LOCAL GENERALIZED SOBOLEV SPACES

BU HYEON KANG

I. Introduction

We introduced the generalized Sobolev spaces H^s_{ω} in [4]. In this paper, we introduce the space $H^s_{\omega c}(\Omega)$ of the generalized distributions in H^s_{ω} with compact supports in Ω and the local generalized Sobolev spaces $H^s_{\omega loc}(\Omega)$ of the generalized distributions on Ω which are locally in H^s_{ω} and study their properties.

For this purpose we briefly introduce the basic spaces which we need in this paper. The reader can find the details in [3]. Throughout this study, Ω denotes an open subset of R^n , and ω denotes an element of \mathcal{M}_c , the set of all continuous real valued functions ω on R^n which satisfy the following conditions:

$$(\alpha) \quad 0 = \omega(0) \leq \omega(\xi + \eta) \leq \omega(\xi) + \omega(\eta), \quad \xi, \eta \in R^n.$$

$$(\beta) \quad \int_{\mathbb{R}^n} \frac{\omega(\xi)}{(1+|\xi|)^{n+1}} d\xi < \infty.$$

- (γ) $\omega(\xi) \ge a + \log(1 + |\xi|)$ for some constant a.
- (δ) $\omega(\xi)$ is radial and increasing.

With the weight function ω and open set Ω in \mathbb{R}^n . Björck defines $\mathcal{D}_{\omega}(\Omega)$ as the set of all ϕ in $L^1(\mathbb{R}^n)$ such that ϕ has compact support in Ω and

$$\|\phi\|_{\lambda} = \int_{R^n} |\hat{\phi}(\xi)| e^{\lambda \omega(\xi)} d\xi < \infty$$

for all $\lambda > 0$. The space $\mathcal{D}_{\omega}(\Omega)$ equipped with the strict inductive limit topology is a strict (LF)-space, which is a complete (DF)-space.

Received September 12, 1994. Revised January 29, 1996.

1991 AMS Subject Classification: 35A99.

Key words: Local generalized Sobolev spaces.

And we call $\mathcal{D}'_{\omega}(\Omega)$, the dual of $\mathcal{D}_{\omega}(\Omega)$, the Beurling's generalized distribution space. They denote by $\mathcal{E}_{\omega}(\Omega)$ the set of all complex-valued functions ψ in Ω such that $\psi\phi \in \mathcal{D}_{\omega}(\Omega)$ for all $\phi \in \mathcal{D}_{\omega}(\Omega)$ and the topology is given by the semi-norms $\|\phi\psi\|_{\lambda}$ for every $\lambda > 0$ and every ϕ in $\mathcal{D}_{\omega}(\Omega)$. The dual space $\mathcal{E}'_{\omega}(\Omega)$ of the space $\mathcal{E}_{\omega}(\Omega)$ can be identified with the set of all elements of $\mathcal{D}'_{\omega}(\Omega)$ which have compact supports contained in Ω . And $\mathcal{E}'_{\omega}(\Omega)$ can be considered as a subspace of $\mathcal{E}'_{\omega}(U)$ for any open subset U such that $\Omega \subseteq U \subseteq \mathbb{R}^n$. They also introduced the generalized Schwartz space, denoted by \mathcal{S}_{ω} , the space of all C^{∞} -function ϕ in $L^1(\mathbb{R}^n)$ with the property that for each multi-index α and each non-negative number λ we have

$$P_{\alpha,\lambda}(\phi) = \sup_{x \in R^n} e^{\lambda \omega(x)} |D^{\alpha} \varphi(x)| < \infty$$

and

$$\Pi_{\alpha,\lambda}(\hat{\phi}) = \sup_{\xi \in \mathbb{R}^n} e^{\lambda \omega(\xi)} |D^{\alpha} \hat{\phi}(\xi)| < \infty$$

and the dual space S'_{ω} of the space S_{ω} .

II. Sobolev spaces with Compact Supports

Recall that $H^s_{\omega} = \{u \in \mathcal{S}'_{\omega} | ||u||_s^{\omega} = [\int e^{2s\omega(\xi)} |\hat{u}(\xi)|^2 d\xi]^{\frac{1}{2}} < \infty\}$. Let Ω be an open subset of R^n and K any compact subset of R^n . Set $H^s_{\omega}(K) = \{u \in H^s_{\omega} | \text{supp } u \subseteq K\}$ and $H^s_{\omega c}(\Omega) = H^s_{\omega} \cap \mathcal{E}'_{\omega}(\Omega)$. Then $H^s_{\omega}(K)$ is a Hilbert space with inner product given by

$$(u,v)^{\omega}_s = \int e^{2s\omega(\xi)} \hat{u}(\xi) \hat{\hat{v}}(\xi) d\xi$$

by Theorem 2.2 in [4]. We provide $H^s_{\omega c}(\Omega)$ with the strongest locally convex topology such that the inclusion map $H^s_{\omega}(K) \to H^s_{\omega c}(\Omega)$ is continuous for each compact subset K of Ω . A seminorm $\|\cdot\|$ on $H^s_{\omega c}(\Omega)$ is continuous if and only if for each compact subset K of Ω there is a constant C_K such that $\|u\| \leq C_K \|u\|_s^\omega$ for each $u \in H^s_\omega(K)$. Since the topology of $H^s_{\omega c}(\Omega)$ may be defined by considering a sequence of compact sets increasing to Ω we see that $H^s_{\omega c}(\Omega)$ is an LB-space, a strict inductive limit of the Banach spaces $H^s_\omega(K)$. In particular, it is a

complete Hausdorff non-metrizable locally convex space. Each $H^s_{\omega}(K)$ is a closed subspace of $H^s_{\omega c}(\Omega)$ and a subset B of $H^s_{\omega c}(\Omega)$ is bounded if and only if B is a bounded subset of $H^s_{\omega}(K)$ for some compact subset K of Ω .

PROPOSITION 1. Let (ψ_m) be a locally finite partition of unity in $\mathcal{D}_{\omega}(\Omega)$. If $a=(a_m)$ is any sequence of non-negative integers, define $\|u\|_{a,s}^{\omega}=\sum a_m\|\psi_m u\|_s^{\omega}$ for all u in $H_{\omega c}^s(\Omega)$. Then the (uncountable) family of seminorms $\|u\|_{a,s}^{\omega}$ defines the topology \mathcal{T} of $H_{\omega c}^s(\Omega)$.

