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FINITELY BASED LATTICE VARIETIES (I)

SANG GYOU YIM* AND YOUNG YUuG KANG

1. Introduction

In R. McKenzie[12], it is shown that the cardinality of the lattice
variety is 2% and K. Baker[1] contains the stronger result that M, the
variety of all modular lattices, has 2™¢ subvarieties. It follows that
there exists a variety of modular lattices that is not finitely based. In
fact, K. Baker[2] gave an example of such a variety. And it was proved
by K. Baker[2] and B. Jénsson[8] that join of two finitely based lattice
varieties is not always finitely based. K. Baker|[2] gave an explicit
example of case of modular lattice variety and B. Jonsson[8] gave one
of case of nonmodular lattice variety. Then it is proposed whether
the join of two finitely based varieties is finitely based under certain
conditions. The answer to the question is not affirmative.

B. Jénsson[8] gave a necessary and sufficient condition for the join
of two finitely based varieties to be finitely based. In B. Jonsson[9].
it was conjectured that the join of a finitely based lattice variety and
a lattice variety generated by a finite lattice is always finitely based.
Here the original question for modular lattice varieties is investigated
under certain conditions. Let A, be the lattice pictured in figure 1.
Actually we obtain the following result.

THEOREM 1. Let V and V' be finitely based modular lattice vari-
eties. If Ay ¢ V and As ¢ V', then V + V' is finitely based.

The rest of this paper is divided into two sect:ons. In section 2, we
will give some preliminary definitions and facts. And finally in last
section we shall prove the theorem 1 and state their corollary. For
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standard concepts and facts from lattice theory, we refer the reader to
G. Grétzer[5] and S. Burris and H.P. Sankappanavar[13]. However we
use + and - instead of VV and A, respectively, for the lattice operations.

2. Preliminaries

We first review some well-known definitions for lattice. Now consider
two quotients b/a and d/cin a lattice L. If b4+c¢ = d and a < ¢, then we
say that b/a transposes weakly up onto d/c (in symbols b/a ', d/c)
and dually, if a-d = c and d < b, then we say that b/a transposes weakly
down onto d/c (in symbols b/a N\, d/c). If there exists a sequence of
quotients

b/a="bofag,by/a,... byla, = d/c

such that for = = 0,1.... ,n — 1. bi/a; w bit1/ait1 or bifa; w
biyi1/aiy1, then b/a is said to projectly weakly onto d/c in n steps. If
both b/a /', d/c and d/c \,y, b/a. that is,if b+ c=d and b-¢c = a,
then we say that b/a transposes up onto d/c and that d/c transposes
down onto b/a (in symbols b/a /" d/c and d/c N\, 5/a). If there exists

a equence of quotients
bja="bo/ag,br/a,.... by/a, =d/c

such that for: = 0,1,... ,n—~1,b;/a, / biy1/aiy1 0t bi/a; ™\, b1/ ais1,
then we say that b/a projects onto d/c in n steps. By the projective
distance between two quotients b/a and d/c, in symbols P(b/a,d/c),
we means that the smallest nonnegative integer n such that some non-
trivial subquotients b'/a’ of b/a and d'/c’ of d/c are projective to each
other in n steps. If no such n exists, then we write P(b/a,d/c) = oc.
By the weak projective distance from a quotient b/a to a quotient d/c
in a lattice L (in symbols P, (b/u,d/c)) we mean that the smallest
nonnegative integer n such that a nontrivial subquotient ' /a’ of b/a
projects weakly onto a nontrivial subquotient d'/¢’ of d/c in n steps.
Let L be a modular lattice. By a scquence of transposes in L we mean
a (finite) sequence of quotients

(1) bo/a()»bl/a%-“-,bn/an
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such that for each ¥ < n, by/a; transposes either up or down onto
bx+1/ak+1. The sequence of transposes (1) is said to be reduced if, for
0 < k < n, either

(2) bi—1/ak—1 /" br/ar ™\ bks1/ak+1
or else
(3) brk—1/ak—1 \ bi/ak /" bry1/aks1.

The sequence of transposes (1) is said to be normal if is reduced and,
for 0 < k < n,

(4) by = by 4+ bpoq I (2) holds
and
(5) ar = ag_y-ary; i (3) holds.

Finally, sequence of transposes (1) is said to be « strongly normal se-
quence of transposes if is normal and for, 0 < k < n,

(6) bk—~1 . bk+1 S ar if (2) holds
and
(4) Ag -1 +ak+1 Z hk lf (3) hO]dS.

