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WICK DERIVATIONS ON
WHITE NOISE FUNCTIONALS

DoNG MYUNG CHUNG! AND TAE Su CHUNG

1. Introduction

The white noise analysis, initiated by Hida [3] in 1975, has been
developed to an infinite dimensional distribution theory on Gaussian
space (E*,u) as an infinite dimensional analogue of Schwartz dis-
tribution theory on Euclidean space with Lebesgue measure. The
mathematical framework of white noise analysis is the Gel’fand triple
(E) C (L*) C (E)* over (E”,u) where p is the standard Gaussian
measure associated with a Gel'fand triple £ ¢ H C E*.

The concept of Wick product was first introduced by Hida and Tkeda
[4]. Based on white noise analysis, the Wick product of white noise
functionals was defined in terms of S-transform by Meyer and Yan
[10]. In recent years, the Wick product has been used extensively in
the study of stochastic integrals, stochastic differential equations and
white noise integral equations. see e.g., [7], [9] and the references cited
therein. It is proved in [10] that (E) and (E)* are topological algebras
under Wick product.

In white noise analysis, the set {z(¢) ; t € T} is taken as a coordi-
nate system of (E*, ) and Hida differential ooerator 9; is the coordi-
nate differential operator. For y € E* the differential operator D, on
(E):

(1.1) Dy = / y(t)ois dt, ¢ € (E)
-

is an infinite dimensional analogue of the constant coeflicient first or-
der differential operator Z;‘:] Cj‘g%‘- The expression y(¢)0:¢ in (1.1)
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can be interpreted as (1) the pointwise multiplication of y(t) and 8;¢,
and (2) the Wick product of y(¢) and 8,¢. Based on viewpoint (1),
Obata [13] extended D, to a first order differential operator with vari-
able coefficients and showed that the operator is indeed a continuous
derivation on (E).

In this paper, based on viewpoint (2), we first irtroduce the con-
cept of a first order Wick differential operator with variable coefficient
(Theorems 3.3 and 3.5) and that of Wick derivation on the topolog-
ical algebras (E) and (E)* under the multiplication of Wick product
and then show that a Wick derivation is nothing mmore than a first
order Wick differential operator (Theorem 4.5). We next characterize
all the Wick derivations in terms of their Fock expansions (Theorem
4.6). Finally we discuss Lie algebras of Wick derivations acting on (E)*
(Theorems 5.2 and 5.3).

2. Preliminaries

Let T be a topological space with a Borel measure dv(t) = dt. We
assume that H = L*T,dt;R) is a rcal separable Hilbert space with
norm | - |o. Let A be a positive self-adjoint operator on H such that
p = ll[A"Yop < 1 and |4 "|ys < co. Let E = Np>0 Dom(A”).
For p > 0, let E, = Dom(A”) and E_, the completion of E with
respect to the norm [{]_, = [A7P¢]g. Then the dual of E, is E_,. Let
E* =,50 E-p. Then we have a Gel'fand triple E ¢ H C E*.

Let p be the standard Gaussian measure on E*, i.e., its characteristic
function is given by

/ 0 y(da) = 318k
=

where (-,-) is the canonical bilinear form on E* x E. Then (E* 1) is
called a Gaussian space. We denote by (L?) the complex Hilbert space
of y-square integrable functions on E*. By the Wiener-Ito decomposi-
tion theorem, each ¢ € (L?) admits an expansion:

(2.1) olz) =Y (2", fa),
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where f, € Hg", the n-fold symmetric tensor product of the com-
plexification of H. Moreover. the (L?)norm ||#|lo of ¢ is given by
613 = 320, n!|fnl2, where |- |o denotes the norm on HE™ induced
by the norm |- |y on H.

Let I'{ A} be the second quantization operator of A defined by

oG

T(A)g(x) =Y (2% 1, AC" ),

n=0

where ¢ € (L?) is given by the expansion (2.1). Then we note that
['(A) is a positive self-adjoint operator with ||I'(4) '|lop < 1 and
IT(A)~Ylus < oo. From (L?) and I'(A), we can coustruct a Gel'fand
triple (E) C (L?) C (E)* as above.