Proof. Since the sum is in fact a finite summation, they clearly define the seminorms on $H^s_{\omega c}(\Omega)$. By the proof of Lemma 2.8 in [4], we have $\|\psi_m u\|_s^{\omega} \leq \|\psi_m\|_{|s|} \|u\|_s^{\omega}$ for all u in H_{ω}^s . Hence $\|u\|_{a,s}^{\omega} \leq$ $(2\pi)^{-\frac{n}{2}}(\sum a_m \|\psi_m\|_{|s|})\|u\|_s^{\omega}$. Now if $u \in H_{\omega}^s(K)$ then supp $u \subseteq K$, a compact set. Hence the above sum is a finite summation of nonnegative real numbers. Hence the above inequality shows that the inclusion map $H^s_\omega(K) \to H^s_{\omega c}(\Omega)$ is continuous for each compact subset K of Ω with respect to the topology \mathcal{T}' on $H^s_{\omega c}(\Omega)$ induced by the seminorms. Hence \mathcal{T} is finer than \mathcal{T}' . In order to prove that \mathcal{T}' is finer than \mathcal{T} , let G be any balanced and convex \mathcal{T} -neighborhood of 0. Since the inclusion map $I_K: H^s_\omega(K) \to H^s_{\omega c}(\Omega)$ is continuous for each compact subset K of $\Omega,\,I_K^{-1}(G)$ is an open neighborhood of 0 in $H^s_\omega(K)$ for each K. If $K_j = \bigcup_{k=1}^{J} \operatorname{supp} \psi_k, (K_j)$ is a sequence of compact subsets which increase to Ω . Then, for each j, there is an $\epsilon_j > 0$ such that $B(K_j, \epsilon_j) \equiv \{v \in H^s_\omega(K_j) | \|v\|_s^\omega < \epsilon_j\} \subseteq I^{-1}_{K_j}(G)$. Hence $B(K_j, \epsilon_j) =$ $I_{K_j}(B(K_j,\epsilon_j))\subseteq G$. Thus, $\cup_j B(K_j,\epsilon_j)\subseteq G$. Now, let $a=(a_j)=$ $(2^{j}(1+[\frac{1}{\epsilon_{j}}]))$ and consider $V=\{v\in H^{s}_{\omega c}(\Omega)|\|v\|^{\omega}_{a,s}<1\}$. For each v in V, $v = \sum \frac{1}{2^j} (2^j \psi_j v)$. For each j, we have $\|2^j \psi_j v\|_s^{\omega} = \frac{2^j}{a_j} a_j \|\psi_j v\|_s^{\omega} \le$ $\frac{2^j}{a_j}(\sum_k a_k \|\psi_k v\|_s^\omega) \leq \frac{2^j}{a_j} < \epsilon_j$. Hence, $2^j \psi_j v \in B(K_j, \epsilon_j) \subseteq G$. Since G is convex and $v = \sum \frac{1}{2^j} (2^j \psi_j v)$ is in fact a finite summation, we have $v \in G$. Hence G is a \mathcal{T}' -neighborhood of 0.

LEMMA 2. The inclusion map $\mathcal{D}_{\omega}(\Omega)$ in $H^s_{\omega c}(\Omega)$ is continuous and has dense image. And the inclusion map $H^s_{\omega c}(\Omega)$ in H^s_{ω} is continuous.

Proof. Let K be a compact subset of Ω . Then $\mathcal{D}_{\omega}(K) \to H^s_{\omega}(K)$ and $H^s_{\omega}(K) \to H^s_{\omega c}(\Omega)$ are continuous. But the continuity of $\mathcal{D}_{\omega}(K) \to H^s_{\omega c}(\Omega)$ for each compact subset K of Ω implies the continuity of

 $\mathcal{D}_{\omega}(\Omega) \to H^s_{\omega c}(\Omega)$. If $u \in H^s_{\omega c}(\Omega)$ choose $\psi \in \mathcal{D}_{\omega}(\Omega)$ such that $\psi u = u$. By Theorem 2.2 in [4] we can choose $u_k \in \mathcal{S}_{\omega}$ so that $u_k \to u$ in H^s_{ω} . Then $\psi u_k \to \psi u = u$ in H^s_{ω} by the proof of Lemma 2.8 in [4]. If $K = \text{supp } \psi$ then $\psi u_k \to u$ in $H^s_{\omega}(K)$ and in $H^s_{\omega}(\Omega)$. The last inclusion is also continuous since $\|u\|_s^{\omega} \leq \sum \|\psi_m u\|_s^{\omega} = \|u\|_{a,s}^{\omega}$ for all $u \in H^s_{\omega c}(\Omega)$ and u = (1, 1, ...).

In [4], we defined, for each non-negative integer k, the space $\mathcal{E}_{\omega}^{k}(\Omega)$ as the vector space of all locally integrable functions u on Ω such that

$$\|\phi u\|_k = \int e^{k\omega(\xi)} |\widehat{\phi u}(\xi)| d\xi < \infty$$

for all $\phi \in \mathcal{D}_{\omega}(\Omega)$. And we also defined the space $\mathcal{D}_{\omega}^{k}(\Omega)$ as the set of all u in $\mathcal{E}_{\omega}^{k}(\Omega)$ such that supp u is a compact subset of Ω with the inductive limit topology induced by the topologies on the spaces $\mathcal{D}_{\omega}^{k}(K)$ of the functions u of $\mathcal{E}_{\omega}^{k}(\Omega)$ with supports in compact subsets K of Ω . We have

PROPOSITION 3. If k is a non-negative integer we have a continuous inclusion $\mathcal{D}^k_{\omega}(\Omega) \to H^k_{\omega c}(\Omega)$. If k is a non-negative integer and $s > k + \frac{n}{2}$ we have a continuous inclusion $H^s_{\omega c}(\Omega) \to \mathcal{D}^k_{\omega}(\Omega)$.

