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LOCAL GENERALIZED SOBOLEV SPACES

Bu HyEoN KANG

I. Introduction

We introduced the generalized Sobolev spaces H? in [4]. In this
paper, we introduce the space H?_(Q2) of the generalized distributions
in HY with compact supports in  and the local generalized Sobolev
spaces H7,, (£2) of the generalized distributions on Q which are locally
in H? and study their properties.

For this purpose we briefly introduce the basic spaces which we need
in this paper. The reader can find the details in [3]. Throughout this
study, { denotes an open subset of R, and w denotes an element of
M., the set of all continuous real valued functions w on R™ which
satisfy the following conditions :

(a) 0=w(0) <w(l+n) <w(€)+w(y), &neR™

| o8
) AAHMWH¢<'

(v) w(€) > a+log(1l+ |€]) for some censtant a.

(8) w(€) is radial and increasing.

With the weight function w and open set Q in R”. Bjérck defines D,(Q)

as the set of all ¢ in L'(R™) such that ¢ has compact support in Q and

Jolla = [ 15(6)e™de <

for all A > 0. The space D (1) equipped with the strict inductive
limit topology is a strict (LF)-space, which is a complete (DF)-space.
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And we call D,(2). the dual of D, (), the Beurling’s generalized dis-
tribution space. They denote by £_,(2) the set of all complex-valued
functions % in Q such that ¢ € D,(Q) for all ¢ € D_(2) and the
topology is given by the semi-norms ||| x for every A > 0 and every
¢ in D, (). The dual space £.,(§) of the space £,({2) can be identified
with the set of all elements of D/ (2) which have compact supports
contained in © . And £/ () can be considered as a subspace of £/(U)
for any open subset U such that @ C U C R™ They also introduced
the generalized Schwartz space, denoted by S., the space of all €'°-
function ¢ in L'(R™) with the property that for each multi-index o
and each non-negative number A we have

Py alé) = sup e D(2)] < o0
rERn

and

Mo a(9) = sup ™ & D%(E)] < o0
EERT

and the dual space &, of the space S,,.

I1. Sobolev spaces with Compact Supports

Recall that HS = {u € S,||jully = [f 2O (6|2 dE]z < oc). Let
Q) be an open subset of R™ and K any compact subset of R". Set
H(K) = {u € H:|suppu C K} and H?.(Q) = H N E (Q). Then

H:(K) is a Hilbert space with inner product given by

(u,v)y = / 20 €)o(€)dE

by Theorem 2.2 in [4]. We provide H} () with the strongest locally
convex topology such that the inclusion map HJ(K) — HJ () is
continuous for each compact subsct K of Q. A seminorm || - || on
H? (9Q) is continuous if and only if for each compact subset K of
there is a constant C'p such that |Ju]] < Cx|[ul|¥ for each u € HJ ().
Since the topology of H? (§2) may be defined by considering a sequence
of compact sets increasing to 2 we see that H? (£) is an LB-space, a
strict inductive limit of the Banach spaces H3 (A ). In particular. it is a
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complete Hausdorff non-metrizable locally convex space. Each H’(RK)
1s a closed subspace of H? (Q) and a subset B of H: () is bounded if
and only if B is a bounded subset of H(R') for some compact subset

K of Q.

PROPOSITION 1. Let (¢y,) be a locally finite partition of unity in
D,(R). If a = (ay) is any sequence of non-ne; Jative integers, define

lully o = 3 am|@mu|| for all u in H; (). Then the (uncountable)
family of seminorms ||ull¥ , defines the topology T of H? (Q).

Proof. Since the sum is in fact a finite summation. they clearly
define the seminorms on H? (Q:. By the proof of Lemma 2.8 in [4].
we have |¢,ufly < |L'ml|[ llully for all u in 4%. Hence flully, <

(2m) 72 (Y amlly <

Now if v € H}(K) then suppu C K,
a compact set. chce the abova sum is a finite summation of non-

