_1}(\delta)$.

The extended equation $F^+(A) + s \otimes w + \tau_t(A) = 0$ is gauge invariant and we can pass to the corresponding quotient space. Consider a space \mathcal{C} whose points consist of ([A], s, t) where $[A] \in U_1(\epsilon)$, $s \in \mathcal{S}_A$ and $t = (t_1, \dots, t_{2g_1}) \in \mathcal{B}^{2g_1}(\delta) \subset \mathbb{R}^{2g_1}$. Then there is a projection map $\pi : \mathcal{C} \to U_1(\epsilon) \subset \mathcal{B}^{\alpha}_{k,\ell,X}$ sending ([A], s, t) to [A].

Recall that the anti-self dual equation $F^+(A) = 0$ can be viewed as the zero set of a section of an infinite dimensional bundle $\mathcal{F} = \mathcal{A}^{\alpha} \times \Omega_X^+(\mathcal{G}_E)$ over $\mathcal{B}_{k,\ell,X}^{\alpha}$. (Here $\mathcal{F} = \mathcal{A}^{\alpha} \times \Omega_X^+(\mathcal{G}_E) = (\mathcal{A}^{\alpha} \times \Omega_X^+(\mathcal{G}_E))/_{\sim}$ where $(Ag, g^{-1}\psi) \sim (A, \psi)$ for all $\psi \in \Omega_X^+(\mathcal{G}_E)$, $A \in \mathcal{A}^{\alpha}$, and $g \in \mathcal{G}$.)

The fiber of \mathcal{F} over $[A] \in U_1(\epsilon)$ is a copy of $\Omega_X^+(\mathcal{G}_E)$ and we let $\phi([A], s, t) = ([A], F^+(A) + s \otimes w + \tau_t(A))$ then we can regard ϕ as a section of $\pi^*(\mathcal{F})$ over \mathcal{C} . This is possible because $\phi([A], s, t) = ([A], F^+(A) + s \otimes w + \tau_t(A)) = (gAg^{-1}, g(F^+(A) + s \otimes w + \tau_t(A))g^{-1}) = (Ag^{-1}, g(F^+(A) + s \otimes w + \tau_t(A))) = (A, F^+(A) + s \otimes w + \tau_t(A))$ over $\pi^*\mathcal{F} \to \mathcal{C} \cong \bigcup_{[A]} ([A] \times \mathcal{S}_A \times \mathcal{B}^{2g_1}(\delta))$.

Diagram 4.3.3.

LEMMA 4.3.4. The section ϕ of $\pi^*\mathcal{F}$ over \mathcal{C} is Fredholm of index $2d+3+2g_1$.

Proof. We can construct local models for \mathcal{C} . We write the elements in $U_1(\epsilon)$ in a neighbourhood of $[A^{\alpha}]$ using the standard slice;

$$A=A^{lpha}+a, \quad d_{A^{lpha}}^{st}a=0, \quad A^{lpha}=A^{0}+\sqrt{-1}eta(r)egin{pmatrix}lpha&0\0&-lpha\end{pmatrix}\eta,$$

where A^0 is an SU(2) connection on the bundle $E \to (X, \Sigma)$ and β is a smooth cut off function equal to 1 in a neighbourhood of 0, equal to 0 for $r \ge \frac{1}{2}$, and $\sqrt{-1}\eta$ is a connection 1-form for the circle bundle. (For details see 2.1 and 2.2.)