Proof. Let (ψ_m) be the partition of unity in $D_{\omega}(\Omega)$ and let $a = (a_m)$ be any sequence of non-negative integers. For any compact subset K and each $u \in D^k_{\omega}(K)$, we have

$$||u||_{a,k}^{\omega} = \sum a_m ||\psi_m u||_k^{\omega} \le \sum a_m ||\psi_m||_k ||u||_k^{\omega} \le C ||u||_k^{\omega}.$$

Let ϕ be a local unit for K. Then, by Minkowski's inequality,

$$\begin{split} \|u\|_{k}^{\omega} &= \|\phi u\|_{k}^{\omega} = (\int e^{2k\omega(\xi)} |\widehat{\phi u}(\xi)|^{2} d\xi)^{\frac{1}{2}} \\ &= (\int e^{2k\omega(\xi)} |(2\pi)^{-n} \int \widehat{u}(\eta) \widehat{\phi}(\xi - \eta) d\eta|^{2} d\xi)^{\frac{1}{2}} \\ &\leq (2\pi)^{-\frac{n}{2}} \int |\widehat{u}(\eta)| (\int |\widehat{\phi}(\xi - \eta)|^{2} e^{2k\omega(\xi)} d\xi)^{\frac{1}{2}} d\eta \\ &\leq (2\pi)^{-\frac{n}{2}} (\int |\widehat{u}(\eta)| e^{k\omega(\eta)} d\eta) (\int |\widehat{\phi}(\xi - \eta)|^{2} e^{2k\omega(\xi - \eta)} d\xi)^{\frac{1}{2}} \\ &\leq C \|u\|_{k} \text{ for each } u \in \mathcal{D}_{\omega}^{k}(K). \end{split}$$

The last inequality follows from Paley-Wiener Theorem in [3]. Hence $\mathcal{D}^k_{\omega}(\Omega) \to H^k_{\omega c}(\Omega)$ is continuous. Now suppose that $s > k + \frac{n}{2}$ and $u \in H^s_{\omega c}(\Omega)$. Then

$$\begin{split} \|u\|_{k} &= \int e^{k\omega(\xi)} |\hat{u}(\xi)| d\xi \\ &\leq [\int e^{2s\omega(\xi)} |\hat{u}(\xi)|^{2} d\xi]^{\frac{1}{2}} [\int e^{2(k-s)\omega(\xi)} d\xi]^{\frac{1}{2}} \\ &\leq C \|u\|_{s}^{\omega}. \end{split}$$

But

$$\|u\|_s^\omega = \|\sum \psi_m u\|_s^\omega \leq \sum \|\psi_m u\|_s^\omega = \|u\|_{a,s}^\omega,$$

where $\mathbf{a} = (1, 1, ...)$. Therefore, $H^s_{\omega c}(\Omega) \to \mathcal{D}^k_{\omega}(\Omega)$ is continuous.

III. Local Sobolev Spaces

We set $H^s_{\omega loc}(\Omega) = \{u \in \mathcal{D}'_{\omega}(\Omega) | \phi u \in H^s_{\omega} \text{ for each } \phi \in \mathcal{D}_{\omega}(\Omega)\}$. We give $H^s_{\omega loc}(\Omega)$ the weakest topology so that the mapping $H^s_{\omega loc}(\Omega) \to H^s_{\omega}: u \mapsto \phi u$ is continuous for each $\phi \in \mathcal{D}_{\omega}(\Omega)$. Clearly there is a sequence $\phi_k \in \mathcal{D}_{\omega}(\Omega)$ such that whenever $\psi \in \mathcal{D}_{\omega}(\Omega)$ then there is k_0 such that $\phi_k \psi = \psi$ for $k \geq k_0$. Then for $k \geq k_0$, $\|\psi u\|_s^\omega = \|\phi_k \psi u\|_s^\omega \leq C_{\psi} \|\phi_k u\|_s^\omega$. Hence the seminorms $u \mapsto \|\phi_k u\|_s^\omega$, k = 0, 1, 2, ..., determine the topology of $H^s_{\omega loc}(\Omega)$. In particular, it is metrizable. Moreover, we have

Lemma 4. $H^s_{\omega loc}(\Omega)$ is a Fréchet space.

Proof. It suffices to show the completeness. Let (u_k) be a Cauchy sequence in $H^s_{\omega loc}(\Omega)$. If $\phi \in \mathcal{D}_{\omega}(\Omega)$ then $\phi u_k \to v_{\phi}$ in H^s_{ω} for some $v_{\phi} \in H^s_{\omega}$ since H^s_{ω} is complete. If $\phi, \psi \in \mathcal{D}_{\omega}(\Omega)$ then $\phi v_{\psi} = \psi v_{\phi}$, which is the limit of $(\phi \psi u_k)$. Hence there exists $v \in \mathcal{D}'_{\omega}(\Omega)$ such that $v_{\phi} = \phi v$ for each $\phi \in \mathcal{D}_{\omega}(\Omega)$. Then $\phi v \in H^s_{\omega}$ and $\phi u_k \to \phi v$ in H^s_{ω} . Therefore $v \in H^s_{\omega loc}(\Omega)$ and $u_k \to v$ in $H^s_{\omega loc}(\Omega)$.

We also have

LEMMA 5. The inclusion map of $\mathcal{E}_{\omega}(\Omega)$ in $H^s_{\omega loc}(\Omega)$ is continuous. Moreover, $\mathcal{D}_{\omega}(\Omega)$ is dense in $H^s_{\omega loc}(\Omega)$.

Proof. If $\phi \in \mathcal{D}_{\omega}(\Omega)$ then multiplication by ϕ maps $\mathcal{E}_{\omega}(\Omega)$ continuously into $\mathcal{D}_{\omega}(\Omega)$ which in turn is continuously included in H_{ω}^s since $\|\phi\|_s^{\omega} \leq C_{\lambda,K} \|\phi\|_{\lambda}$ for $\lambda > \frac{n}{2} + s$ and $\phi \in \mathcal{D}_{\omega}(K)$ for each compact subset K of Ω . Thus $\phi \mapsto \|\phi u\|_s^{\omega}$ is a continuous seminorm on $\mathcal{E}_{\omega}(\Omega)$ which is equivalent to $\phi \mapsto \|\phi u\|_s$. Hence the inclusion map is continuous. In order to prove the density, let $\phi_k \in \mathcal{D}_{\omega}(\Omega)$ be such that if $\psi \in \mathcal{D}_{\omega}(\Omega)$ then there is k_0 such that $k \geq k_0$ implies $\psi = \phi_k \psi$. Let $u \in H_{\omega loc}^s(\Omega)$. Since $\phi_k u \in H_{\omega}^s$ and $\mathcal{D}_{\omega}(\Omega)$ is dense in H_s^{ω} by Theorem 2.2 in [4], there exists $v_k \in \mathcal{D}_{\omega}(\Omega)$ such that $\|v_k - \phi_k u\|_s^{\omega} \leq \frac{1}{k}$. If $\psi \in \mathcal{D}_{\omega}(\Omega)$, choose k_0 as above. Then for $k \geq k_0$ we have $\|\psi(v_k - u)\|_s^{\omega} = \|\psi(v_k - \phi_k u)\|_s^{\omega} \leq \frac{1}{k}C_{\psi}$ by the proof of Lemma 2.8 in [4]. Thus v_k converges to u in $H_{\omega loc}^s(\Omega)$.