negative real numbers. Hence the above inequality shows that the
inclusion map H(K') — H? _(Q) is continuous for each compact subset
K of Q with respect to fhe topology 7' on H! () induced by the
seminorms. Hence 7 is finer than 7. In orde- to prove that 7' is
finer than 7, let G be any balanced and convex T -neighborhood of 0.
Sinee the inclusion map I : H)i K) — H? () 1s continuous for each
compact subset K of 2, If\-l (G) is an open neighborhood of 0 in H¥ (L)
for each K. If I'; = U}_, supp ¥y, ( K} ) is a sequence of compact subsets
which increase to €. Then for each j, there is an €; > 0 such that
B(Kj.e;) = {v € Hy(K,)||]v|* < €} C IKI(G’) Hence B(I\'] €)=
I;\'?(B(I\] €;)) € G. Thus UjB(K;.e;) € G. Now. let a = = (a;) =
(27(1 4 [F,])) and consider V' = {v € H? (Q)||jv]'¥, < 1}. For each v
il . K
in 'V, v =73 (274 v). For each ;. we have ]|2Ju’*jl7)|§’ = Zg|lyolr <
L(ZkakHzﬂkaHfj) < -;i < ¢;. Hence. 2790 € B(hj,e;) C G. Since G
j ) )
is convex and v = 3 517(;2]11)]-@) 1s in fact a finite summation, we have

v € G. Hence G is a 7'-neighborhood of 0.

LEMMA 2. The inclusion map D_(2) in H® (Q) is continuous and
has dense image. And the inclusion map H?.(Q) in H? is continuous.

Proof. Let K be a compact subset of Q. Then D () — HX(K)
and HX(Kh') — H?_(§) are continuous. But the continuity of D (k)
— HZ () for each compact subset K of ! impiies the continuity of
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D,(Q) — H:(Q). U ue HE () choose i € Dy(£2) such that pu = u.
By Theorem 2.2 in [4] we can choose uy € S, so that uy — u in HJ
. Then ¢uz — yu = u in H? by the proof of Lemma 2.8 in [4]. If
K = supp ¥ then tuy — v in HS(R') and in H(2). The last inclusion
is also continuous since ||ul| < Y [[¥mully = ||ul|s, for all w € HZ(£2)

and a = (1,1, ...).

In {4], we defined, for each non-negative integer k. the space k()
as the vector space of all locally integrable functions u on §2 such that

ipulls = / KD G (6)]dE < o

for all 6 € D(). And we also defined the space D% (£2) as the set of all
uin £8(Q) such that supp u is a compact subset of Q) with the inductive
limit topology induced by the topologies on the spaces DE(K) of the
functions u of £5(f2) with supports in compact subsets K of (2. We
have

PROPOSITION 3. Ifk is a non-negative integer we have a continuous
inclusion DX(Q) — HE (Q). Ifkisa pon—negativc integer and s > k+%
we have a continuous inclusion H2_(Q) — DE(Q).

Proof. Let (¥',) be the partition of unity in D,(12) and let a = (am)
be any sequence of non-negative integers. For any compact subset K
and each u € DX(K), we have

lull? =Y amlldmullf < amllimllsluf < Cllul.
Let ¢ be a local unit for K. Then, by Minkowski's inequality,
fullz = loully = ([ =00 Gu( ) de)?
= ([ *0lgm [imete — ndnl*ae)?
< (2m)7F / Iﬂ(nﬂ(/ |61 —m)[Pe?* ¥ dg) 7 dy
< (2m)7%( / [i(m)le™7"dn)( / 6(¢ —m Pertelemdg)s

< C||ul|x for each u € DE(K).
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The last inequality follows from Paley-Wiener Theorem in [3]. Hence

D) - HE (Q) is continuous. Now suppose that s > & + 2 and
ue H? (§2). Then

e :/ g ) de
< [/62-9w(£JI1'er(f)|2d§]%[/ C2(k—3)w(€)d£]%

< Cllully

But
elly = 1D vy < omull? = Jull?,,

where a = (1, 1, ...). Therefore. H$,(Q) — D*1Q) is continuous.

ITI. Local Sobolev Spaces

We set HY, () = {u € D,(Q)|¢u € H? for each ¢ € D L)} We
give H?, () the weakest topology so that the mapping H?, (Q) —

HY : u = ¢u is continuous for each ¢ € D w(f2). Clearly there is a
sequence ¢ € D, (£2) such that whenever ¢ € D, (Q) then there is k,
such that ¢y = ¢ for k > ky. Then for k > kg, lbulls = || drpulls <
Cylléku|]y. Hence the seminorms u — ||¢xu|”, k = 0.1,2, ... deter-
mine the topology of H?, (£2). In particular, it is metrizable. More-
over, we have

LEMMA 4. H?

wloc

() is a Fréchet space.

