TOTALLY UMBILIC LORENTZIAN SUBMANIFOLDS

SEONG-SOO AHN, DONG-SOO KIM1 AND YOUNG HO KIM2

1. Introduction

A totally umbilic submanifold of a pseudo-Riemannian manifold is a submanifold whose first fundamental form and second fundamental form are proportional. An ordinary hypersphere $S^n(r)$ of an affine (n+1)-space of the Euclidean space E^m is the best known example of totally umbilic submanifolds of E^m . From the point of views in differential geometry, the totally umbilic submanifolds are the simplest submanifolds next to totally geodesic submanifolds. The totally umbilic submanifolds of a Riemannian space form $\bar{M}^m(c)$ with constant sectional curvature c are well known ([2], p.129).

In this paper we classify the totally umbilic submanifolds of the pseudo-Euclidean space E_t^m and prove that a submanifold M_s^n of E_t^m with indefinite metric (i.e., $1 \le s \le n-1$) is totally umbilic if and only if null geodesics of M_s^n are all straight lines.

2. Notations and Terminologies

Let E_t^m be the m-dimensional pseudo-Euclidean space with the standard flat metric given by

$$\bar{g} = -\sum_{i=1}^{t} dx_i^2 + \sum_{j=t+1}^{m} dx_j^2,$$

Received June 25, 1995. Revised December 20, 1995

1991 AMS Subject Classification: 53B25, 53C50.

Key words: totally umbilic submanifold, null geodesics, finite type.

This work was partially supported by TGRC-KOSEF.

¹ and ² were partially supported by Basic Science Research Institute Program, Ministry of Education under the grant number BSRI-95-1425 and BSRI-95-1404, respectively.

where (x_1, \dots, x_m) is a rectangular coordinate system of E_t^m . For a positive number r and a point $c \in E_t^m$, we denote by $S_t^{m-1}(c,r)$ and $H_{t-1}^{m-1}(c,-r)$, the pseudo-Riemannian sphere and the pseudo-hyperbolic space defined respectively by

$$\begin{split} S_t^{m-1}(c,r) &= \{x \in E_t^m | < x-c, x-c> = r^2\}, \\ H_{t-1}^{m-1}(c,-r) &= \{x \in E_t^m | < x-c, x-c> = -r^2\}, \end{split}$$

where <, > denotes the indefinite inner product on the pseudo-Euclidean space. The point c is called the center of $S^{m-1}_t(c,r)$ and of $H^{m-1}_{t-1}(c,-r)$, respectively. We simply denote $S^{m-1}_t(0,1)$ and $H^{m-1}_{t-1}(0,-1)$ by S^{m-1}_t and H^{m-1}_{t-1} , respectively. In physics, S^{m-1}_1 , H^{m-1}_1 and E^m_1 are known as de Sitter space-time, anti-de Sitter space-time and the Minkowski space-time, respectively. A vector X in E^m_t is said to be space-like (respectively, time-like or light-like) if < X, X >> 0 or X = 0 (respectively, < X, X >< 0 or < X, X >= 0 with $X \neq 0$).

Let M_s^n be a submanifold of a pseudo-Euclidean space E_t^m . ∇ , $\dot{\nabla}$, D, h and A_{ξ} denote the Levi-Civita connection on M_s^n , the flat connection on E_t^m , the normal connection on the normal bundle of M_s^n , the second fundamental form and the Weingarten map with respect to ξ in the normal bundle, respectively. Note that $H = \frac{1}{n} trace \ h$ is called the mean curvature vector of the submanifold M_s^n of E_t^m . If $\{e_1, \dots, e_n\}$ is a local orthonormal frame of the tangent bundle of M_s^n , then $trace \ h = \sum_{i=1}^n \epsilon_i h(e_i, e_i)$, where $\epsilon_i = g(e_i, e_i) = \pm 1$ for $i = 1, \dots, n$. If $H \equiv 0$, then M_s^n is called a minimal submanifold of E_t^m . We may find the basic notations and formulae in [2, 4].