Suppose (1) is strongly normal sequence of transposes in L. The sub-
lattice of L generated by the endpoints of three successive quotients
bi/a;, with i = k — 1.k, k + 1, is actually generated by three these el-
ements, namely by bx_,ax and bgyy if (2) holds. but by ax_;,bx and
ar+1 1f (3) holds. This lattice is therefore finite. It is, in fact, a homo-
morphic image of the lattice pictured in figure 2 if (2) holds, but of its
dual if (3) holds. We denote the five-element mo-ular nondistributive
lattice by M3 pictured in figure 3. By a diamond we mean that a
five-termed sequence [a < z,y,z < b] of elements of L whose terms are
all equal (in which case the diamond is said to ke degenerate) or else
form Mj3;. Any nonidentity permutation of x,y ard z yield a diamond,
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which by definition is distinct from the original diamond, even though
they represent the same sublattice of L. We see from figure 2 that
if a quotient bx_;/ay_, is nontrivial, the figure contains a nontrivial
diamond

(8) Dy = [ar < ri,yx, 2k < by

where

(9) Dy =[ar-1+ arq1 <bpo1 4 arpr,ar apo1 + bryy < by
if (2) holds, and

(10)  Di =lag < ax_1 ks bis byt ko < k1 bess]
if (3) holds.

By this argument, a strongly normal sequence of transposes (1) in
L generates a sequence of (n — 1) diamonds Dy, D5, ..., D, _;. This
is said to be associated sequence of diamonds. In Jénsson [7], it was
proved that if two quotients in a modular lattice L project onto each
other in n steps, then there exists a nontrivial subquotient of them
which project strongly normally onto each other in less than or equal
to n steps. Therefore, with each sequence of projectivities there is
always an associated sequence of diamonds. We must now investigate
how these diamonds fit together. First, we define some notions. Given
two diamonds D; = [a; < z,,yi,2: < bi],¢ = 1.2, we say that D,
transposes down onto D, (in symbols D, N1y D2) or Dy transposes
up onto Dy (in symbols Dy 1y D) if by /a; \ b,/a; and under this
transposition the vertices z,,y; and z; mapped onto the corresponding
vertices x3,yy and z, or by/a;  by/a; and under this transposition
the vertices z,,y; and z; mapped onto the corresponding vertices z,, y,
and z, respectively (See figure 4). Also we say that Dy transletes up
onto D, (in symbols D, /2y D3) and that D, translates down onto
D, (in symbols Dy N\,(3) D;) if by /2y /7 z5/ay and if z/a; N\, by/zs.
respectively (See figure 4).

IfD=[a < z,y,z < b is a diamond, then 2* is defined to be
the diamond [a < z,z,y < b]. So Dy \,(;) D3 means that b /a;
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ba/az, 1 by = z3,y1 - by = 22 and z; - by = y2. The investigation of
how these associated diamonds fit together was done by D.X. Hong[6].
Hong[6] contains the following very useful theorem. We call it Hong’s
Theorem in this paper.

THEOREN2.1(HoNG’sS THEOREM). Let b/a and d/c be nontrivial
quotients in a modular lattice such that P(b/a,d/c) =n,2 < n < .
Then some nontrivial subquotients b'/a' and d'/c' of b/a and d/c, re-
spectively, can be connected by a strongly normal sequence of trans-
poses

b'/a' = b[)/ao,bl/(ll.‘. .. ,bn/an = d’/C’
such that the associated diamonds Dy, D, ..., D,_ satisfy

G Dy /1y D,y or Dy /oy Diyr i bifay /" brya/ak+1, and
Dk \(1) D:+1 or Dk \(g) Dk+1 If bk/(lk \ bk4_1/ak+1,

where k = 1,2,... ,n— 2.

(ii) If Dy /1y Dy or Dy Ny Dy, then Dy = Dy,
where k =2.3,... ,n— 2.

(i) If Dy 1y Di4y or Dy Ny Djyys then it cannot happen
that D1 1) Diyy of Drgr (1) Dy respectively.

If the condition (i), (ii) and (iii) are satisfied, then we refer to the
strongly normal sequence of transposes in Hong’s theorem as a Hong
sequence.

A nonempty class V of algebras of same type is called variety if it
is closed under subalgebras, homomorphic images and direct products.
A class K of algebras of same type is finitely based if K is the class of
all models of some finite set of identities. As an example, the class A
of all lattices is a finitely based variety. Now we introduce Jonsson’s
criterion and its corollary.