Proof. 1t suffices to show the completeness. Let (ug) be a Cauchy
sequence in HZ, (). If ¢ € D,(Q) then ¢uy — vy in H, for some
vy € HJ since HY is complete. If ¢, v € D,,(Q) then ¢v,, = ¥vg, which
is the limit of (¢¢oug ). Hence there exists v € D! () such that Ve = dU
for each ¢ € D,(Q). Then ¢v ¢ H? and ¢uy —» ¢v in H?. Therefore
ve S, () and uy — vin H Q).

u,lz)r(

We also have
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LEMMA 5. The inclusion map of £,(Q) in H?,, () is continuous.
Moreover, D,,(Q) is dense in H?, ().

wloc

Proof. If ¢ € D () then multiplication by ¢ maps £,(§2) con-
tinuously into D,(§) which in turn is continuously included in Hj
since ||¢[|¥ < Cax||@|lx for A > 2 + s and ¢ € Dy(#) for each com-
pact subset K of Q. Thus ¢ — [eul|¥ is a continuous seminorm
on £,(Q) which is equivalent to ¢ — ||¢ull,. Hence the inclusion
map is continuous. In order to prove the density, let ¢x € D,(Q)
be such that if ¥ € D,(Q) then there is kg such that k > ko 1m-
plies ¥ = ¢g. Let u € HS, (Q). Since ¢ru € H and D,() 1s
dense in H? by Theorem 2.2 in [4], there exists v € D, (€2) such that
lve = erully < —}15 If v € D,(Q), choose ky as above. Then for k > kg
we have [[{vg —u)||¥ = |[¥(vi—oru)||§ < +Cy by the proof of Lemma
2.8 in [4]. Thus vy converges to uin HJ, (£2).

Now we have

PROPOSITION 6. If m > 0 is an integer, we have a continuous -
clusion ET(Q) — HM, (). If k > 0 is an integer and s > k + %, we
have a continuous inclusion H?,, (1 — EX(Q) — Cr(Q).

Proof. Let u € £€™(Q) and ¢x € D,(Q) be such that ¢ = 1 on
Q and éx = 0 on Q — Qgyy, where QO = {z € Q|dist(z,00) >
1. |lz|l < k}. For any ¢ € Du(R), choose k so that ¢x¢d = ¢. Then
loull®, = ||¢(dru)lle, < Cslldkulim as in the proof of Proposition 3.
Hence the first inclusion is continuous. Now suppose s > k + 3. Let
we H®, (Q)and ¢ € Dy(N) and choose k so that ¢x¢ = ¢. Then we

wloce
have

Houlle = 16(6xu)llx = / 1O Goral6)]de
= /ew(&)‘@(@k(ls—s)w(s)d&

< (/ezsw(E)I@(filzdﬁ)%(/62(k_{)“(§)d§)%
< Clollslldrulls-

Hence the second inclusion is continuous. The cont:nuity of the third
one follows from Proposition 3.1 in 4].



Local generalized Sobolev spaces 487

PROPOSITION 7. The Strong (anti)dual of H! () is H,
the strong (anti)dual of H, () is HZ2().

(Q). And

wloc

uloc(

Proof. Let T be a continuous (conjugate) linear functional on H? ()
and ¢ € D, (). Then ¢T is a continuous (conjugate) linear functional
on H}(supp¢). Hence ¢T is a continuous (conjugate) linear func-
tional on H?. By Theorem 2.6 in [4], H® can be identified isomet-
rically with the (anti)dual of H’ by means of the pairing (¢T)(v)) =

W)_"f@ A(E)d{ Hence ¢T € H*, supp¢T C Q, and |[¢T]| =
loT||« . Since ¢ was arbitrary, this implies that T' € H_} (). Con-
versely, suppose T € H_ (§). Let (¢¥,) be the locally finite par-
tition of unity 1n D.(Q). For each u in HS (), we define T(u) =

Y B [ ) T(£)u(€)dé where the summation runs over only all
the 1n‘regers m such that supp v,, Nsuppu # @ and

1
Bm = -

IT(w)| < ZBm/hﬁ(&)k—"“<f>|a(g)|ew(f)d

<D Bl / [GmT(€)|2e 250 dg ) 3( /' a(€)[2e21Odg )2
< (3 Bl Tl )]l < Jlull?,

. By Hélder’s inequality, we have

for a= (1, 1, ...). Hence T is a well-defined continuous (conjugate)
linear functional on H? () which can be identitied with T with norm
<Y Bn||T4m]|“,. Since if u lies in a bounded subset of H?_(2) then
supp u is contained in a unique fixed compact subset of 2, this implies
that the strong (anti)dual of H? (£2) can be idenatified with H_» ().
On the other hand, if T is a continuous (conjugate) linear functional on