3. Main Theorems

Recall that totally umbilic submanifolds are the submanifolds satisfying

$$(3.1) h(X,Y) = < X,Y > H, X,Y \in TM.$$

For a fixed null vector $x_0 \in E_{s+1}^{n+1}$, we let $U_s^n(x_0)$ denote the pseudo-Riemannian submanifold given by ([3])

$$(3.2) U_s^n(x_0) = \{ x \in E_{s+1}^{n+2} | \langle x, x \rangle = 0, \langle x, r_0 \rangle = -1 \}.$$

Then, since $\{x_0, x\}$ is a basis of the normal bundle, we have $h(X, Y) = \langle X, Y \rangle x_0$. Hence $U_s^n(x_0)$ is a flat totally umbilic submanifold of E_{s+1}^{n+2} with constant mean curvature vector field $H \equiv x_0$. In fact, $U_s^n(x_0)$ is isometric to E_s^n and for any null vector $x_0, U_s^n(x_0)$ are all congruent in E_{s+1}^{n+2} .

PROPOSITION 3.1. Let M_s^n , $n \geq 2$, be a submanifold of E_t^m .

Then M_s^n is totally umbilic if and only if M_s^n is, up to congruences of E_t^m , an open part of the following:

$$E_s^n$$
, $S_s^n(0,r)$, $H_s^n(0,r)$, $U_s^n(x_0)$.

Proof. Suppose that M_s^n is totally umbilic. Then, as in the proof of Riemannian case ([2]), (3.1) and Codazzi equation implies that

$$(3.3) DH = 0, A_H = \langle H, H \rangle I$$

and $\langle H, H \rangle$ is constant.

If $H \equiv 0$, then (3.1) shows that M_s^n is totally geodesic.

Now assume that $H \neq 0$.

- (1) If $\langle H, H \rangle = \epsilon \alpha^2$ with $\epsilon = \pm 1$ and $\alpha > 0$, then $H = \alpha e_{n+1}$. Then as in the proof of Riemannian case, M_s^n lies in the fixed (n+1)-dimensional linear subspace of E_t^m generated by $\{e_1, \dots, e_n, e_{n+1}\}$. Thus M_s^n is contained in E_s^{n+1} (if $\epsilon = 1$) or E_{s+1}^{n+1} (if $\epsilon = -1$). And it can be shown that M_s^n is, up to congruences, an open part of $S_s^n(0,r)$ (if $\epsilon = 1$) or $H_s^n(0,r)$ (if $\epsilon = -1$).
- (2) If $\langle H, H \rangle = 0$, then (3.3) implies that H is a constant null vector x_0 . Note that (3.1) implies

$$(3.4) \bar{\nabla}_X e_i = \nabla_X e_i + \langle X, e_i \rangle x_0, \quad i = 1, \dots, n, \ X \in TM.$$

Hence we have from (3.4)

$$(3.5) \bar{\nabla}_X(e_1 \wedge \cdots \wedge e_n \wedge x_0) = 0, \quad X \in TM.$$

(3.5) shows that M_s^n lies in a fixed degenerate (n+1)-dimensional affine space in E_{s+1}^{n+2} . Choose a null vector field y of the normal bundle of M_s^n in E_{s+1}^{n+2} such that $\langle y, x_0 \rangle = -1$. Then from (3.1) we obtain

$$(3.6) A_y = -I, \quad Dy = 0.$$

Hence x - y is a constant vector y_0 . Thus we have

$$\langle x - y_0, x - y_0 \rangle = 0, \quad \langle x - y_0, x_0 \rangle = -1.$$

Therefore M_s^n is, up to congruences, an open part of $U_s^n(x_0)$.

The converse is obvious. \square

Let M_s^n $(1 \le s \le n-1)$ denote the totally umbilic submanifolds in Proposition 3.1, then it can be easily shown that every null geodesic of M_s^n is a straight line.