Let S be a bundle over $U_1(\epsilon)$ with fiber S_A for all [A] in $U_1(\epsilon)$. Define γ_A as a spectral formula $\int_{\wedge} (\Delta_A + R - z)^{-1} dz$ where \wedge is a contour in the complex plane running around the interval $[0, \frac{1}{2}\sigma]$ and not meeting the spectrum of $\Delta_A + R$ and $(\Delta_A + R - z)^{-1}$ is a Green's operator. (That is $(\Delta_A + R - z)^{-1}(\zeta)$ is equal to the unique solution x of $\Delta x = \zeta - H(\zeta)$ in $(H^0)^{\perp}$ for all ζ in $\Omega^0_{Z_1(\rho)}(\mathcal{G}_E)$ to S_A ; to prove this we must show that $(\Delta_A + R)(\gamma_A(\zeta)) < \frac{1}{2}\sigma \cdot \gamma_A(\zeta)$ for all ζ in $\Omega^0_{Z_1(\rho)}(\mathcal{G}_E)$. This is true for all contours in the complex plane running around the interval $[0, \frac{1}{2}\sigma]$ and not meeting the spectrum of $\Delta_A + R$. (See [4]). Now we identify the fibers of S in a small neighbourhood with $S_{A^{\alpha}}$ using the restriction of $\gamma_{A^{\alpha}}$ to $S_{A^{\alpha}+a}$ for all $A = A^{\alpha} + a$ in the small neighborhood of A^{α} . (That is $\gamma_{A^{\alpha}}|_{S_{A^{\alpha}+a}} : S_{A^{\alpha}+a} \to S_{A^{\alpha}}$, $S_{A^{\alpha}+a} \in \Omega^0_{Z_1(\rho)}(\mathcal{G}_E)$.)

Consider

$$\phi([A], s, t) = F^{+}(A) + \gamma_{A}(s) \otimes w + \tau_{t}(A)$$

$$= F^{+}(A^{\alpha} + a) + \gamma_{A^{\alpha} + a}(s) \otimes w + \tau_{t}(A^{\alpha} + a)$$

$$= F^{+}(A^{\alpha}) + d_{A^{\alpha}, a}^{+} + [a, a]^{+} + \gamma_{A}(s) \otimes w + \tau_{t}(A)$$

where $s \in \mathcal{S}_{A^{\alpha}}$, $t \in B^{2g_1}(\delta)$.

Let $\delta \gamma_A$ be the derivative of γ_A with respect to a, evaluated at a=0. This gives

$$\begin{split} \delta\gamma_A &= \frac{d}{dt}|_{t=0} (\int_{\wedge} (\Delta_{A^{\alpha}+ta} + R - z)^{-1} dz) \\ &= \int_{\wedge} \frac{d}{dt}|_{t=0} (\Delta_{A^{\alpha}+ta} + R - z)^{-1} dz \\ &= \int_{\wedge} -(\Delta_{A^{\alpha}} + R - z)^{-2} \cdot \frac{d}{dt}|_{t=0} (\Delta_{A^{\alpha}+ta}) dz \\ &= -\int_{\wedge} (\Delta_{A^{\alpha}} + R - z)^{-2} \delta\Delta_A dz = -\int_{\wedge} G_z \delta\Delta_A G_z dz \end{split}$$

where $G_z = (\Delta_{A^{\alpha}} + R - Z)^{-1}$ and $\delta \Delta_A = \frac{d}{dt}|_{t=0}(\Delta_{A^{\alpha}+ta})$ is the derivative of Δ_A with respect to a evaluated at a = 0.

We then have

$$\begin{split} (4.3.5) \\ (d\phi)_0(a,s,t) \\ &= d_{A^{\alpha}}^+ a + s \otimes w - \int_{\wedge} G_z \delta \Delta_A G_z(s) dz \otimes w + \Sigma_{i=1}^{2g_1} t_i \tau(v_i,\gamma_i,A^{\alpha}) \\ &= d_{A^{\alpha}}^+ a + s \otimes w - \int_{\wedge} G_z (d_{A^{\alpha}}^* + a^* d_{A^{\alpha}}) G_z(s) dz \otimes w \\ &+ \Sigma_{i=1}^{2g_1} t_i \tau(v_i,\gamma_i,A^{\alpha}) \\ \text{where } a \in \ker d_{A^{\alpha}}^*, s \in \mathcal{S}_{A^{\alpha}} \text{ and } t = (t_1,\cdots,t_{2g_1}) \in \mathcal{B}^{2g_1}(\delta), \\ \delta > 0. \end{split}$$

For fixed z in \wedge and s in $S_{A^{\alpha}}$ the map

$$(4.3.6) a \mapsto G_z(d_{A^{\alpha}}^* a(G_z s) + a^* d_{A^{\alpha}}(G_z s))$$

is compact.