H?, .(82) then there is a constant C and a funciion ¢4 € D_(§2) such
that |T(u)| < Cl|¢rulls for all u = Hj,OC(Q). Here (¢y) is the sequence
of test functions which defines the seminorms generating the topology
on H?, (Q). Then suppT C supp ¢ is a compact subset of 2. Hence
T € £,(Q) and |T(u)] < Cllgrull¥ < C'|lu||¥ for all u in D,. Hence,
by Theorem 261in [4], T € H*. Hence T € H;2(9Q). Conversely.
suppose that T € H_*(Q). Then T € £/ (Q). If u € leor(Q) and

(¥m) is a locally finite partition of unity in D, (), we define T(u) =
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2mn) "> | T({)u:/;n(f)dﬁ where the summation runs over only all the
integers m such that supp ¢¥m N suppT # ®. By means of Holder’s
inequality, T'(u) is finite. Moreover, if ¢ € D, () is a local unit for the
compact set K = U{supp ¢y, : supp i, N supp T # ®} then

IT(w)] < D ITN2 lumlly < O w12 el

foralluin H,, .

for those m such that supp i, NsuppT # @, which is independent

of u. Hence T can be identified with a continuous (conjugate) linear

functional on H?,, () with norm < Y [[¢mlljolIT][%,. Since every

convergent sequence in H;(2) have supports contained in a muquc

compact subset, this 1mphrs that the strong (anti)dual of H?; (€2) 1s
H; Q).

(). Here the last sum is in fact & finite summation

We immediately have, with the aid of Lemma 5.

COROLLARY 8. The inclusion map H? (2) — E.(Q) and H,, ()
— D' () are continuous even with the strong topologies on the distri-
bution spaces.

PROPOSITION 9. If s < t then the inclusion map H!, (}) —
2 10.(2) is continuous and the inclusion map HL(Q) — H . (Q) 1s
compact.

Proof Ifue H

Q) and ¢ € T,(2) then

wloc(
uslz? = [ o= ©pua(e)ae
S/ E}Iué )2 dE

= ([lue]l?)*

Hence the first inclusion map is continuous. On the other hand, if
(ug) is a bounded sequence in H., Q). then, by the definition of the
topology on this space, (uy) is a boundcd sequence ‘n HL(A) for some
compact subset K of Q. But, H!(K) is continuously imbedded in

éL(B(’O. M)), the closure of D (B((0. M }) in the H! norm, where M =
sup{||z]| + 1|z € K} and B(0,M) = {z € R"|[|=|| < M}. Hence,
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by Theorem 3.6(Rellich’s Compactness Theorem) in [4], (u;) has a
convergent subsequence in H?. Thus it has a convergent subsequence
in H;(K) and therefore in H () since Jull¥ |, < D aml[vmlljoflully.

a3 =
Consequently, the last inclusion map is compact for any open subset

Q of R™.

ProposITION 10. IfHZS(Q) = N H? () is given the weakest topol-
ogy such that the inclusion map H2(Q) — H? () is continuous for
each s. then the inclusion map D, (Q2) — HZ2(§)) is an algebraic iso-

morphism.

Proof. The inclusion is obvious. If u € HZ2(12) then u € HZ () for
all s. Hence supp u is compact and (|[ul|?)? = [ e?**©)|4(¢)]2dE < oo
for all s. By applying the Holder’s inequality, we have for any A € R

Jlulix :/e“(f) a(€)|de
= /6()\»8);.;(5)6%:(5)lﬂ([,:.)id5

<(f 10

for all sufficiently large s. Hence u is in D,(£?). Thus the inclusion
map is an algebraic isomorphism.

Prorosition 11. If H>, () = NyHS, () is given the weakest

wloc wloc
topology such that the inclusion map HS, (Q) — H?, () is contin-
uous for each s, then HSy () = E,(Q) topologically.

Proof. Clearly £,(02) C H2, (). fu e H, () thenu € H?, ()
for all s in R. Let ¢ € D () be any test function. Then ¢u € H?
and supp(u@) is compact. Hence ¢u € H? (1) forall s. Thus by
Proposition 10 ¢u € D,(Q2). Therefore u € £_,(Q) which shows that
HZ,.(82) = £,(2). Since the inclusion map €,(Q) — H?

wloe 2 10c(£2) 18 con-

tinuous for all s in R, &,-topolegy on HZ5, () is finer than the given

topology on H?75, (2). Conversely, let G be any &, -open subset of
HZ%,.(Q) and u € G. Then there are constants e > 0 and A € R and a

function ¢ € D, () such that {v € E,(Q)|[lé(v — u)|]x < e} € G. But
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if v e D,(Q2)N HZ then, by Holder's inequality,
ol = / om0 i) g
< (ﬁ/e 2049 e o))

— Clz.