Conversely we prove the following:

THEOREM 3.2. Let M_s^n $(1 \le s \le n-1)$ be a submanifold of E_t^m with an indefinite metric. Then M_s^n is totally umbilic if every null geodesic of M_s^n is a straight line.

We first prove the following lemma:

LEMMA 3.3. Let V_s^n be an n-dimensional scalar product space with index $s = 1, \dots, n-1$ and $h: V_s^n \times V_s^n \to W$ be a symmetric bilinear map. Then the following are equivalent.

- (1) h(v,v) = 0 for all null vector $v \in V_s^n$.
- (2) $h(X,Y) = \langle X,Y \rangle H$ for all $X,Y \in V_s^n$, where $H = \frac{1}{n}trh$.

Proof. Choose an orthonormal basis $\{e_1, \dots, e_n\}$ so that $\langle e_i, e_j \rangle = \epsilon_i \delta_{ij}$ where $\epsilon_i = -1$ for $i \in \{1, \dots, s\}$ and $\epsilon_j = 1$ for $j \in \{s + 1, \dots, n\}$. For $i \in \{1, \dots, s\}$ and $j \in \{s + 1, \dots, n\}$, since $e_i \pm e_j$ is null, we have

(3.7)

$$h(e_i, e_j) = 0 \text{ and } -h(e_i, e_i) = h(e_j, e_j), \quad 1 \le i \le s, \ s+1 \le j \le n.$$

For $i, j \in \{1, \dots, s\}$ with $i \neq j$, since $e_i + e_j + \sqrt{2}e_n$ is null, (3.7) implies that

(3.8)
$$h(e_i, e_j) = 0, \quad 1 \le i, j \le s, \quad i \ne j$$

Now let $i, j \in \{s+1, \dots, n\}$ with $i \neq j$. Then $\sqrt{2}e_1 + e_i + e_j$ is null. Hence (3.7) shows that

(3.9)
$$h(e_i, e_j) = 0, \quad s+1 \le i, j \le n, \quad i \ne j.$$

Thus from (3.7), (3.8) and (3.9) we know that $h(X,Y) = \langle X,Y \rangle H$. The converse is obvious. \square

Proof of Theorem 3.2. For any fixed point $p \in M_s^n$ and a null vector $v \in T_pM$, consider the null geodesic $\gamma(t)$ of M_s^n with $\dot{\gamma}(0) = v$. Since $\gamma(t)$ is a straight line, we have $\bar{\nabla}_{\dot{\gamma}(t)}\dot{\gamma}(t) = 0$. Hence we obtain h(v,v) = 0 for all null vector $v \in T_pM$. Thus Lemma 3.3 shows that M_s^n is totally umbilic. \square

Similarly, we may prove the following:

THEOREM 3.4. Let M_s^n be a submanifold of \bar{M}_t^m with index $1 \leq s \leq n-1$. Then the following are equivalent.

- (1) M_s^n is totally umbilic.
- (2) Every null geodesic of M_s^n is a geodesic of the ambient space \bar{M}_t^m .

References

- B.-Y. Chen, Geometry of submanifolds and its application, Science University of Tokyo, Toyko, 1981.
- B.-Y. Chen, Total mean curvature and submanifolds of finite type, World scientific, New Jersey and Singapore, 1984.
- 3. M. A. Magid, Isometric immersions of Lorentz space with parallel second fundamental forms, Tsukuba Jour.Math. 8 (1984), 31-54.
- B. O'Neill, Semi-Riemannian geometry with applications to relativity, Academic Press, New York, 1983.

Seong-Soo Ahn Department of Mathematics Dongshin University Naju, 520-714, Korea,

Dong-Soo Kim
Department of Mathematics
Chonnam National University
Kwangju, 500-757, Korea

Young Ho Kim Department of Mathematics Teachers College Kyungpook National University Taegu, 702-701, Korea