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A UNIFIED TREATMENT OF SOME SPECIAL
PROPERTIES OF CONVEX CONFORMAL FUNCTIONS

JONG Su AN AND Tal SUNG SONG

1. Introdution

We assume throughout the paper that f(z) is a conformal function
in the open unit disk D = {z : |z| < 1}. In the rest of paper, conformal
means analytic and locally univalent. The Schwarzian derivative of a
function f is defined by

A set is convex if it contains the line segment between any two of its
points. It can be shown that [(z) is convex in D if and only if f(z)
satisfies either one of the following two inequalities (see[l1] p.5):

(1) 1+ Rezpy(z ) > 0, z€ D

(2) (1 = |=2)py(z) - 2] < 2, 2 € D,

We define the followmg class C'(r) in D. Let C(r) be the class of all
conformal functions in D which are convex on every hyperbolic disk in
D of hyperbolic radius p,r = tanhp, for some r <1 ([1,p.2]). We have
already noted the following four result:

(1) Nehari's result ([7]); Let f(z) be a convex function in D. Then

21S4(z)] < 2

(2) Pommerenke’s result (Theorem 2.4 in [10]); For o > 1, if f
satisfles the inequality | 1—|z|®)¢ (2)—2%| < 2a. for all z € D,
then

(1—1[21%)%|Ss(2)] < 2(a® 4 3V3a + 3).
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(3) Pommerenke’s result (Theorem 2.5 in [10]'; For & > 1. if f
satisfies the inequality [(1—|=|?)¢ ;(2)—2Z| < 2a, for all z € D,

then
felCla—/a?-1).
(4) Pommerenke’s result (Corollary 2.3 in [10] ; For 3 > 0, if f
satisfies the inequality (1 — |z]*)%|Ss(z)| < 23, for all = € D,

then
(1= |z]))ep(2) — 27 < 24/1 + 3.

In this paper we show Theorem 2 2 and Theorem 3.1. Theorem 3.1
1s an improvement of Pommerenke’s result (2). Both Theorem 2.2 and
Theorem 3.1 follow consequences of Theorem 2.1. We find values for
o and J such that f satisfies

(*) N1 — f:iQ);pf(z) — 27! < 2a, forsome a > L.z € D
and
(**) (1~ |21%)*|Sf(2)] < 28, for some 8> 0,z € D.

Using results of P.Beesack-B.Schwarz[3] and D.Minda[5] we derive an
estimation for the uniform radius of univalence of functions in C(r)
satisfying the above property (*).

2. The lower bounds of functions having special property

Let § be a simply connected region in the complex plane C (C #
) and r € (0,1). Denote

(fog)'(z) zta
ogl2 :——-—, ‘here g(z) = , D.
@ fogl2) (Fo0(7) , where ¢{z) 1+62,a6
If the condition w = 1+ zp o, € Q, for every z € D, = {z : |z| < 7}

and for all @ € D, holds, then we say that f(z)is Q-locally convex with
radius r, and denote by C(€2.r), the class of all such functions. We note
1e Q. Hence by the Riemann Mapping Theorem there exists a unique
analytic function h(w) which maps ! onto D, such that k(1) = 0 and
K(1) > 0.
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LEMMA 2.1. For(z,a) € D x D.
(I +az)pp0g(z) = (1 |a]*)os(g(2)) ~ 2a(1 +az).

Proof.

) (7):(.)’ 9)"(z) _ | -
TS T Foge) T Fleleni+m?  (QiaE

This completes the proof. [J
LEMMA 2.2, Forz € D,

h(1 + wag(z)))’l ML)
z » ‘,::'1 z ey T
Proof. By the Schwarz-Pick l.emma we have
(h(1+ ©rog(z)) )’ﬁ
i '175 27“ 5, for z € Dy,
1y [AUbrerg(2) rt — |z|

(r® = |z[%)

(Mt prate) i L

P

For near z=0. we derive the resuvlt. [

LEMMA 2.3,

d ( )’
— ¢ foglz
dz ! 2=0

Proof.