£)]de

Hence, {v € £,(Q)|[|¢(v — w)[|» < ¢} contains {v € HAT"(Q)|||a(v —
u)||'>‘+n SINHZ,.(22) which is an open subset of H ) containing
u. Therefore, G is H%, _(2)-open.

Recall that the space D[, () of generalized disiributions of finite
order is defined as the set of all u € D/ () such that for each compact
subset K of  there exist constants C'(A') > 0 and ) > 0, independent
of K, such that |u(¢)] < C||¢]|x for all ¢ € D, (K ).

PROPOSITION 12. We have &£ (Q2) = U,HJ () and D), p(Q) =
UsH,.(Q2). Moreover, if u € D, (), u has order < k and s > k + 3
uloc(Q)‘

then w € H

Proof. By definition, H? () C £,(Q) for all sin R. If u € £.,(Q)
then, by Paley-Wiener Theorem, there is a constant A > 0 such that
[ e 2 8i(£)]dE < oc. But, for any sequence a = (a,,) of non-negative
imogers. we bave ull_, = Cetn lbme]s < (T amlml$)ul-s
Hence u € H;(9). Therefore £/(Q) = U,H?(2). On the other hand,
if ue HWIOC(Q) then, by Proposition 7, u is a continuous (conjugate)
linear functional on H? (£2). Hence, there are constant C and sequence
a = (am) of non-negative integers such that |u(¢)| < C Y am|lt'me|¥
for all § € H2,(Q). But, for all 6 € Du(K), [¥mo|l* < [[imliel6]7 <
Ck|[¥mll|s(ll¢lls as in the proof of Proposition 3. Since (¥) is a locally
finite partition of unity, this implies that for any compact subset K of
{2 there is a constant C such that |u(¢)| < C||¢||, for all ¢ € D (K.
Hence u € D!, (Q). Conversely, if u € D!, () then for each compact
subset K of Q there are constants Cy and A, independent of K, such
that |u(¢)| < Ckll¢|ixforall ¢ € D, K'). Asin the proof of Proposition

wloc(

wloc
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11, we have [u(¢)| < Cr|8|l%,, for all ¢ € D,(K). Since D,(K) is
dense in H)*"(K), the above inequality holds on H**"(K). Hence
u can be extended to a continuous (conjugate) linear functional on

H2M™(Q). Thus by Proposition 7 u € H,"(AJF")(Q). Consequently.

wloe

D, p(2) = UHZ, (Q). Moreover, if u € D], p(Q) has order < &

wloc

then for each compact subset K of Q there is a constant C'x such that
lu(¢)| < Crll¢||x for all ¢ € D_(K). By Holder's inequality, we have

E / e*(&)o(6)|de = / el k=l eaelO) 46| de
<( / =028 g )} o] = C7] ¢

since 2(k — s) < —n. Hence we have |u(¢)] < Cgl|é]|% for all ¢ €
D.(K). Since D,(K) is dense in H¥(K) , the above inequality holds
on H}(K). Therefore u € (H3.(Q)) = H . ().

ProPosITION 13. If u € D/ (§2) and K is a compact subset of
then for some t in R we have gu € H!, for all 6 € D,(K).

Proof. Since u € D! (Q), there are constants Cx and Ay > 0 such
that |u(v)] < Crljw||a, for all v € D(K). Then for each ¢ € D (K ),
[(ou)(¥)| < Ckl||0t]| s for all v € Dy(R). Let ¢ be a local unit for
K in D,(). Then ¢ = y1e7*<"¢> is an element of D () for each €.
Therefore, by Paley-Wiener theorem and the conditions on w,

[ul€)] = [(gu)(e™<)] == [(gu)(wre™*<* )]
< Crllgrore™ <98,

= (2m)7nCe [ ) [3(61dn = ¢+ ndclan

< CHé”)‘Hu/,]l'“(/efAz(vu)W(n)dn)(/ S(M—A)M(C)dc)euw(f)_
Hence if we choose y, A so large that Ay —p < ~nand g — A < —n
then

[ autepe g < ¢ [ nre0ge < o

Therefore ¢u € H;A for all ¢ € D(K).
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ProposITION 14. If P(x, D) Zm|<m o(z) D® with a, € £,(Q),
then P(x, D) is a continuous linear map from Huloc( Q) into H*; ™(§)

wloc
and a continuous linear map from H? () into H®,™(Q) and a con-

wloc
tinuous linear map from H® () into H3.™(Q).