Elements ¢ € (E) and ® ¢ (F)* are called a test (white noise)
functional and a generalized (white noise) functional (or a Hida distri-
bution), respectively. We denote by ((,-)) the canonical bilinear form
on (E)* x (E).

It is obvious that ¢ € (L?) belongs to (E) if and only if for each n,
fn € EE™ and for each p > 0,]1¢]12 = 3,2 n! fals < oo

For each £ € FE¢, an ezponential vector p¢ is defined by ¢¢ =
oo (s @™ 1 E®™). Then it is well-known that {p¢; £ € Ec}
spans a dense subspace of (E). The S-transform of a generalized func-

tional ® € (E)* is a function on F¢ defined by S®(&) = (@, pe)) for
¢ € Ec. The following result is the characterization theorem for white
noise functionals due to Potthoff Streit [15] with norm estimate due

to Kubo Kuo [6].

THEOREM 2.1. The S-transform F = S® of ® € (E)* satisfies the
following conditions:

(F1) For any £, € E¢, the function z — F(z£ + n) is entire on C.
(F2) There exist K > 0,a > 0 and p > 0 such that
|F(€)] < el £ e B

Conversely, assume that a C-valued function F' defined on Eg satisfies
the above two conditions. Then there exists a unique ® € (E)* such
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that F = S®. Moreover, for any ¢ > p with 2ae?||A 0P| o < 1, we
have the following norm estimate:

[1l-g < (1 - 2ae?a-le-m)3, o712

Throughout this paper, for topological vector spaces X and Y,
L{X,Y) denotes the space of all continuous linecar operator from X
into Y equipped with the topology of uniform convergence on bounded
subsets of X .

For = € L((E).(E)*) (resp. L((E1.(E)), L((E)*, (E£)*)), we define
a mapping G : E¢ — (E)* by

(2.2) G(€) = EL,.CE, £ € E¢.

Then G satisfies properties (G1) and (G2) (resp. (G2'), (G2")):

(G1) For &,£',n € E¢, the map z — (G(z€ + £'),¢y,) 1s entire on C.
(G2) There exist p > 0,¢g > 0, K > 0 and a > 0 such that

IG(E)]| - < I e85,

(G2') For any p > 0, there exist ¢ > (0, A > 0 and a 3> 0 such that
IG(E))], < Weolela,

(G2") For any p > 0 and a > 0, there exist g > 0 and I > 0 such that

IG(E)]|—g < I ey,

The following is the characterization theorem for operators on white
noise functionals (see [1]).

THEOREM 2.2, Let G be an (E)*-valued functioa defined on Eg
satisfying (G1) and (G2). Then there exists a unique ' € L((E),(E)*)
such that (2.2) holds. If G satisfies (G1) and (G2') ‘resp. (G2")), it
holds that Z € L((E),(E)) (resp. L((E)*, (E)*)).

I+ m])

For any «;., € (Eg)( ", the integral kernel opcrator il Kim)

1s defined by

«El.m(’{l,m)év L’b» = <"‘Cl,m> «8:‘ T 6:,631 e at»n ¢v ”ﬁ»)
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which can be written in a formal integral expression as

Etm(Ki,m) =/ Kim(S1, 80,1, 1)
j‘l—{-m
8r -0y By, dsy - dsydty - dt

It is known (see [11]) that each = € L((E),(E)*) has a unique Fock

expansion
& o]
= = E =78 KZ[ m

I, m=0

where k; ., € (Eg)(Hm))

L((E),(E)").
For = € L((E),(E)*), a function on E¢ x E¢ defined by

sym(i.m) and the right hand side converges in

é(fﬂ) = «E"ro&‘fon»’ ﬁv” € EC

is called the symbol of Z. It is known (see [11]) that =; = =, implies

o] = g,

The Wick product of two generalized functionals ® and ¥, denoted
by ® o ¥, is the unique generalized functional in (E)* such that S(® o
V) = 5% -SV¥. The next lemma is due to [7].