Now we have

PROPOSITION 6. If $m \geq 0$ is an integer, we have a continuous inclusion $\mathcal{E}^m_{\omega}(\Omega) \to H^m_{\omega loc}(\Omega)$. If $k \geq 0$ is an integer and $s > k + \frac{n}{2}$, we have a continuous inclusion $H^s_{\omega loc}(\Omega) \to \mathcal{E}^k_{\omega}(\Omega) \to C^k(\Omega)$.

Proof. Let $u \in \mathcal{E}^m_{\omega}(\Omega)$ and $\phi_k \in \mathcal{D}_{\omega}(\Omega)$ be such that $\phi_k \equiv 1$ on Ω_k and $\phi_k \equiv 0$ on $\Omega - \Omega_{k+1}$, where $\Omega_k = \{x \in \Omega | \operatorname{dist}(x, \partial \Omega) > \frac{1}{k}, \|x\| < k\}$. For any $\phi \in \mathcal{D}_{\omega}(\Omega)$, choose k so that $\phi_k \phi = \phi$. Then $\|\phi u\|_m^\omega = \|\phi(\phi_k u)\|_m^\omega \le C_{\phi} \|\phi_k u\|_m$ as in the proof of Proposition 3. Hence the first inclusion is continuous. Now suppose $s > k + \frac{n}{2}$. Let $u \in H^s_{\omega loc}(\Omega)$ and $\phi \in \mathcal{D}_{\omega}(\Omega)$ and choose k so that $\phi_k \phi = \phi$. Then we have

$$\begin{split} \|\phi u\|_k &= \|\phi(\phi_k u)\|_k = \int e^{k\omega(\xi)} |\widehat{\phi\phi_k u}(\xi)| d\xi \\ &= \int e^{s\omega(\xi)} |\widehat{\phi\phi_k u}(\xi)| \epsilon^{(k-s)\omega(\xi)} d\xi \\ &\leq (\int e^{2s\omega(\xi)} |\widehat{\phi\phi_k u}(\xi)|^2 d\xi)^{\frac{1}{2}} (\int e^{2(k-s)\omega(\xi)} d\xi)^{\frac{1}{2}} \\ &\leq C \|\phi\|_{|s|} \|\phi_k u\|_s^\omega. \end{split}$$

Hence the second inclusion is continuous. The continuity of the third one follows from Proposition 3.1 in [4].

PROPOSITION 7. The Strong (anti)dual of $H^s_{\omega loc}(\Omega)$ is $H^{-s}_{\omega loc}(\Omega)$. And the strong (anti)dual of $H^s_{\omega loc}(\Omega)$ is $H^{-s}_{\omega c}(\Omega)$.

Proof. Let T be a continuous (conjugate) linear functional on $H^s_{\omega c}(\Omega)$ and $\phi \in \mathcal{D}_{\omega}(\Omega)$. Then ϕT is a continuous (conjugate) linear functional on $H^s_{\omega}(\sup \phi)$. Hence ϕT is a continuous (conjugate) linear functional on H^s_{ω} . By Theorem 2.6 in [4], H^{-s}_{ω} can be identified isometrically with the (anti)dual of H^s_{ω} by means of the pairing $(\phi T)(\psi) = (2\pi)^{-n} \int \widehat{\phi T}(\xi) \overline{\widehat{\psi}}(\xi) d\xi$. Hence $\phi T \in H^{-s}_{\omega}$, supp $\phi T \subset \Omega$, and $\|\phi T\| = \|\phi T\|_{-s}^{\omega}$. Since ϕ was arbitrary, this implies that $T \in H^{-s}_{\omega loc}(\Omega)$. Conversely, suppose $T \in H^{-s}_{\omega loc}(\Omega)$. Let (ψ_m) be the locally finite partition of unity in $\mathcal{D}_{\omega}(\Omega)$. For each u in $H^s_{\omega c}(\Omega)$, we define $\widetilde{T}(u) = (2\pi)^{-n} \sum B_m \int \widehat{\psi_m T}(\xi) \widehat{u}(\xi) d\xi$ where the summation runs over only all the integers m such that supp $\psi_m \cap \text{supp } u \neq \Phi$ and

 $B_m = \frac{1}{2^m (1 + ||\psi_m T||_{-s}^{\omega})}$. By Hölder's inequality, we have

$$\begin{split} |\tilde{T}(u)| &\leq \sum B_{m} \int |\widehat{\psi_{m}T}(\xi)| e^{-s\omega(\xi)} |\hat{u}(\xi)| e^{s\omega(\xi)} d\xi \\ &\leq \sum B_{m} (\int |\widehat{\psi_{m}T}(\xi)|^{2} e^{-2s\omega(\xi)} d\xi)^{\frac{1}{2}} (\int |\hat{u}(\xi)|^{2} e^{2s\omega(\xi)} d\xi)^{\frac{1}{2}} \\ &\leq (\sum B_{m} ||\psi_{m}T||_{-s}^{\omega}) ||u||_{s}^{\omega} \leq ||u||_{a,s}^{\omega} \end{split}$$

for a= (1, 1, ...). Hence \tilde{T} is a well-defined continuous (conjugate) linear functional on $H^s_{\omega c}(\Omega)$ which can be identified with T with norm $\leq \sum B_m \|T\psi_m\|_{-s}^{\omega}$. Since if u lies in a bounded subset of $H^s_{\omega c}(\Omega)$ then supp u is contained in a unique fixed compact subset of Ω , this implies that the strong (anti)dual of $H^s_{\omega c}(\Omega)$ can be identified with $H^{-s}_{\omega loc}(\Omega)$. On the other hand, if T is a continuous (conjugate) linear functional on $H^s_{\omega loc}(\Omega)$ then there is a constant C and a function $\phi_k \in \mathcal{D}_{\omega}(\Omega)$ such that $|T(u)| \leq C \|\phi_k u\|_s^{\omega}$ for all $u \in H^s_{\omega loc}(\Omega)$. Here (ϕ_k) is the sequence of test functions which defines the seminorms generating the topology on $H^s_{\omega loc}(\Omega)$. Then supp $T \subseteq \text{supp } \phi_k$ is a compact subset of Ω . Hence $T \in \mathcal{E}'_{\omega}(\Omega)$ and $|T(u)| \leq C \|\phi_k u\|_s^{\omega} \leq C' \|u\|_s^{\omega}$ for all u in \mathcal{D}_{ω} . Hence, by Theorem 2.6 in [4], $T \in H^{-s}_{\omega}$. Hence $T \in H^{-s}_{\omega c}(\Omega)$. Conversely, suppose that $T \in H^{-s}_{\omega c}(\Omega)$. Then $T \in \mathcal{E}'_{\omega}(\Omega)$. If $u \in H^s_{\omega loc}(\Omega)$ and (ψ_m) is a locally finite partition of unity in $\mathcal{D}_{\omega}(\Omega)$, we define $\tilde{T}(u) =$