We call a section Fredholm if it is represented in the local trivialisations by maps with Fredholm derivatives and we have a fact that a sum F + K of a Fredholm operator F and a compact operator K is also Fredholm and index

$$(4.3.7) \qquad \operatorname{index}(F + K) = \operatorname{index}(F).$$

By (4.3.5), (4.3.6) and (4.3.7) we have index $(d\phi) = \operatorname{index}(\phi) = \operatorname{index}(h)$ where h is the map $(a, s, t) \to d_{A^{\alpha}}^{+} a + s \otimes w + \tau_{t}(A^{\alpha})$. And the map h is Fredholm of $\operatorname{index}(h) = \operatorname{index}(d_{A^{\alpha}}^{+}) + 3 + 2g_{1} = 2d + 3 + 2g_{1}$. Thus we conclude that the section ϕ of $\pi^{*}\mathcal{F}$ over \mathcal{C} is Fredholm of index $2d + 3 + 2g_{1}$. \square

To achieve transversality we must construct a family of perturbations - section of \mathcal{F} .

Let h be a monotone cut off function, equal to 1 on [0,B] and supported in [0,2B] for a finite real number. For all $[A] \in U_1(\epsilon)$ define $h_i(A) = h(\int_{G'} |F(A)|^p d\mu$. We are now able to define a family of

perturbations parametrised by a ball $B^s(\delta') \subset \mathbb{R}^s$; For a vector $x = (x_1, \dots, x_s) \in B^s(\delta')$ we let

$$\sigma_x(A) = \sum_{i=1}^s x_i h_i(A) p_i(A)$$

where $p_1(A), \dots, p_s(A)$ are sections of $\pi^*\mathcal{F}$ which are supported on a set $\{G'_1, \dots, G'_s | G'_i$ is a neighbourhood of a loop ℓ_i in $(X \setminus \Sigma), G'_i \cap G'_j = 0$ for $i \neq j\}$. And $p_1(A), \dots, p_s(A)$ generates the harmonic representitive of $H^2_{A,s,t} = \Omega^+_X(\mathcal{G}_E)/Imd\varphi$.

So we conclude that $\sigma_x(A)$ is a well-defined self-dual 2-form which generates $H^2_{A,s,t} \subset \Omega^+_X(\mathcal{G}_E)$. (For details see [4])

REAMRK 4.3.8.

- (1) The loops ℓ_1, \dots, ℓ_s can, by general position, be taken to avoid the surfaces $\Sigma'_1, \dots, \Sigma'_d$.
- (2) Let ϕ' be a section of $\pi^*\mathcal{F}$ over \mathcal{C} such that $\phi'([A], s, t) = F^+(A) + s \otimes w + \tau_t(A) + \sigma_x(A)$. Since ϕ' differ from ϕ by a compact perturbation term $\sigma_x(A)$, the section ϕ' has Fredholm of index $2d + 3 + 2g_1$.

4.4. End of the proof of Theorem 3.11

In this section we will complete the proof of Theorem 3.11 and hence a Vanishing theorem. We again consider the space $U_1(\epsilon)$ of α -twisted connections over $(X, \Sigma) = (X_1, \Sigma_1) \sharp (X_2, \Sigma_2)$ which are almost flat over

most of $Z_1(\rho)$, and the bundle $\mathcal{C} \xrightarrow{\pi} U_1(\epsilon) \subset \mathcal{B}_{k,\ell,X}^{\alpha}$. With $w \in H_{X_1}^+$ and $x \in B^s(\delta')$ fixed, we can now consider the extended equation $F^+(A) + s \otimes w + \tau_t(A) + \sigma_x(A) = 0$ over the extended space \mathcal{C} .

We denote the solution space by $\mathcal{L}_{k,\ell,X}^{\alpha}(\lambda)$. Then $\mathcal{L}_{k,\ell,X}^{\alpha}(\lambda)$ is a $2d+3+2g_1$ -dimensional manifold. If we consider the intersection of $\mathcal{L}_{k,\ell,X}^{\alpha}(\lambda)$ with the zero section in the bundle $\mathcal{C}^{-\frac{\pi}{m}}U_1(\epsilon)$, we can regard it as being obtained from the singular moduli space $\mathfrak{M}_{k,\ell,X}^{\alpha}(g_{\lambda}) \cap U_1(\epsilon)$ by perturbing the anti-self dual equation $F^+(A) = 0$ by the term $\sigma_x(A)$.