LEMMA 2.3.
(1) For any p > 0, there exists ¢ > p such that

(@0 ¥lfg <@ HI¥[-p,  @.¥e(E)"
(2) For any p > 0, there exists ¢ > p such that

[ odllp <lollolllly, — 6.u € (E).
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3. First order Wick differential operators

We first need some notational conventions on E¢ ¢ (E), the space of
E¢-valued white noise test functionals. We use the same symbol || - ||o
as the norm on H¢ ® (L?). It is well-known [12] that the topology of
E¢ ® (E) is given by the norms

[wllp = [(A®@T(A)Pwllo, weEc&(E),peR

The canonical bilinear form on (E¢ & (E))* x Ec ® (&) 1s also denoted
by <(, >>

LEMMA 3.1. For® € (Ec®(FE))* and £ € E¢, there exists a unique
(®,¢&) € (E)* such that

((®.8),8) = (®,6 o), ¢€(E)

Moreover, the map (-,-) is an (E)*-valued continuous bilinear form on

(Ec&(E))*x Ec andfor® € (Ec®(E))*, € € Ec and p € R we obtain
(@, &) -p S PN -plElp-

Proof. Let ® ¢ (Ec Q@ (E))*, £ € E¢ and ¢ € (E). Then we have the

norm estimate:

(3.1) (@, €@ o)l < [l -plElpll¢llp-

So. the map ¢ — ((®,£® ¢)) is continuous linear and hence there exists
a unique Hida distribution, denoted by (®,¢), such that

((®.6).0) = (2.6 0). o€c(E)
The second assertion is clear from (3.1) O

The next lemma can be found in |7] and [11].

LEMMA 3.2. For ¢,¢ € (E), we put hy ¢(t) = ((3:6,%¢)). Then for
each p > 0, there exists K > 0 such that |hy plp, << K||&]lp|li|lp In
particular, hy € Eg¢.
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THEOREM 3.3. For @ € (E¢ ® (E))*, there exists a unique = €
L((E),(E)*) such that

(32)  E((-®" 8 = nl B L 30 D) o (@, €),
for any £ € E¢ and for any n > 0. Moreover, its symbol is given by

E,n) =M@, &n € Ee

Proof. For ® € (Ec®(E))* and ¢ € (E), define a C-valued function
Fq>,¢ on Ec by

Fq’,!ﬁ(é) = «(I)vhc),gaf ® 995», £ € Eg,

where hgy o, 1s defined as in Lemma 3.2. Then by Lemma 3.2, for any
p > 0 with ||®||_, < oo, there exists & > 0 such that

(3.3) [Fo,6(6)] < K|@]| 6.

Hence Fg 4 satisfies (F2) in Theorem 2.1. Now we will prove that Fg 4
also satisfies (F1) in Theorem 2.1. First observe that if ® is of the form
®=yQVW¥,yec E;, ¥ c(E)* then

F‘I’,cb(f) = <y1 h‘¢,<ﬁz>(<\I}7 @5»

Since the map £ — (y, hg ) is the S-transform of a Hida distribution
¥ — (y,hg y), it holds that Fg ¢ satisfies (F1) in Theorem 2.1. For an
arbitrary ® € (E¢ ® (E))* we can choose a sequence {®} in the linear
span of the set {y @ ¥ ; y € Ex, ¥ € (E)*} such that ®; converges to
® in (Ec ® (E))*. Then by (3.3) we obtain

[Fo, (26 +€') = Fa,p(26 4 €] < K[| @ — @l gl "+

Therefore Fg, ¢(2€+ ') converges to Fg ¢(2€+ £') uniformly on every
compact subset of C. Thus the function z — Fg ¢(z€ + £') is entire
on C. Consequently, by Theorem 2.1 there exists a unique 4 € (E)*
such that Fg 4(£) = SQ4(€). Define an operator = by Z¢ = Q4 for
¢ € (E). The linearity of Z is clear from the linearity of the mapping
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¢+ Fg 4(£). And by Theorem 2.1, for ¢ > p with 2e?|| A=) |12 < 1,
we obtain the norm estimate

g - . —1/2
1Z6]|—q < K||@]|—pll8llp (1 — 262 A~=P)j3g) %,

from which we have = € L((E), (E)*).
Now we will verify that = satisfies (3.2). Fix £ € E- and put v,() =
(: 2®™ . £9™) for n > 0. Then