 $(2\pi)^{-n}\sum \int \hat{T}(\xi)\widehat{u\psi_m}(\xi)d\xi$ where the summation runs over only all the integers m such that supp $\psi_m \cap \text{supp } T \neq \Phi$. By means of Hölder's inequality, $\tilde{T}(u)$ is finite. Moreover, if $\phi \in \mathcal{D}_{\omega}(\Omega)$ is a local unit for the compact set $K = \bigcup \{\text{supp } \psi_m : \text{supp } \psi_m \cap \text{supp } T \neq \Phi \}$ then

$$|\tilde{T}(u)| \leq \sum \|T\|_{-s}^{\omega} \|u\psi_m\|_s^{\omega} \leq (\sum \|\psi_m\|_{|s|} \|T\|_{-s}^{\omega}) \|u\phi\|_s^{\omega}$$

for all u in $H^s_{\omega loc}(\Omega)$. Here the last sum is in fact a finite summation for those m such that $\operatorname{supp} \psi_m \cap \operatorname{supp} T \neq \Phi$, which is independent of u. Hence T can be identified with a continuous (conjugate) linear functional on $H^s_{\omega loc}(\Omega)$ with norm $\leq \sum \|\psi_m\|_{|s|} \|T\|^\omega_{-s}$. Since every convergent sequence in $H^{-s}_{\omega c}(\Omega)$ have supports contained in a unique compact subset, this implies that the strong (anti)dual of $H^s_{\omega loc}(\Omega)$ is $H^{-s}_{\omega c}(\Omega)$.

We immediately have, with the aid of Lemma 5,

COROLLARY 8. The inclusion map $H^s_{\omega c}(\Omega) \to \mathcal{E}'_{\omega}(\Omega)$ and $H^s_{\omega loc}(\Omega) \to \mathcal{D}'_{\omega}(\Omega)$ are continuous even with the strong topologies on the distribution spaces.

PROPOSITION 9. If s < t then the inclusion map $H^t_{\omega loc}(\Omega) \to H^s_{\omega loc}(\Omega)$ is continuous and the inclusion map $H^t_{\omega c}(\Omega) \to H^s_{\omega c}(\Omega)$ is compact.

Proof. If $u \in H^t_{\omega loc}(\Omega)$ and $\phi \in \mathcal{D}_{\omega}(\Omega)$ then

$$(\|u\phi\|_s^{\omega})^2 = \int e^{2s\omega(\xi)} |\widehat{u\phi}(\xi)|^2 d\xi$$

$$\leq \int e^{2t\omega(\xi)} |\widehat{u\phi}(\xi)|^2 d\xi$$

$$= (\|u\phi\|_t^{\omega})^2.$$

Hence the first inclusion map is continuous. On the other hand, if (u_k) is a bounded sequence in $H^t_{\omega c}(\Omega)$, then, by the definition of the topology on this space, (u_k) is a bounded sequence in $H^t_{\omega}(K)$ for some compact subset K of Ω . But, $H^t_{\omega}(K)$ is continuously imbedded in $H^t_{\omega}(B(0,M))$, the closure of $\mathcal{D}_{\omega}(B(0,M))$ in the H^t_{ω} -norm, where $M=\sup\{\|x\|+1|x\in K\}$ and $B(0,M)=\{x\in R^n|\|x\|< M\}$. Hence,

by Theorem 3.6(Rellich's Compactness Theorem) in [4], (u_k) has a convergent subsequence in H^s_{ω} . Thus it has a convergent subsequence in $H^s_{\omega}(K)$ and therefore in $H^s_{\omega c}(\Omega)$ since $||u||_{a, s}^{\omega} \leq \sum a_m ||\psi_m||_{|s|} ||u||_s^{\omega}$. Consequently, the last inclusion map is compact for any open subset Ω of R^n .

PROPOSITION 10. If $H^{\infty}_{\omega c}(\Omega) = \cap_s H^s_{\omega c}(\Omega)$ is given the weakest topology such that the inclusion map $H^{\infty}_{\omega c}(\Omega) \to H^s_{\omega c}(\Omega)$ is continuous for each s, then the inclusion map $\mathcal{D}_{\omega}(\Omega) \to H^s_{\omega c}(\Omega)$ is an algebraic isomorphism.

Proof. The inclusion is obvious. If $u \in H^{\infty}_{\omega c}(\Omega)$ then $u \in H^{s}_{\omega c}(\Omega)$ for all s. Hence supp u is compact and $(\|u\|_{s}^{\omega})^{2} = \int e^{2s\omega(\xi)}|\hat{u}(\xi)|^{2}d\xi < \infty$ for all s. By applying the Hölder's inequality, we have for any $\lambda \in R$

$$\begin{aligned} \|u\|_{\lambda} &= \int e^{\lambda \omega(\xi)} |\hat{u}(\xi)| d\xi \\ &= \int e^{(\lambda - s)\omega(\xi)} e^{s\omega(\xi)} |\hat{u}(\xi)| d\xi \\ &\leq (\int e^{2(\lambda - s)\omega(\xi)})^{\frac{1}{2}} \|u\|_{s}^{\omega} \end{aligned}$$

for all sufficiently large s. Hence u is in $\mathcal{D}_{\omega}(\Omega)$. Thus the inclusion map is an algebraic isomorphism.

PROPOSITION 11. If $H^{\infty}_{\omega loc}(\Omega) = \cap_s H^s_{\omega loc}(\Omega)$ is given the weakest topology such that the inclusion map $H^{\infty}_{\omega loc}(\Omega) \to H^s_{\omega loc}(\Omega)$ is continuous for each s, then $H^{\infty}_{\omega loc}(\Omega) = \mathcal{E}_{\omega}(\Omega)$ topologically.