W14 2950g(2)) )

=(1- |a|2)'“)’,9'f(a) - 2al(1 - |a*)ps(a) - al.

89
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d. F"(g(2)(g'12))* (f” (g(=))g'( :))2
T (#reg(2)) = o] ot
f'(g(2))g"(~

Since g(z) = (z + a)/(1 4+ @z), we have

= (1 —|a]*)*p 'a) —2a[(1 ~ |a 1*Y¢ p(a. —al.
This completes the proof. 0O
THEOREM 2.1. If f € C(R,7) for a given Q and r € (0,1], then

(1= |22 s) = 22 < (D]

(1 - 2[2185(2)] + c|(1 = |22 p(z) — 287 < [B(1)] " 'r
where z € D and ¢ = h'(1) = 3|1 + 24(1)].
Proof. By definition of C'(2,r) and h(w), it read:ly follows that the

composition A(1 + z¢fee(z)) is an analytic function of z which maps
D, into D and it vanishes at z = 0. Hence by the Schwarz Lemma we
conclude that the function h(1 + z¢ fog(2))/2 1s also analytic in » and
maps D, into Dy;,. Therefore we have in particular

A1+ 2@ pog(2)) /2| < 1/
For near z = 0, using Lemma 2.1, we have
?10g(0) = (1 —la|*)ps(a) — 24, a € D.
We get

R (1)¢ rog(0) = R'(1)I(1 ~ lal*)p s(a) — 28] <r7 "
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Hence
(1= ]z))ep(z) =27 < [A ()] ' z e D.

On the other hand, using Lemima 2.1, we get

h(1 + zp poq(z

e
<

))i = h'(1)2f0g(0) = K'(1)[[1 — |a]* ) f{a) — 2al.
=0

Expands A(1 + 2z 4, z into a power series i1 2 :
¥ fog(z) I

h(14 zpfog(2))/=

d

= 1'(1)¢ 1oy (0) + {h’(l) % 00(2)

For near - =

(h(l + 3S‘cfog(2))>l

By Lemma 2.3,

P

h(l+ zo0,(z ! d . ) ~
[h,(l)]—] ( i+ v/ g( ))) ’ = d-:'v«?fog(_z,l + "59}1(1)*?_“[09(())
-~ =0

z2=0

. ; 1 ‘
= (1= lal*Y¢'rla) ~ 2a[(1 — |a|*)¢ (a) = @ + 52n(1)¢ oyl 0)

o 1 1 o 10
= (1= 1a*Plef(a) = sejlal] b 51+ wu(1)) (1 Jal*)psla) - 2]

By Lemma 2.2, we have the result. [

COROLLARY 2.1.1. Let Q b a simply connected region in C (C #
Q) andr € (() 1). If f € C(Q,r) then f satisfies (*) and (**), Whel‘t
20 = 20! = [B'(1 )J“r'1 an:l

2;3:‘2,3“ max{h'(1).(1/2/|1 + pp(1)|}{A' (1)) 2r 2

Proof. By Theorem 2.1, f satisfies the inequality

(U= =) ptz) == < D) ' L € D.



592 Jong Su An and Tal Sung Song

Also if h'(1) > 11+ ¢4(1)], then ¢ > 0 and by Theorem 2.1, we have
(1= 121)%1S5(2)] < (W(1)] 712 = 250

for every f € C(Q,r) and all = € D. Finally, if h'(1) < ( 1/2)1+¢n(1)],
so that ¢ < 0, then Theorem 2.1 implies

(L= =%IS5(2)] < —el(1 — [z )y (=) zl2+[h"_1)]“7~-2
S Q2+ DI WO = =) st) =22 + (117
</ ealD] = FOYR ()] 272 4 B(-1] 7

< (/2 +ea(DIR (D] = 207
forall fe C(2,r)and z € D. O

Now we can derive coefficient incqualites for normalized functions

in C(Q, 7).
COROLLARY 2.1.2. If f(z) = z - apz? + a3z® + - € C(Q,r) for
given Q and r € (0,1] then
1 .
jag| < = [h (D] e ag] < gmax{ )1 — ‘)ph MWIR(1) 7% 2,

By applying Theorem 2.1 to the class C'(2°,r) where
Q° = {w : |argw| < 76/2} for 0 <r < min(1,6), § >0,
we obtain generalized form.