B 0 (1) = (Ot 20 = n{(E(Nnr, 00)) = n(E.0)"TE(H).
Thus we have hy, ,, = n(£, )" "¢ and hence
SE¥n(n) = Fo,4,(1) = (@, hun gy 0 0) = n(€m)" 7@, € 0 ).
On the other hand,
S(ntpn-10(2,6)(1) = 1S 1(M((D.€),00)) = n{E.0)" (@, £y

Hence (3.2) holds. Further, we have

‘ _ = 1 _ = 1
(34)  Spe=) —Etn =~y o(B.6) = pco (@6
n=0 n=1
and
2(6:m) = (e 0 (8,6),00) = M ((B,€),04)) = € (@, £ @ 2).
This completes the proof. O]

DEFINITION 3.4. The operator = given in Theorem 3.3 is called a
first order Wick differential operator with coefficient ® € (E¢ ® (E))*

and is denoted by
E:/@(t)o@tdt.
T
We note that the map t — ®(t) is an (E)*-valued distribution on T,
i.e., an element in B3 @ (E)* = (E¢ 2 (E))*.

We are now interested in the first order Wick differential operators
acting on (E) into itself and acting on (E)* into itself.
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THEOREM 3.5. Let = € L((E),(E)*) be a first order Wick differ-
ential operator with coeflicient ® € (E¢ ® (E))*. Then

(1) Z€ L((E),(E)) if and only if ® € E3 @ (E).
(2) Ze L((E)*,(E)*) ifand only if ® € Fc @ (E)*.

Proof. (1) We first note that & € Ef ® (E) if and only if (®,-) €
L(E¢,(E)).

Suppose = € L((E),(E)). Then for any p > 0, there exist ¢ > p
and ' > 0 such that

IZ8ll, < Kliglly, ¢ €(E).

Since Z({-,€)) = (®, £) by (3.2), we have for { € E¢

(@, I, = IE( NN, < K6l = KLl

So (®,-) € L(E¢,(E)) and hence ® € Ef @ (E).
Conversely, let ® € Ef ® (E). We will show that the function
G(&) = e 0 (®,8), £ € Eg satisfies (G2') in Section 2. Since (®,-) €
L(E¢.(E)), for any g > 0 there exist K > 0 and r > ¢ such that

H(CI)£>”q < I{|‘£’r7 6 € E(C'

Hence for p > 0, by Lemma 2.3, there exists ¢ > p such that

GO, < Ilellol{®, E)]l, < KellH3e I,

Thus (G2') holds. In view of (3.4), by Theorem 2.2, we conclude that
=€ L(E).(E)).

(2) We observe that ® € Ec(E)* if and only if (®,-) € L(Ef, (E)*)
Suppose = € L((E)*,(E)*). Then for any p > 0. there exist ¢ > 0 and
K > 0 such that

[Z¢]l-qg < K

In view of (3.2), we obtain
(@, = = IE(( €Dl =g < KNI —p = Kl
Therefore (®,-) € L(Ef,(E)*), and hence we obtain ® € E¢ ® (E)*.

—p-
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Conversely, let @ € E¢ ® (E)*. As in the proof of (1), we need
only to show that G(§) = ¢ o (®, ) satisfies (G2") in Section 2. Take

p > 0 and a > 0. And choose p' > p with %pm’l"’) < a. Since
(®,-) € L(EZ, (E)*), there exist ¢ > p' and K > 0 such that

1@, )y < KIE|p.

For this ¢, there exists r > ¢ such that

1G] < lloell -gll(®. &) -y < el s,

This completes the proof. O

EXAMPLE 3.6. (1) The differential operator D, (y € Ef) is a first
order Wick differential operator with coefficient ® = y®1 € EZ & (E).
(2) The number operator N has the integral representation

T JT
Let ®,(z) = z(t). Then we see that & satisfies for £, € E¢

<<(I>>§ & ‘PT]» - (<<q>7€>a9977» = <<<(I>, 9977>>1€> = <§a77>'

So N is a first order Wick differential operator with coefficient @ €
Er ® (E) and with ® € Ec ® (E)*.

4. Wick derivations on white noise functionals

We begin with the definition of Wick derivation.
DEFINITION 4.1. An operator = € L((E),(E)*) is called a Wick

derivation if
S(6o) =Spou+ 60Ty, b e E).