Proof. Clearly $\mathcal{E}_{\omega}(\Omega) \subseteq H^{\infty}_{\omega loc}(\Omega)$. If $u \in H^{\infty}_{\omega loc}(\Omega)$ then $u \in H^{s}_{\omega loc}(\Omega)$ for all s in R. Let $\phi \in \mathcal{D}_{\omega}(\Omega)$ be any test function. Then $\phi u \in H^{s}_{\omega}$ and $\operatorname{supp}(u\phi)$ is compact. Hence $\phi u \in H^{s}_{\omega c}(\Omega)$ for all s. Thus by Proposition 10 $\phi u \in \mathcal{D}_{\omega}(\Omega)$. Therefore $u \in \mathcal{E}_{\omega}(\Omega)$ which shows that $H^{\infty}_{\omega loc}(\Omega) = \mathcal{E}_{\omega}(\Omega)$. Since the inclusion map $\mathcal{E}_{\omega}(\Omega) \to H^{s}_{\omega loc}(\Omega)$ is continuous for all s in R, \mathcal{E}_{ω} -topology on $H^{\infty}_{\omega loc}(\Omega)$ is finer than the given topology on $H^{\infty}_{\omega loc}(\Omega)$. Conversely, let G be any \mathcal{E}_{ω} -open subset of $H^{\infty}_{\omega loc}(\Omega)$ and $u \in G$. Then there are constants $\epsilon > 0$ and $\lambda \in R$ and a function $\phi \in \mathcal{D}_{\omega}(\Omega)$ such that $\{v \in \mathcal{E}_{\omega}(\Omega) | ||\phi(v - u)||_{\lambda} < \epsilon\} \subseteq G$. But

if $v \in \mathcal{D}_{\omega}(\Omega) \cap H^s_{\omega}$ then, by Hölder's inequality,

$$\begin{split} \|v\|_{s-n} &= \int e^{(s-n)\omega(\xi)} |\hat{v}(\xi)| d\xi \\ &= \int e^{(-n)\omega(\xi)} e^{s\omega(\xi)} |\hat{v}(\xi)| d\xi \\ &\leq (\int e^{(-2n)\omega(\xi)} d\xi)^{\frac{1}{2}} \|v\|_s^{\omega} \\ &= C \|v\|_s^{\omega}. \end{split}$$

Hence, $\{v \in \mathcal{E}_{\omega}(\Omega) | \|\phi(v-u)\|_{\lambda} < \epsilon\}$ contains $\{v \in H^{\lambda+n}_{\omega loc}(\Omega) | \|\phi(v-u)\|_{\lambda+n}^{\omega} < \frac{\epsilon}{C}\} \cap H^{\infty}_{\omega loc}(\Omega)$ which is an open subset of $H^{\infty}_{\omega loc}(\Omega)$ containing u. Therefore, G is $H^{\infty}_{\omega loc}(\Omega)$ -open.

Recall that the space $\mathcal{D}'_{\omega,F}(\Omega)$ of generalized distributions of finite order is defined as the set of all $u \in \mathcal{D}'_{\omega}(\Omega)$ such that for each compact subset K of Ω there exist constants C(K) > 0 and $\lambda > 0$, independent of K, such that $|u(\phi)| \leq C ||\phi||_{\lambda}$ for all $\phi \in \mathcal{D}_{\omega}(K)$.

PROPOSITION 12. We have $\mathcal{E}'_{\omega}(\Omega) = \bigcup_s H^s_{\omega c}(\Omega)$ and $\mathcal{D}'_{\omega,F}(\Omega) = \bigcup_s H^s_{\omega loc}(\Omega)$. Moreover, if $u \in \mathcal{D}'_{\omega,F}(\Omega)$, u has order $\leq k$ and $s > k + \frac{n}{2}$ then $u \in H^{-s}_{\omega loc}(\Omega)$.

Proof. By definition, $H^s_{\omega c}(\Omega) \subseteq \mathcal{E}'_{\omega}(\Omega)$ for all s in R. If $u \in \mathcal{E}'_{\omega}(\Omega)$ then, by Paley-Wiener Theorem, there is a constant $\lambda > 0$ such that $\int e^{-\lambda \omega(\xi)} |\hat{u}(\xi)| d\xi < \infty$. But, for any sequence $a = (a_m)$ of non-negative integers, we have $\|u\|_{a,-\lambda}^{\omega} = \sum a_m \|\psi_m u\|_{-\lambda}^{\omega} \leq (\sum a_m \|\psi_m\|_{\lambda}^{\omega}) \|u\|_{-\lambda}$. Hence $u \in H^{-\lambda}_{\omega c}(\Omega)$. Therefore $\mathcal{E}'_{\omega}(\Omega) = \bigcup_s H^s_{\omega c}(\Omega)$. On the other hand, if $u \in H^{-s}_{\omega loc}(\Omega)$ then, by Proposition 7, u is a continuous (conjugate) linear functional on $H^s_{\omega c}(\Omega)$. Hence, there are constant C and sequence $a = (a_m)$ of non-negative integers such that $|u(\phi)| \leq C \sum a_m \|\psi_m \phi\|_s^{\omega}$ for all $\phi \in H^s_{\omega c}(\Omega)$. But, for all $\phi \in \mathcal{D}_{\omega}(K)$, $\|\psi_m \phi\|_s^{\omega} \leq \|\psi_m\|_{|s|} \|\phi\|_s^{\omega} \leq C_K \|\psi_m\|_{|s|} \|\phi\|_s$ as in the proof of Proposition 3. Since (ψ_m) is a locally finite partition of unity, this implies that for any compact subset K of Ω there is a constant C such that $|u(\phi)| \leq C \|\phi\|_s$ for all $\phi \in \mathcal{D}_{\omega}(K)$. Hence $u \in \mathcal{D}'_{\omega,F}(\Omega)$. Conversely, if $u \in \mathcal{D}'_{\omega,F}(\Omega)$ then for each compact subset K of Ω there are constants C_K and λ , independent of K, such that $|u(\phi)| \leq C_K \|\phi\|_{\lambda}$ for all $\phi \in \mathcal{D}_{\omega}(K)$. As in the proof of Proposition