THEOREM 2.2. If f € C(Qﬁ,r), then

—|2 5
(1= |2|5)3|Ss(2)] + (1—1|z)*10y z)—2z’ <26r7% zeD.

% <
Hence we have in particular
(1~ 2)esl2) — 22| < (26/r) and (1= |2[2)2[S =)| < (26/r)

Proof. Let h(w) = (w'/® — 1)(w'"® 4+ 1). Then h maps Q° onto D
with
R'(1) = 1/26, pp(1) = =1 and ¢ = R/(1) == 1/26.

Thus Theorem 2.1 readily yields Theorem 2.2 as well. [J

Notice that in the case r = § = 1, Theorem 2.2 implies an improve-
ment of Nehari’s result.
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COROLLARY 2.2.1. Let f(z: be a convex function in D. For z € D,
then

(L= 21" p(2)] + (1/2)[(1 = |2 ) pi2) — 23)* < 2,

Mindal[5] establishes the following geometric interpretation of The-
orem 2.2 in the case & = 1. Let r(z, f) be thke hyperbolic radius of
the largest disk in D centered at : in which f is univalent. Define
r(f) = inf{r(z, f): 2 € D}. The function f is called uniformly locally
univalent in D provided that r( f) > 0. If

(1= 121215 ()] < 21 4 &2),
then r(f) > = /2k for all k > 0.
COROLLARY 2.2.2. If f € ('(,r), then f(z) is uniformly locally
univalent, that is, f(z) is univalent in every hyperbolic disk in D. of
hyperbolic radius

[)2m/2k =nr/2\/1 —r? = (x/2)sinhp( )

where p(f) = (1/2)log[(1+7r)/( -~ )] is the uniform hyperbolic radius
of convexity of f(z).

Proof. By Theorem 3 in [5], f(z) is univalent in every hyperbolic
disk in D of the hyperbolic radius r(f) > w/2k, provided that (1 -
1z12)%1Ss(2)] < 2(1 + k?). On the other hand by Theorem 2.2. fe
C(Q.r) then (1 — |z]*)|Sp(2)]* < 2/r% Hence & = \/_1/7 — 1. and
the result follows. [

REMARK. From Theorem 4 in [5], f satisfies the incquality
(1= [2[*)*ISs(=)] < 6/tanh*(r £)).
By Pommerenke’s result(4), we have

(1= |2*)ps(z) — 271 < 23/1 + 3/tenh?(r(f))

and

ICGC’(\/1+3/ta,nh2 — /3/tanh?(r(f)) >
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3. An estimate of the class of special functions

In this section we use Theorem 2.1 and find an estimate for 3, such
that if f satisfies (*) then f satisfies (**). First we show that every
function f which satisfies (*) is 2&-locally convex with radius r, for all
r € (0,1), where

1472
172

2(17’1
<1.~.r2J.

W

LEMMA 3.1. If f satisfies (*), then f € C(Q%,r) jorevery r € (0,1).
Proof. Note that if f satisfies (*) then f o ¢ satisfies the inequality

(1 — |2|*)¢ fog(2) — 27| < 2« for every Mébius automorphism g(a) =
(aa + 2)/(1 4 aZa) of D. Since [ satisfies (*) it car. be written in the
form

14 iz]?
1—|z]?

2az]
—1-z7

Il + zepl(2) —
Hence, f o ¢ satisfies (*) which is equivalent to

14z
1—|z)?