With V_i fixed, $i=1,\cdots,d$, we consider the intersection $\mathcal{L}_{k,\ell,X}^{\alpha}(\lambda) \cap V_1 \cap \cdots \cap V_d$ and denote it by $S(\lambda)$. Then $S(\lambda)$ is a $3+2g_1$ -dimensional manifold.

Let $I'_1(\lambda)$ be the intersection of $S(\lambda)$ with the zero section in the bundle $C \xrightarrow{m} U_1(\epsilon)$; it is obtained from the intersection $I_1(\lambda) = (\mathfrak{M}_{k,\ell,X}^{\alpha}(g_{\lambda}) \cap U_1(\epsilon)) \cap V_1 \cap \cdots \cap V_d$ by perturbing the equation $F^+(A) = 0$ by the term $\sigma_x(A)$.

By these constructions we conclude that $S(\lambda)$ is a $(3+2g_1)$ -dimensional manifold which contains 0-dimensional space $I'_1(\lambda)$ and $\sharp I'_1(\lambda)$ is equal to $\sharp I_1(\lambda) = i_1(\lambda)$ for all small values of λ .

$$\pi^*\mathcal{F}$$
 $\mathcal{F} = \mathcal{A}^{\alpha}\underset{\mathcal{G}}{\times}\Omega^+_X(\mathcal{G}_E)$

$$\downarrow \qquad \qquad \downarrow$$

$$\mathcal{C} \xrightarrow{\pi} U_1(\epsilon)$$

$$\mathcal{L}^{\alpha}_{k,\ell,x}(\lambda) = (\phi')^{-1}(0) \qquad \qquad (F_A^+)^{-1}(0) = \mathfrak{M}^{\alpha}_{k,\ell,X}(g_{\lambda}) \cap U_1(\epsilon)$$

$$\cup \qquad \qquad \cup$$

$$S(\lambda) \qquad \qquad \cup$$

$$I_1(\lambda) \qquad \qquad I_1(\lambda)$$

Diagram 4.4.1

To complete the proof of Theorem 3.11, we will apply the Euler number argument. But it can not be applied if our manifold containing $I'_1(\lambda)$ is not compact. In general the $3+2g_1$ -dimensional manifold $S(\lambda)$ which contains $I'_1(\lambda)$ is not compact and so we must show that, if λ is small enough, there is a compact $3+2g_1$ -dimensional submanifold of $S(\lambda)$ which contains $I'_1(\lambda)$. Finally let $S^*(\lambda)$ be the union of the path components of $S(\lambda)$ which contain points of $I'_1(\lambda)$.

Remark 4.4.2 For small values of λ , $I_1'(\lambda)$ is contained in the space whose elements consist of equivalence classes $[A] \in \mathfrak{M}_{k,\ell,X}^{\tilde{\alpha}}(g_{\lambda}) \cap U_1(\epsilon)$ such that $E_1(A) \in [0, \frac{1}{4}\epsilon]$ where $\mathfrak{M}_{k,\ell,X}^{\tilde{\alpha}}(g_{\lambda})$ is obtained from the moduli space $\mathfrak{M}_{k,\ell,X}^{\alpha}(g_{\lambda})$ by perturbing the anti-self-dual equation by the term $\sigma_x(A)$.

Now we have the following key Lemma.

LEMMA 4.4.3. For small values of λ , $S^*(\lambda)$ is contained in the space $\{([A], s, t) \in S(\lambda) | E_1(A) \in [0, \frac{1}{2}\epsilon] \}$.

Proof. The proof is similar with Donaldson's construction (see [4]) but we have some difference. We will check the difference caused by our special cases. We must show that if λ is small enough, the component of $S(\lambda)$ which reach the level $E_1 = \frac{1}{2}\epsilon$ can not be joined by paths in $S(\lambda)$ to $I'_1(\lambda)$.