11, we have $|u(\phi)| \leq C_K \|\phi\|_{\lambda+n}^{\omega}$ for all $\phi \in \mathcal{D}_{\omega}(K)$. Since $\mathcal{D}_{\omega}(K)$ is dense in $H_{\omega}^{\lambda+n}(K)$, the above inequality holds on $H_{\omega}^{\lambda+n}(K)$. Hence u can be extended to a continuous (conjugate) linear functional on $H_{\omega c}^{\lambda+n}(\Omega)$. Thus by Proposition 7 $u \in H_{\omega loc}^{-(\lambda+n)}(\Omega)$. Consequently, $\mathcal{D}'_{\omega,F}(\Omega) = \bigcup_s H_{\omega loc}^s(\Omega)$. Moreover, if $u \in \mathcal{D}'_{\omega,F}(\Omega)$ has order $\leq k$ then for each compact subset K of Ω there is a constant C_K such that $|u(\phi)| \leq C_K \|\phi\|_k$ for all $\phi \in \mathcal{D}_{\omega}(K)$. By Hölder's inequality, we have

$$\begin{split} \|\phi\|_{k} &= \int e^{k\omega(\xi)} |\hat{\phi}(\xi)| d\xi = \int e^{(k-s)\omega(\xi)} e^{s\omega(\xi)} |\hat{\phi}(\xi)| d\xi \\ &\leq (\int e^{2(k-s)\omega(\xi)} d\xi)^{\frac{1}{2}} \|\phi\|_{s}^{\omega} = C' \|\phi\|_{s}^{\omega} \end{split}$$

since 2(k-s) < -n. Hence we have $|u(\phi)| \leq C_K ||\phi||_s^{\omega}$ for all $\phi \in \mathcal{D}_{\omega}(K)$. Since $\mathcal{D}_{\omega}(K)$ is dense in $H^s_{\omega}(K)$, the above inequality holds on $H^s_{\omega}(K)$. Therefore $u \in (H^s_{\omega_c}(\Omega))' = H^{-s}_{\omega loc}(\Omega)$.

PROPOSITION 13. If $u \in \mathcal{D}'_{\omega}(\Omega)$ and K is a compact subset of Ω then for some t in R we have $\phi u \in H^t_{\omega}$ for all $\phi \in \mathcal{D}_{\omega}(K)$.

Proof. Since $u \in \mathcal{D}'_{\omega}(\Omega)$, there are constants C_K and $\lambda_K > 0$ such that $|u(\psi)| \leq C_K ||\psi||_{\lambda_K}$ for all $\psi \in \mathcal{D}_{\omega}(K)$. Then for each $\phi \in \mathcal{D}_{\omega}(K)$, $|(\phi u)(\psi)| \leq C_K ||\phi \psi||_{\lambda_K}$ for all $\psi \in \mathcal{D}_{\omega}(K)$. Let ψ_1 be a local unit for K in $\mathcal{D}_{\omega}(\Omega)$. Then $\psi = \psi_1 e^{-i \langle x, \xi \rangle}$ is an element of $\mathcal{D}_{\omega}(\Omega)$ for each ξ . Therefore, by Paley-Wiener theorem and the conditions on ω ,

$$\begin{split} |\widehat{\phi u}(\xi)| &= |(\phi u)(e^{-i\langle x,\xi\rangle})| = |(\phi u)(\psi_1 e^{-i\langle x,\xi\rangle})| \\ &\leq C_K ||\phi \psi_1 e^{-i\langle x,\xi\rangle}|_{\lambda_K} \\ &= (2\pi)^{-n} C_K \int e^{\lambda_K \omega(\eta)} |\int \widehat{\phi}(\zeta) \widehat{\psi}_1(\eta - \zeta + \xi) d\zeta| d\eta \\ &\leq C ||\phi||_{\lambda} ||\psi_1||_{\mu} (\int e^{(\lambda_K - \mu)\omega(\eta)} d\eta) (\int e^{(\mu - \lambda)\omega(\zeta)} d\zeta) e^{\mu\omega(\xi)}. \end{split}$$

Hence if we choose μ, λ so large that $\lambda_K - \mu < -n$ and $\mu - \lambda < -n$ then

$$\int |\widehat{\phi u}(\xi)|^2 e^{-2\lambda \omega(\xi)} d\xi \le C \int e^{2(\mu - \lambda)\omega(\xi)} d\xi < \infty.$$

Therefore $\phi u \in H^{-\lambda}_{\omega}$ for all $\phi \in \mathcal{D}_{\omega}(K)$.

PROPOSITION 14. If $P(x,D) = \sum_{|\alpha| \leq m} a_{\alpha}(x) D^{\alpha}$ with $a_{\alpha} \in \mathcal{E}_{\omega}(\Omega)$, then P(x,D) is a continuous linear map from $H^{s}_{\omega loc}(\Omega)$ into $H^{s-m}_{\omega loc}(\Omega)$ and a continuous linear map from $H^{s}_{\omega c}(\Omega)$ into $H^{s-m}_{\omega loc}(\Omega)$ and a continuous linear map from $H^{s}_{\omega c}(\Omega)$ into $H^{s-m}_{\omega c}(\Omega)$.

Proof. If $u \in H^s_{\omega loc}(\Omega)$ and $\phi \in \mathcal{D}_{\omega}(\Omega)$ and ψ is a local unit for supp ϕ in $\mathcal{D}_{\omega}(\Omega)$ then we have

$$\begin{split} \|\phi P(x,D)u\|_{s-m}^{\omega} &= \|\phi P(x,D)(\psi u)\|_{s-m}^{\omega} \\ &\leq \sum_{|\alpha| \leq m} \|\phi a_{\alpha}\|_{|s-m|} \|D^{\alpha}(\psi u)\|_{s-m}^{\omega} \\ &\leq \sum_{|\alpha| \leq m} \|\phi a_{\alpha}\|_{|s-m|} e^{am} \|\psi u\|_{s}^{\omega} \end{split}$$

for all $u \in H^s_{\omega loc}(\Omega)$. On the other hand, if $\phi \in \mathcal{D}_{\omega}(\Omega)$ and $u \in H^s_{\omega c}(\Omega)$ then

$$\begin{split} \|\phi P(x,D)u\|_{s-m}^{\omega} &= \|\phi P(x,D) \sum_{j} (\psi_{j}u)\|_{s-m}^{\omega} \\ &\leq \sum_{j \leq M} \|\phi P(x,D)(\psi_{j}u)\|_{s-m}^{\omega} \\ &\leq \sum_{j \leq M} \sum_{|\alpha| \leq m} \|\phi a_{\alpha}\|_{|s-m|} \|D^{\alpha}(\psi_{j}u)\|_{s-m}^{\omega} \\ &\leq \sum_{j \leq M} \sum_{|\alpha| \leq m} \|\phi a_{\alpha}\|_{|s-m|} e^{am} \|(\psi_{j}u)\|_{s}^{\omega} \end{split}$$