20|z |
N

'1 + 2¥’f°g(~7) -

This shows that w = 1 4 zp5.4(2) € 17 Note Q% C Q7 whenever
|z| < r for every r <1 < a. So that it completes the proof. [

THEOREM 3.1. If f satisfies (*), then
(1= 121215 ()] + (172001 ~ |2 ) 5(2) — 22
< 2{a’ + (a +(1/2)a)Va? — 1}
(1= [21*)?1S4(2)] < 28(0)

where 1 < 3(a) <1+ o? is given by

L]

a3
3

Bla) =1+ a?, fora > 14+V2

and

Blo) = \/(1/8(12)[270/’ —18a2 — 14 +/(a? — 1)(9a? — 1)3]
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for 1 <a <14+ 2

Proof. By Lemma 3.1 we can apply Theorem 2.1 to the case that
1 = QY for a fixed @ > 1 and & variable r € (0.1). Thus

a(l —»*)(w —1)
hlw) = ~ Q2 . D.
l(U) T‘[(l'* T‘2)'U7_f (20’2“7'2—1) T

So we have

o (lhl‘) 1—r?
h(l)—‘) ((12"7 ) hIofl(jl-) 0’2—T2
and ) .
. —ar
c=h(1) = z[1+e(1)] = (e ) e(r).

By Theorem 2.1 the following inequality holds:
2 2
(1= IS (=) + elr)l(1 = |2 )—234252[-$~L—]
where
(1/2)[R' (1)) 'r 2 = (a® = rH) ar(1 = r?),
Now put r = a — Va? — 1. Then
(1= =S p(=) + (1/2)(1 = |20 4(2) — 23]

< 20% +2(a +(1/2)a)Va? - 1.

Next, note that ¢(r) > 0 only for r € (0,1/«) and therefore

‘ ’ 2[—(;::—]_%7} for 0 <r <1/a.
(1—J21*)%S4(2)] < . ,
2[ ’—"—f——} —4a?c(r), forr >1/a.

ar(l-r?)

. 22 ). .
Observe now that the minimurn value of 2 {a—fﬁ___:;—):l in (0,1) is ob-

tained at

o = i1/2)(302 - 1) - ViaT = 19a7 1)
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and let f(a) = 2 {—“-;—_QT} If1<a<+/1+v2then rp < L and if
a>vV1+ 2 then [ao‘z_rz ] > 14 a?. On the other hand

T 1—-r

a? — pl . a’—1 o? r
—_— e 20%¢(r) =
ar(l —r?) a’elr) o (a -1 + 1~r2>

which obviously is au increasing function of r in [1/¢, 1), and therefore
we get in the interval

a2~r2 B E . 1/ )2
ar(l - ) 1= ifa7)

—2a%¢(1/a)

2
el Wer
[] 1 /a, ]
This completes the proof O
Using the argument of the proof of Corollary 2.2.2 we obtain the
following result.

COROLLARY 3.1.1. Let f satisfies (*). Then f(z) is univalent in
every hyperbolic disk in D with the hyperbolic radins

r(f)> W/Z\/ﬁ(oj—: > 7 /2a.

Next we derive some coefficient incqualites for normalized functions.

COROLLARY 3.1.2. Let f(z) = z + ayz? + ... and f satisfies (*).
Then

las — a?| + 1/3Jaz|? < (1/3)[0? + (a + 1/2a)Va? - 1],
las — a2] < B(a)/3 < (1+a?)/3,

1 . 0% —r?
fag| < §max[(1 —rHa, (1 + 2a% — STZ)T]aZ—r:iT*:T—Q)L;»

for every r € (0,1).

Proof. The inequalities are localized versions of Theorem 3.1 at near
z = 0. If we substitute the values of h'(1) and ¢4(1), in the proof of
Theorem 3.1 into Corollary 2.1.2 we obtain the resuit. [J
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4. The equivalent properties of convex functions
If f(z) satisfies the improved convexity condition
14+ Reze{z) >0, z€ D.

then we say that f(z) is a convex function of order o. for some o €
(0, 1)(see[4]). For a > 0, the technique of the proof of Theorem 2.1 may
be applied here to denvc sharp: bounds for [(1 — |z|2)¢ (z) — 23 and
for (1 — [z*)?]S,(=

THEOREM 4.1. The followire statements are equivalent.