Proof. If v € H?,,(Q) and ¢ € D,{(Q) and ¢ is a local unit for
supp ¢ in D, () then we have
|6 P(x. D)ull;_,, = [loP(z, D)(vu)liy_,
< Z HC)“O”IS—m)HDO("%"u)H:)_m

laj<m

< Z Hwa(x“ |.s—mtcam|w"u|':

|orf<m

forall u € H?;,.(2). On the other hand, if ¢ € D, (21 and u € H; ({)
then

HéP T, D u”s m = I|¢P(T D Z ||

<y ||¢P(auD)(u’juj)ufsm

J<M
< SN eaaljeeml D w5
jSJ’W|a|Sm
i .
<SS libaalljomme™ (w12
J<M Ja|<m

for all u € H? (Q). Where (¢;) is the locally finite partition of unity
and M is the maximum number of j such that supp ¢ supp¢; # ¢ and
a is the constant on the condition (y) on w. Hence ||¢P(x, D)ul|¥_,, <

8§—m —

CY i llysully = Cllully, for a = (1. 1, ...). Therefore P(x. D) is a

continuous linear map from H?_(§2) into H:;IOT(Q)' Finally, for each

compact subset K of Q and every sequence a of non-uegative integers.
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we have, for each v € H2(K),

HP(‘T,*D‘,)UH::,S—m = Z ”J'“u/)jp(l'aD‘)qu—m

S Z Z aJ”w]aOII s—m]HDau”:—m

I<M Jal<m

- | .
S22 aillvseall el

IE<M ja|<m

= Ciellull®.

Here M is the maximum number of j such that supp ;N K is non-
empty. Thus, P(x, D) is a continuous linear map from H?(L) into
HZ7™(§) for each compact subset K of €. Therefore, P(x, D) is a
continuous linear map from HZJ () into H:Z™((Q).

ProposITION 15. Let P(z) be a polynomial of degree m. Assume
that for some s and some open subset Q of R" the set N = {u ¢
H: L (Q)|P(D)u = 0} is a Montel space relative to the topology in-

duced by H?, (). Then, if z = £+ in € Zp = {z € C"|P(z) = 0}
and {z| — oc then |n| — oc.

Proof. Assume that the conclusion is false. Then there is a se-
quence zx € Zp such that |zx, is unbounded and |nx] < C. Pass-
ing to a subsequence if necessary we may assumne that np — n,. Let
up(r) = el <ar> They o, € N. If ¢ € D () we have
(louglls)* = [1o(€ — z4)|2e 2025w de - By the condition ()
on w, ¢ "2ANWE=Ek) < o2swl(E)  —2s0(&k) < e2lsiwl€~%)  Thys
(*)

/I&(f = inx) e OdE < (Jgug]y)? < /|¢7<f —ing) PO ag.

By Paley-Wiener theorem, if H is the support function of supp ¢ then
for all constants M and € > 0 there is a constan! Caz.c such that

|66 — ink)| < Cvr,cexp(H(—ng) + ele] — Muwl(€))
for all £ and k. Since (1;) is bounded we have

%) 16(E — inp)| < Cppe=ME)
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By taking M large enough we see that (**) implies that (dux) is a
bounded sequence in H?. Thus (ux) is a bounded sequence in N.
Since N is Montel, there is a subsequence u} such that uj — u in N.
If $ € D,(Q) then ug(d) = [up(a)¢(z)dr = e=3=(&) 3(—z;). Thus
by (**), lux(e)] < CM€(_M'S)“(5‘°) since w is radial. Taking M large
enough and noting that |zx| — oo, ng| < C implies [£x] — oo, we see
that u) — 0 weak* in DL (Q). Thus u = 0, that is, pu} — 0 in H for
any ¢ € D,(92). By (*), (**) and the dominated couvergence theorem
it follows that [ |$(€ — ino)|2e~21*1*(9d¢ = 0. Thus ¢(£ — ing) = O for
all £, which implies that ¢ = 0 for every ¢ € D.(Q). This contradiction
completes the proof.
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