So suppose we have a sequence $\lambda_n \to 0$ and points $([A_n], s_n, t_n)$ in $S(\lambda_n)$ which converge to a limit ([A'], s', t') with $E_1(A') = \frac{1}{2}\epsilon$ on the complement of a finite set $\{z_1, \dots, z_n\}$ in $Z_1(r) \coprod Z_2(r)$ where $Z_i(r) = X_i \setminus B(p_i, r), i = 1, 2$.

Since $E_1(A') = \frac{1}{2}\epsilon \neq 0$, A' is a nontrivial, α -twisted, anti-self-dual connection over either component $(X_1, \Sigma_1), (X_2, \Sigma_2)$. And it satisfies the following equation

$$(4.4.4) F^+(A') + s' \otimes w + \tau_{t'}(A') + c^*\sigma_x(A') = 0$$

where $c^*\sigma_x(A')$ is a "contraction" of a section σ_x by $c \in \mathbb{R}^s$.

REMARK 4.4.5. The equation of (4.4.4) is well defined; Recall that the points $([A_n], s_n, t_n) \in S(\lambda_n)$ satisfy the extended equation $F^+(A_n) + s_n \otimes w + \tau_{t_n}(A_n) + \sigma_x(A_n) = 0$. Since $[A_n]$ converge to [A'] on the complement of a finite set $\{z_1, \dots, z_n\}$ in $(Z_1(r) \coprod Z_2(r)) \sigma_x(A_n)$ is supported away from the points in $\{z_1, \dots, z_n\}$ for large n.

Going to a subsequence we can suppose that;

$$\sigma_x(A_n) \to \sum_{i=1}^s c_i x_i h_i(A') p_i(A')$$

where $c_i = 0$ if there is a point z_i in the interior of G'_i .

 $c_i \in (0,1)$ if there is a point z_i on the boundary of G'_i .

 $c_i = 1$ if no points z_i lies in the closure of G'_i .

and $x = (x_1, \dots, x_s) \in B^s(\delta') \subset \mathbb{R}^s$ and $B^s(\delta')$ is a small ball of radius $\delta' > 0$ in \mathbb{R}^s .

We define "contraction" of a section σ_x by c to be the section;

(4.4.6)
$$c^*\sigma_x(A') = \sum_{i=1}^s c_i x_i h_i(A') p_i(A').$$

Suppose that the m points z_r on where convergence fails, p points lie on at least one of the surfaces Σ_i' , $i = 1, \dots, d$, and q points lie in

closure of one of the disjoint neigbourhood G'_i in (X, Σ) used to define σ_x . Then if k' is the Chern class of [A'] we have $p + q + k' \leq k$.

Now the size of the set defining the contraction in (4.4.6) is q. The space of solutions $(([A'], s', t'), c) \in \mathcal{C} \times \mathbb{R}^s$ to equation (4.4.4) has dimension $8k' + 4\ell' - 3(1 + b_2^+(X)) - (2g - 2) - 1 + 3 + 2g_1 + q$.

$$(4.4.7) If [A'] \in \mathfrak{M}_{k',\ell',Y}^{\alpha} \cap V_{i_1} \cap \cdots \cap V_{i_c} then c \geq d-2p.$$

Since the limit [A'] is a non trivial, α -twisted, anti-self-dual connection over either component $(X_1, \Sigma_1), (X_2, \Sigma_2), \dim(\mathfrak{M}^{\alpha}_{k', \ell', Y} \cap V_{i_1} \cap \cdots \cap V_{i_c}) \geq 0$. Thus we have

$$\dim(\mathfrak{M}_{k',\ell',Y}^{\alpha}) \ge 2c.$$

By (4.4.7) and (4.4.8)

$$\dim(\mathcal{L}_{k,\ell,X}^{\alpha}(\lambda_n)) = 2d + 3 + 2g_1 \le 2c + 4p + 3 + 2g_1 \le \dim(\mathfrak{M}_{k',\ell',Y}^{\alpha}) + 4p + 3 + 2g_1.$$