Now we shall give two criteria for checking whether or not a contin-
uous linear operator becomes a Wick derivation.
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PROPOSITION 4.2. Let = € L((E),(E)*). Then it is a Wick deriva-
tion if and only if

(41)  E(€+n,0) = eMOEE Q)+ 495(,¢), &n,( € Ec

Proof. Since the set {p¢ ; ¢ € Ec} spans a dense subspace of (E),
= is a Wick derivation if and only if

Elpe o) = Epe 0w + 00 Zen,  &n € Eg
But (4.1) follows from the obvious facts:
PeC¥Pn = Pety §,n € Ec

and

(pe oW on) = M0 0p), T E(E) &€ B
Hence we complete the proof. O

PROPOSITION 4.3. Let = € L((E),(E)*). Then it is a Wick deriva-
tion if and only if for all £ € F¢ andn > 0

(4.2) =((: B, £8™) = ni: .@(n-1) :76®(n‘1)> o B({-,6)).

Proof. Immediate from the fact that the set {(: -®™ : £%"); £ €
Ec,n > 0} spans a dense subspace of (E). O

LEMMA 4.4. Any first order Wick differenrial operator with coefli-
cient ® € (Ec @ (E))* is a Wick-derivation.

Proof. We easily verify that the symbol of a first order Wick differ-

ential operator with coefficient ® € (E¢ ® (E)* satisfies (4.1). Hence
by Proposition 4.2, the proof follows. 0J
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THEOREM 4.5. (1) Let = € L((E), (E)*). Then = is a Wick deriva.
tion if and only if it is a first order Wick differential operator with
coefficient & € (E¢ & (E))*.

(2) Let = € L((E),(E)) (resp. L((E)* (E)*)). Then = is a Wick
derivation if and only if it is a first order Wick differential operator
with coefficient ® € E¢ & (E) (resp. E¢ ¢ (E)*).

Proof. Suppose that = € L((E),(E)*) is a Wick derivation. By the
continuity of Z, we can choose p > 0 and K > 0 such that

1Z6ll-p < Kli¢ll,. ¢ € (E).

In particular, for £ € E,

IECCENN-p S BN 6 = K],

This implies that the mapping £ — =({-,£)) is a continuous linear
function from E¢ into (E)*. Since L(Eg, (E)*) & (Ec @ (E))*. there
exists a unique ® € (E¢ & (E))* such that

(@62 0) = (E((.6).0). &€ Ec ¢e(E).

Hence we obtain Z((-,£)) = (®,€) for € € Eg.
It is enough to show that = satisfies (3.2). By the definition of Wick
derivation, we can compute

E((: 2, €0) = Z(( 67
=n(, " Vo E((,€))
= p(: .©(-1 LESMY o (D).

Hence by Theorem 3.3, = is the first order Wick differential operator
with coefficient ® € (E¢ ® (E))*.

The rest of the assertion is immediate from Lemma 4.4 and Theorem
3.5. U

The following theorem is an another characterization for the Wick
derivation in terms of its Fock expansion.
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THEOREM 4.6. Let = € L((E),(E)*) be a Wick derivation. Then
it has the Fock expansion of the form:
(4.3) == Z Znia(kna)
n=0

for some sequence of distributions {1} withk, 1 € (Eg('ﬂ—]))sym (n1)°
Conversely, if the Fock expansion of Z is given as in (4.3), then it is

a Wick derivation.

Proof. Let = € L((E),(E)*) be a Wick derivation. Then, by The-
orem 4.5, = is the first order Wick differential operator with some
coefficient ® € (Egr ® (E))*. We note that & € (Er @ (E))* =
Ef @ (E)* is an Ef-valued generalized functional. Hence in view of
Proposition 2.3 in [12], there exists a unique sequence {xn 1}5%, with
Kna € (EC’;("H)) such that

sym(n,1)
o

“QH?—}) = Zn”ﬁn,llz_p < 0o for some p > 0
n=0

and
o0

(44) @5@’915 :Z Knl fnb’£>

for any £ € Eg and ¢ = 5.0 On s fn)y fn € Eg" Using (4.4), we

have

nU\

E(6n) =M@, 6@ p,) = 4P (k1 18 R E).
n=0
Hence = admits the Fock expansion of the form (4.3).
Conversely, assume that = € L((E), (E)}*) has its Fock expansion of
the form (4.3). So we have