for all $u \in H^s_{\omega c}(\Omega)$. Where (ψ_j) is the locally finite partition of unity and M is the maximum number of j such that supp $\phi \cap \sup \psi_j \neq \Phi$ and a is the constant on the condition (γ) on ω . Hence $\|\phi P(x, D)u\|_{s-m}^{\omega} \leq C \sum_j \|\psi_j u\|_s^{\omega} = C \|u\|_{a,s}^{\omega}$ for a = (1, 1, ...). Therefore P(x, D) is a continuous linear map from $H^s_{\omega c}(\Omega)$ into $H^{s-m}_{\omega loc}(\Omega)$. Finally, for each compact subset K of Ω and every sequence a of non-negative integers,

we have, for each $u \in H^s_{\omega}(K)$,

$$||P(x,D)u||_{a,s-m}^{\omega} = \sum_{j \leq M} a_j ||\psi_j P(x,D)u||_{s-m}^{\omega}$$

$$\leq \sum_{j \leq M} \sum_{|\alpha| \leq m} a_j ||\psi_j a_{\alpha}||_{s-m} ||D^{\alpha}u||_{s-m}^{\omega}$$

$$\leq \sum_{j \leq M} \sum_{|\alpha| \leq m} a_j ||\psi_j a_{\alpha}||_{s-m} e^{am} ||u||_{s}^{\omega}$$

$$= C_K ||u||_{\omega}^{\omega}.$$

Here M is the maximum number of j such that $\operatorname{supp} \psi_j \cap K$ is non-empty. Thus, P(x, D) is a continuous linear map from $H^s_{\omega c}(K)$ into $H^{s-m}_{\omega c}(\Omega)$ for each compact subset K of Ω . Therefore, P(x, D) is a continuous linear map from $H^s_{\omega c}(\Omega)$ into $H^{s-m}_{\omega c}(\Omega)$.

PROPOSITION 15. Let P(z) be a polynomial of degree m. Assume that for some s and some open subset Ω of R^n the set $N=\{u\in H^s_{\omega loc}(\Omega)|P(D)u=0\}$ is a Montel space relative to the topology induced by $H^s_{\omega loc}(\Omega)$. Then, if $z=\xi+i\eta\in Z_P=\{z\in C^n|P(z)=0\}$ and $|z|\to\infty$ then $|\eta|\to\infty$.

Proof. Assume that the conclusion is false. Then there is a sequence $z_k \in Z_P$ such that $|z_k|$ is unbounded and $|\eta_k| \leq C$. Passing to a subsequence if necessary we may assume that $\eta_k \to \eta_0$. Let $u_k(x) = e^{-s\omega(\xi_k)}e^{i\langle z_k, x\rangle}$. Then $u_k \in N$. If $\phi \in \mathcal{D}_{\omega}(\Omega)$ we have $(\|\phi u_k\|_s^{\omega})^2 = \int |\hat{\phi}(\xi - z_k)|^2 e^{-2s\omega(\xi_k)} e^{-2s\omega(\xi)} d\xi$. By the condition (α) on ω , $e^{-2|s|\omega(\xi-\xi_k)} \leq e^{2s\omega(\xi)} e^{-2s\omega(\xi_k)} \leq e^{2|s|\omega(\xi-\xi_k)}$. Thus $\binom{*}{\ell}$

$$\int |\hat{\phi}(\xi - i\eta_k)|^2 e^{-2|s|\omega(\xi)} d\xi \le (\|\phi u_k\|_s^{\omega})^2 \le \int |\hat{\phi}(\xi - i\eta_k)|^2 e^{2|s|\omega(\xi)} d\xi.$$

By Paley-Wiener theorem, if H is the support function of supp ϕ then for all constants M and $\epsilon > 0$ there is a constant $C_{M,\epsilon}$ such that

$$|\hat{\phi}(\xi - i\eta_k)| \le C_{M,\epsilon} \exp(H(-\eta_k) + \epsilon |\eta_k| - M\omega(\xi))$$

for all ξ and k. Since (η_k) is bounded we have

$$|\hat{\phi}(\xi - i\eta_k)| \le C_M e^{-M\omega(\xi)}.$$

By taking M large enough we see that (**) implies that (ϕu_k) is a bounded sequence in H^s_ω . Thus (u_k) is a bounded sequence in N. Since N is Montel, there is a subsequence u'_k such that $u'_k \to u$ in N. If $\phi \in \mathcal{D}_\omega(\Omega)$ then $u_k(\phi) = \int u_k(x)\phi(x)dx = e^{-s\omega(\xi_k)}\hat{\phi}(-z_k)$. Thus by (**), $|u_k(\phi)| \leq C'_M e^{(-M-s)\omega(\xi_k)}$ since ω is radial. Taking M large enough and noting that $|z_k| \to \infty$, $|\eta_k| \leq C$ implies $|\xi_k| \to \infty$, we see that $u'_k \to 0$ weak* in $\mathcal{D}'_\omega(\Omega)$. Thus u = 0, that is, $\phi u'_k \to 0$ in H^s_ω for any $\phi \in \mathcal{D}_\omega(\Omega)$. By (*), (**) and the dominated convergence theorem it follows that $\int |\hat{\phi}(\xi - i\eta_0)|^2 e^{-2|s|\omega(\xi)} d\xi = 0$. Thus $\hat{\phi}(\xi - i\eta_0) = 0$ for all ξ , which implies that $\phi = 0$ for every $\phi \in \mathcal{D}_\omega(\Omega)$. This contradiction completes the proof.

References

- Beals, R. M., Lecture note on partial differential equations, Rutgers University, New Bronswick, New Jersey, 1986.
- 2. Beurling, A., Quasi-analyticity and general distributions, Lectures 4 and 5. AMS Summer institute, Stanford, 196.
- 3. Björck, G., Linear partial differential operators and generalized distributions, Ark. Mat. 6 (1966), 351-407.
- Pahk, D. H., Kang, B. H., Sobolev Spaces on the Beurling's Generalized Distribution Spaces, Tsukuba J. of Math. 15 (1991), 325-334.
- Petersen, B. E., Introduction to the Fourier Transform and Pseudo-differential Operators, Pitman, 1983.

Department of Applied Mathematics SeoKyeong University Seoul 136-704. Korea