(1) flz) 1s a convex function of order o in D.

(2) [0~ [=21%)p () — 201 - o)Z| <2(1 — o).

(31 (1~ |=Phestz) - 22] < 21 - o ~lell

(41 (1~ 2P )gpiz) - 28] < 2[1 — of SINER

(5) (1-‘;:;2)15',»(:)»;-}(1 e B)eqlz) —-:?["_N 2[1—a(1-2]).

Proof. We show that (1) ==- (2). Since flz) is a convex function
of order o in D, f(z) satisfies the improved convexity condition 1 «
Rezpy(z) > 0,2 ¢ D. The above inequality tells us that the analytic
function w = 1 4 zpp(z) map: the unit disk D into the half plane
{w:Rew > o}, and g(w) = (w 1)/(w+ 1~ 2r) maps the half plane
onto D. The composition of two functions

gl + zp4(z)) =
satisfies the requirement of the Schwarz Lemma and therefore

b))

map D into itself. Hence we have [g(1 + 2 zoplzhijzi < 1lforall - € D.
By simple computation we see:

() S 41— 0)* + 41 - g Rezpp(2) - [z 42|,
(1= =) s(2)* <401 = 2)? + 4(1 = 0)Rezp (=)

o 4(1- 41 -
(1-1]zi%) {\\,ﬁf(”’)lz - _‘-"%Rf" sz) + _;—’I—Io)zl !2}

SAUL = 0) 0+ (22 /1~ )
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which is inequality (2). (2)==(3) and (3)=>(4) are trivial. We show
that (4)==>(5). If we square (4) we have |(1 — |z|?)p(z) — 27]* <
4[1 — (1 — |z|*)] then simply we obtain

0<(1—lz[H]ps(2)* <41 -0 +Rezgg(z))

Hence 14+ Rezp f(z) > 0. The above inequality tells us that the analytic
function w = 1 + z¢f(z) maps the unit disk D into the half plane
{w:Rew > 0}, and g(w) = (w — 1)/(w + 1 — 20) maps the half plane
onto D. The composition of two functions

zp5(2)
1—0)+ zps(z)

g(1+z2¢4(2)) = 5

satisfies the requirements of the Schwarz-Pick Lemria. Hence we have

(m —:,{f)wf(z))’I =i

25(2) :

2(1 — 7))+ zp4(2)

(1—1z1%)

So we have
(1— 23200 = o)(z) = #H(2)| < 21 = o) + 2 5(2)]* =l s(2)".
This inequality yields
(1~ [2[H{201 = o)ley(2) = (1/2)¢7(2)] = ol ()]}
< 4(1-0)[1 -0 + Rezgpsi2)] = (1 = |z[)lps(2)]’
and simplifying above inequality we get

-

1 5. 1 , z
(1—12*) {l’»?'f(z) - 59’?(2)\ + 3,:|<Pf(z)|2 - T_”WRCZW(Z)}

<2(1 ~ o).
Finally, adding (2|2]?)/(1 — |2|?) to both side, ther the inequality (5)

follows at once. We show that (5)=>(1). Suppose the below inequality
1s holds:

‘ 1 ‘
(1—[=[)?Sp(2)] + Lt |2[*)¢ 5(2) = 22* < 21— o(1 ~ |2[%)].
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Then we have |(1—|z|*)¢s(2)— 22| < 2[1—0(1- |2|%)]1/2. Square above
inequality and simplify. Then we obtain

0 <(1—[2)es(z 1 <41 ~a + Rezgp(2)).

Hence f(z) is a convex functior. of order o in I). [

From the inequalities (2) and (5), we obtain the following conse-
quence.

COROLLARY 4.1.1. Let f(2: = 2 + agz2 + a3z® + ... be a convex
function of order o in D, for some ¢ € (0, 1). Then

lag] <1 — o, las] < (1/3)(1 —0)(3 — 20).
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