So we have

$$(4.4.9) 2d \le \dim(\mathfrak{M}_{k',\ell',Y}^{\alpha}) + 4p$$

Since $2d = \dim(\mathfrak{M}_{k,\ell,X}^{\alpha}(g_{\lambda_n})) = 8k + 4\ell - 3(1 + b_2^+(X)) - (2g - 2)$ and by (4.4.9) we get that

$$(4.4.10) 8k + 4\ell \le 8k' + 4\ell' - 1 + 4p.$$

Now decompose the number r of the points $\{z_1, \dots, z_m\}$ on which convergence fails in $X \setminus \Sigma$ part and s in Σ part (r+s=m). Recall that p is the number of the points z_i which lie on at least one of the surfaces Σ'_i , $i=1,\dots,d$, and q is the number of the points z_i which lie in the closure of one of the disjoint neighbourhood G'_i , $i=1,\dots,s$, in (X,Σ) (used to define σ_x). Thus we have

$$(4.4.11) p \le r \text{ and } q \le m - p.$$

In section 3, we get that $8k + 4\ell = 8k' + 8\sum_{i=1}^{r} k_i + 8\sum_{j=1}^{s} k_j + 4\ell' + 4\sum_{i=1}^{s} \ell_i \ge 8k' + 4\ell' + 8r + 4s$.

Then, by (4.4.10) and (4.4.11), we have

$$8k' + 4\ell' + 8r + 4s \le 8k + 4\ell \le 8k' + 4\ell' - 1 + 4p.$$

So $8r + 4s \le -1 + 4p \le 4p + q$ $(q \ge 0)$ and by (4.4.11) we have $8r + 4s \le 4p + q \le 4r + m - p$. Then $3m + p \le 0$ and we deduce that m = p = 0. Since $0 \le q \le m$, p = q = m = 0. So we conclude that as $\lambda_n \to 0$ the sequence $([A_n], s_n, t_n) \in S(\lambda_n)$ converges strongly to a limit ([A'], s', t') which satisfies $E_1(A') = \frac{1}{2}\epsilon$ and the equation $F^+(A') + s' \otimes w + \tau_{t'}(A') + \sigma_x(A') = 0$.

Specially the Chern number k' of the limit [A'] becomes k and the monopole number ℓ' of the limit [A'] becomes ℓ where k and ℓ are Chern number and monopole number $[A_n]$ respectively.

In this case we can apply Donaldson's argument (see [4]) and the result is following; let $F: T \to \mathfrak{M}_{k,\ell,Y}^{\alpha}$ be a fiber bundle with fiber SO(3) consisting of isomorphism classes of pairs $([A'], \rho)$ where $\mathfrak{M}_{k,\ell,Y}^{\alpha}$ is a singular, α -twisted moduli space over $Y = (X_1, \Sigma_1) \coprod (X_2, \Sigma_2)$ with the Chern number k and the monopole number ℓ .

Let \mathcal{O} be an open set in $\mathfrak{M}_{k,\ell,Y}^{\alpha}$ with compact closure and \mathcal{D} be a 2η -neighbourhood of \mathcal{O} for a small positive number η . We introduce a notion of strong convergence; for a given λ_n and $\eta > 0$ say that $[A_n] \in \mathfrak{M}_{k,\ell,X}^{\alpha}(g_{\lambda_n})$ is (η,λ_n) close to [A'] if there is a bundle map $\varphi; E|_{Z(r)} \to E'|_{Z(r)}$ such that $||A_n - \varphi^*(A')||_{L^p(Z(r))} < \eta$ where $Z(r) = Z_1(r) \coprod Z_2(r)$ for suitably small r and E' is an SU(2)-bundle over Y with Chern number k and monopole number ℓ .

Now we can consider smooth maps τ_{λ} from the open set $F^{-1}(\mathcal{D})$ in T to the moduli space $\mathfrak{M}_{k,\ell,X}^{\alpha}(g_{\lambda})$ such that $\tau_{\lambda}([A'],\rho) \in \mathfrak{M}_{k,\ell,X}^{\alpha}(g_{\lambda})$ is (η,λ) close to [A'] and we have two maps from $F^{-1}(\mathcal{D})$ to $(\mathcal{B}_{k,\ell}^{\alpha})_{z(r)}^*$ given by the composites;

where $R_{Z(r)}$ is a restriction map to $Z(r) = Z_1(r) \coprod Z_2(r)$. From this we have the following proposition.