(/‘l 1’n®n®£>7 57 nEEC

M8

Z(&m) = e

1l
<

n

l)

Hence it is easy to see that = satisfies (4.1), so that = is a Wick deriva-
tion. O
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5. Lie algebras of Wick derivations acting on (E)*

Let Der((E)*) (resp. Der((E))) be the set of Wick derivations in
L((E)*.(E)") (xesp. L((E),(E))). Then Der((E)*) (resp. Der((E)))
forms a Lie algebra under the operation of the commutator [-,-]. In
this section, we will study only Lie subalgebras of Der({ E)*), since we
can prove the corresponding results for Der(( £)) by similar argument.

The following lemma is taken fromn [14].

LEMMA 5.1. Let n € E¢ and Kk, ; (E@’") @ E¢. Then

sym <

(1) [Dp.Zni(kn1)] = nEn_11(kin1 @' 1), where @' denotes the
left contraction (see [11]).

(2) [N,:n 1(hn 1)] = (Tl — 1)En,1(’{n,1)-

The following theorem is a simple modification of Theorem 4.3
proved in [14].

THEOREM 5.2. Let g C Der((E)*) be a 2-dimensional Lie subalge-

bra containing the number operator N. Then there cxists = € g of the
form = = Z,, 1(km 1) such that

g=CN+CZ, [V,5]=(m—-1)I.

For n € E¢ — {0}, g = CD,, + CN is a 2-dimensional Lie subal-
gebra of Der((E)*). In the next theorem, we determine all possible

3-dimensional Lie subalgebras of Der((E)*) containing CD, + CN.

THEOREM 5.3. Let g C Der({E)*) be a 3-dimensional Lie subalge-
bra containing the differential operator D, withn € E¢ — {0} and the
number operator N. Then there exists = € g which is one of the forms

(a)-(d) below such that g = CD, + CN + C=:

(a) E=Eg1(Ko,1) with kg 3 bemg linearly independent of 7.
(b) E=E11(k11) with k)1 @' n = .
(¢) E=CEg1(ke,1) With ka1 @'y = 7.

) ZE=Enm1(km1) With £, 1 & ln—()forqom( m > 1.

In particular, if £ is of the form (b), then g is solvable, and if = is
of the form (c), then g is simple.

Proof. Let =

= € g be a linearly independent element of D, and N.
Suppose that =

= Y o s Eni{fn1) is its Fock expansion. Without
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loss of generality, we may assume that «¢; and K1, are not non-zero
constant multiples of n and 7. respectively.

Using Lemma 5.1, we have [N,E] = "> (n—1)=,1(kn1) = aD,+
bN + c= for some a,b,c € C. For this relation, we obtain

(i) an+(c+1)kgq1 = 0.
(il) br 4+ cky 1 =0.
(ili) ckp1=(n—1)kn, forall n > 2.

First, suppose that «, ; # 0 for some n > 2. Then by (iii), ¢ must
be an integer > 1 and k,1 = 0 for n # ¢4 1. By (i) and (ii), we
obtain kg = 0 and k13 = 0. Put m = c+ 1. Then = = =,,,. On
the other hand, [D,,Z] = mZ,,—1,1(km .1 @'y = a'Dy+ N + = for
some a', b, ¢’ € C. Sowe have k,, 1 @'n=00rm =2,k , @' 55 = b'7.
Hence we can take = of the form (c) or (d).

Next, suppose that = = =y 1(k9,1) +Z1,1(k1.1). Then by (i) and (ii),
koqp=0o0r k11 =0.If 6oy #0 and k1; =0, then Z = =g 1(Kg,1) is of
the form (a). If kg1 =0 and xy; # 0, then [D,,Z] = Zg1(k11 @' n) =
a'D, + b N + ¢'Z for some a',b', ¢’ € C. We then have &’ = ¢/ = 0 and
£11 ®' n = a'n. Hence we can take = of the form (b) or (d).

The rest of the theorem is casily verified. O

Note added in Proof. Our Theorem 4.6 is found in a recent paper
by S. W. He, R. Q. Yao and J. G. Wang (The Characterizations of
Laplacians in White Noise Analysis, Nagoya Math. J. Vol. 143 (1996),
93-109)
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