THEOREM 2.2.(JONSSON [8]). Suppose U is a lattice variety and let
V and V' be subvarieties of U defined, relative to U, by the identities
a = 3 and v = 6. respectively, where the inclusions 3 < a and é < v
hold in U. In order for V + V' to be finitely based relative to U, 1t is
necessary and sufficient that there exists a positive integer n with the
following property
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P(n): For any lattice L € U, if there exist u,v € “L and c,d € L
with ¢ < d such that both a(u)/8(u) and v(v)/é(v) project weakly
onto d/c, then there exist p',v’' € “L and ¢',d’ € L with ¢' < d' such
that both a(u')/B(y') and 4(v')/6(v') project weakly onto d'/c' in n
steps.

COROLLARY 2.3. Let V and V' be subvarieties of M defined, rela-
tive to M, by the identities a = § and v = 6, respectively, where the
inclusions 3 < a and § < 5 hold in M. In order for V + V' to be
finitely based relative to M, it is necessary and sufficient that there
exists a positive integer n with the following property

P(n): For any lattice L € M, if there exist u,v € “L such that a
nontrivial subquotient of a(u)/3(p) projects onto a nontrivial subquo-
tient of ¥(v)/é(v), then there exist ', v’ € “L such that a nontrivial
subquotient of «(u')/3(u') projects onto a nontrivial subquotient of
¥(v')/6(v') in n steps.

For any lattice L. if there exists a nonnegative integer n such that
forall a,b,¢,d € L with a < band ¢ < d, whenever b/a projects weakly
onto d/c, then b/a projects weakly onto a nontrivial subquotient of d/c
in n steps, then the smallest such n is denoted by R(L). If no such
n exists, then we write R(L) = oo. For a class K of lattices, R(K)
denotes the supremum of R(L) for L € K. We denote Fu(a,b,¢) by
free modular lattice generated by a,b and ¢(See [3]). For a lattice L
and arbitrary two elements a, bin L, con(a, b) or con(a, b) denotes the
smallest congruence relation on L that identifies a and b. Generally, it
1s well-known fact that the cardinality of Fp(a, b, ¢, d), where any two
of them are incomparable, is infinite and that F(3) has 28 elements.

And in [14], Takeuchi showed that Fyg(a,b < ¢, d} has 138 elements.
Its Hasses diagram is pictured in figure 5.

3. Proof of main theorem

By a critical quotient of a lattice L we mean a quotient that is
collapsed by every nontrivial congruence relation on L.
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LEMMA 3.1. Let L be a modular lattice generated by five diamonds
Dy, D,, D3, Dy and Dy with the property that Dy /3y Dy N2
D3 /2y D4y \y2) Ds. Let a = ay, by orzy,b= a3, = by andd = as, bs
or z5 in L. Then, the modular lattice G gengrated by a,b,c and d is
a homomorphic image of Ly(a,b < c.d) pictured in figure 6. ie., G
contains at most 25 elements.

Proof. In the lattice L, for arbitrary four elements a, b, ¢ and d with
b < ¢, they have always the following three properties:

(1) (a+b)-(b+d)=b,
(2) (a+c) (c+d)=¢c, and
(3) a+c+d=a+b+d.

To prove the lemma, we use the Fny(a,b < ¢,d). In order to use
the simplified notation, we use their numbers in figure 5. Let a =
62,b = 29,¢c = 110 and d = 77. Hereafter in the proof, for the natural
numbers m,n,p and ¢, “m = n” implies that m and n are identified,
and “m = n” —— “p = ¢” implies that if m and » are identified, then
so are p and ¢. Then

(1) is equal that “86 == 29”
(2) is equal that “132 = 110", and
(3) is equal that “1383 = 136”.

Thus then by the property of miodular lattice,

(1) is equivalent to that (a;) : “86 = 717", (aq, : “71 = 567, (a3) :
“T1 = 54", (aq): “56 = 427, (as) : “5b4 = 42" and (ag) : “42 = 297

(2) is equivalent to that (by): “132 = 1287, (by) : “128 = 121
(bs) : “121 = 110"

In fact,

by (3),138 = 136" ~—— “137 = 134" and “110 == 97".

By (ay), “86 = 717 —— “128 = 1217, “67 == 577, “108 = 967,
“59 = 447, “49 = 377, “68 = 53", 64 = 52”7 and “67 = 57".

By (az), “71 = 56”7 —— “41 = 317, “27 = 20”. “103 = 917, “537 =
46”7, “41 = 277, “22 = 13" and “92 = 78".

By (a3), “7T1 = 54" —— %121 = 1107, “27 = 177, “56 = 427,
“96 = 83”7, “35 = 23” and “65 = 50".
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By (ag), “42 = 29”7 s “5 = 2"

By (b1), “132 = 128" ~— “97 = 85", “61 = 47", “106 = 957,
“109 = 997, “134 = 1307, “63 = 49”7, “102 = 87” and “119 = 108",

Hence the set of all representative elements of G is at most {1, 2, 4, 7,
15, 23, 26, 29, 33,53, 62,66, 73, 77,78,91,97, 114,116, 124, 126, 131, 133,
137,138 }. The Hasses diagram is pictured in figure 6. []

LEMMA 3.2. In a modular lattice L generated by five diamonds D;,
Dy, D3, Dy and Ds with the property that D, /(2) D, \,(2) D /(2)
D4 \(2) 1)57 lfal -+ as = a9 +a4, then b2 + b4 =T+ Zs5.