PROPOSITION 4.4.12. Suppose that $b_2^+(X_i) > 0$, i = 1, 2. Let \mathcal{O} be a precompact open set in $\mathfrak{M}_{k,\ell,Y}^{\alpha}$. For $\eta < \eta(\mathcal{O})$ and $\lambda < \lambda(\mathcal{O})$ there is a diffeomorphism τ_{λ} from $F^{-1}(\mathcal{D}) \subset T$ to an open set $S_{\lambda,\eta}$ in $\mathfrak{M}_{k,\ell,X}^{\alpha}(g_{\lambda})$ such that

- (1) $\tau_{\lambda}([A'], \rho)$ is (η, λ) close to [A']
- (2) $S_{\lambda,\eta}$ contains all points in $\mathfrak{M}_{k,\ell,X}^{\alpha}(g_{\lambda})$ which are (η,λ) close to a point of \mathcal{O}
- (3) As $\lambda \to 0$, the composites $R_{z(r)}\tau_{\lambda}$ converge in C^1 to $R_{z(r)}F$.

Proof. See proposition 4.6.[4]

By Proposition 4.4.12 we deduce that for small values of λ we can construct from ([A'], s') of the limit ([A'], s', t') of the points $([A_n], s_n, t_n)$ a 3-dimensional family $S_{\lambda, \eta}$ parametrized by SO(3).

Let $S'_{\lambda,\eta}$ be the space $\{([A], s, t) \in S(\lambda) = \mathcal{L}^{\alpha}_{k,\ell,X}(\lambda) \cap V_1 \cap \cdots \cap V_d | ([A], s) \in S_{\lambda,\eta}, t \in B^{2g_1}(\delta) \subset \mathbb{R}^{2g_1} \text{ for small number } \delta\} \subset S(\lambda).$ Then we conclude that $S'_{\lambda,\eta}$ is a complete component of $S(\lambda)$ and for large n the sequence $([A_n], s_n, t_n)$ lie in $S'_{\lambda,\eta}$.

But we have that for all [A] of $([A], s, t) \in S'_{\lambda,\eta}$, $E_1(A)$ lies in partly above and partly below the level $E_1 = \frac{1}{2}\epsilon$ and as $\lambda \to 0$ the variation of E_1 goes to 0 – so with ϵ fixed and λ approaching zero, this component $S'_{\lambda,\eta}$ eventually lies, say, between the levels $\frac{3}{8}\epsilon$ and $\frac{5}{8}\epsilon$. Such $S'_{\lambda,\eta}$, however, can not contain points in $\mathfrak{M}^{\alpha}_{k,\ell,X}(g_{\lambda}) \cap U_1(\epsilon)$, because, by Lemma 4.1.1 and Remark 4.4.2, we know that E_1 goes to 0 on $\mathfrak{M}^{\alpha}_{k,\ell,X}(g_{\lambda}) \cap U_1(\epsilon)$ as $\lambda \to 0$, so E_1 is eventually less than $\frac{1}{4}\epsilon$ for suitably small values of λ . Thus the sequence $([A_n], s_n, t_n) \in S(\lambda_n)$ converging to ([A'], s', t') with $E_1(A') = \frac{1}{2}\epsilon$ can not be joined by paths in $S(\lambda)$ to $I'_1(\lambda) \subset E_1^{-1}[0, \frac{1}{4}\epsilon]$ for small values of λ . This complete the proof of Lemma 4.4.3

Finally we will complete the proof of Theorem 3.11. We can fix λ in accordance with Lemma 4.4.3 and consider the space $\mathcal{L}_{k,\ell,X}^{\alpha}(\lambda) = \{([A],s,t)\in\mathcal{C}|F^+(A)+s\otimes w+\tau_t(A)+\sigma_x(A)=0\}$. Then we can say that $\mathcal{L}_{k,\ell,X}^{\alpha}(\lambda)$ is a $2d+3+2g_1$ -dimensional smooth manifold and $S(\lambda)=\mathcal{L}_{k,\ell,X}^{\alpha}(\lambda)\cap V_1\cap\cdots V_d$ is a $3+2g_1$ -dimensional smooth manifold. Then we can show that the space $\{([A],s,t)\in S(\lambda)|E_1(A)\in[0,\frac{1}{2}\epsilon]\}\subset S(\lambda)$ is a compact $3+2g_1$ -dimensional subset of $S(\lambda)$. By Lemma 4.4.3 the union of path components $S^*(\lambda)$ containing all the points of $I_1'(\lambda)$ is

contained in $\{([A], s, t) \in S(\lambda) | E_1(A) \in [0, \frac{1}{2}\epsilon]\}$. Thus $S^*(\lambda)$ is a closed $3+2g_1$ -dimensional manifold for suitably small values of λ . By the definition of $I_1'(\lambda)$, $I_1'(\lambda)$ is the intersection of $S(\lambda)$ with the zero section in the bundle $C \xrightarrow{\pi} U_1(\epsilon)$ (See Diagram 4.4.1). Thus $I_1'(\lambda)$ is the set of zeros of a section of a $3+2g_1$ -dimensional bundle over a $3+2g_1$ -dimensional compact, oriented manifold $S^*(\lambda)$. So $I_1'(\lambda)$ represents the Euler class of this bundle and hence $\sharp I_1'(\lambda)$ is 0 by the Euler number argument. Because $I_1'(\lambda)$ is obtained from $I_1(\lambda) = (\mathfrak{M}_{k,\ell,X}^{\alpha}(g_{\lambda}) \cap U_1(\epsilon)) \cap V_1 \cap \cdots \cap V_d$ by perturbing the term σ_x , we have $\sharp I_1'(\lambda) = \sharp I_1(\lambda) = i_1(\lambda)$ and hence $i_1(\lambda)$ is 0 for all suitably small values of λ .

Similarly for $\sharp I_2(\lambda) = i_2(\lambda)$ we conclude that $i_2(\lambda)$ is 0. Thus we prove that the polynomial invariant $q_{k,\ell,X}^{\alpha}(g_{\lambda})$ ($[\Sigma_1], \dots, [\Sigma_d]$) = $i_1(\lambda) + i_2(\lambda)$ is 0 for all suitably small values of λ .

References

- 1. Y. S. Cho, Cyclic group actions on gauge theory, to appear in Differential Geometry and its Application.
- 2. _____, Equivariant connections and singular connections, preprint.
- 3. S. K. Donaldson, Connections, cohomology and the intersection forms of four manifolds, Journal of Differential Geometry 24 (1986), 275-341.
- 4. _____, Polynomial invariants for smooth 4-manifolds, Topology 29 (1990), 257-315.
- 5. _____, The orientation of Yang-Mills moduli spaces 4-manifolds topology, Journal of Differential Geometry 26 (1987), 397-428.
- S. K. Donaldson and P. B. Kronheimer, The Geometry of 4-manifolds, Clarendon Press, Oxford (1990).
- S. K. Donaldson and D. P. Sullivan, Quasi conformal 4-manifolds, Acta Mathematica 163 (1990), 181-252.
- R. Fintushel and R. J. Stern, so(3) connections and the topology of 4-manifolds, Journal of Differential Geometry 20 (1984), 523-529.
- 9. A. Floer, Morse theory for Lagrangian intersections, Journal of Differential Geometry 28 (1988).
- D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order, Springer, Berlin (1983).
- 11. P. B. Kronheimer and T. S. Mrowka, Gauge theory for embedded surface I, Topology.
- 12. _____. Gauge theory for embedded surface II, to appear in Topology.
- H. B. Lawson, The theory of gauge fields in 4 dimensions, CBMS Regional Conference Series in Mathematics, American Mathematical Society, Providence RI.

- 14. J. W. Milnor and J. D. Stasheff, *Characteristic classes*, Princeton University Press and University of Tokyo Press.
- 15. K. K. Uhlenbeck, Connections with L^p bounds on curvature, Communications in Mathematical Physics 83 (1982b), 31-42.
- 16. _____, Removable singularities in Yang-Mills fields, Communications in Math. Physics 83 (1982a), 11-29.

Department of Mathematics Ewha Women's University Seoul 120-750, Korea