Proof. Let a; + as = ay + a4. Then

by + b4 =(21 + ag + bs) + (b3 + a4 =- z5)
=r1+az+ b3+ ag + 25
=z1+az+ T3+ 23) +as+ zs5
=y +az+ iy + 25
=21 + a; + a5 + z5 by hypothesis
=21 +25. 1]

Let 7 denote the image of each x € L in the homomorphic image L
of L, and we shall use this notation for any homomorphic image of a
given lattice.

LEMMA 3.3. The modular lattice L generated by five diamonds D,
D;, D3, Dy and D5 with the property that D, 72y D2 N2y D3 /(9
D4 \(2) D5 has a homomorphic image of G5 as a homomorphic im-
age. Furthermore, L has the finite simple lattice A5 as a homomorphic
image.(See figure 7 and figure 8).

Proof. We will show that L/con{a; + as,as + a4) is a homomorphic
image of Gs. For this, by lemma 3.1 and Fy(3), it is enough to show
that the following two identities hold:

(a) iil . (14 + 62 sy = EL3, and

(b) a)'65+51'il5251'55.
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In fact, by con/(a1 + as,az + a4), we have

(*1) a1+ as =ag + a4 = a, +az +as > a3, and

(*2)

@y + s = Gy + g = Gy + T3 + Z3 + @4 = dg + by + @y > bs.

On the other hand, since by - b5 < &3 - 24 = a3z < by, and by (*1) and
(*2), we get

(*3) by - bs < (a) + as).
Therefore

(a); @1-a4+az-as = ay-az+ as - as
=asg- (a1 +a.-as)
=ay-(a + ay - as)

=ag-dy-(a, +as)
= a3 [by(*l]v

and

(b)v ai b5 +Bl -ag = bl '(dl b5 -=as)
= B] '?)5 : (d] -+ (3,5)
=by-bs [by *3)].

This completes the proof. O

LEMMA 3.4(BAKER[3]). For arbitrary two lattices L and M, let
f: L — M be a surjective lattice homomorphism. and let b/a and d/c
be nontrivial quotients in L. Suppose that f(b)/f(a) projects weakly
onto f(d)/f(c) with f(c) < f(d) in k steps in M for some k > 0. Then
there exist ¢',d' € L, with ¢ < ¢’ < d' < d, such that f(¢) = f(c') and
f(d) = f(d"), and such that b/a projects weakly onto d'/c' in (k + 1)
steps if k > 0 and in 2 steps when k = 0.

From above lemma 3.4, we get easily the following as its corollary.
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COROLLARY 3.5. For arbitrary two modular lattices M, and M,
let f: M, — M, be a surjective lattice homomorphism, and let b/a
and d/c be nontrivial quotients in M;. Suppose that f(b)/ f(a) projects
weakly onto f(d)/f(c) with f(c) < f(d) in k steps in M, for some
k > 0. Then there exist ¢',d' € M,, with ¢ < ¢/ < d' < d, such that
fle) = f(c') and f(d) = f(d'), and such that a subquotient of b/a
projects onto d'/c' in {k + 1) steps if k > 0 and in 2 steps when k = (.

Proof of Theorem 1. Let V and V' be defined by the identities
a = 3 and v = &, respectively, relative to M. We may assume that
the inclusions 3 < a and é < ¥ hold in every modular lattice. Letting
U = M, we are going to show that the condition P(n) in corollary 2.3
holds for n = 25. Since M is finitely based, it follows that V + V’
is finitely based. Consider a lattice L € M., and suppose there exist
p,v €% L such that a nontrivial subquotient of o{u)/3(u) projects
onto a nontrivial subquotient of 4{x)/6(v) in m s-eps.

Assuming that the two quotients have been so chosen that m is as
small as possible, we shall show that assumption m > n leads to a
contradiction. There exists, by Hong's Theorem, a Hong sequence

b/a: bg/ao,bl/a,,... #bm/am :d/C

for some nontrivial subquotients b/a and d/c of a(p)/B3(u) and ¥(p)/6(v),
respectively. Let Dy, D;, ..., D, be the associated sequence of di-
amonds. Then we have the following two cases:

(1) There exists a subsequence Dy, Dy41, Dy, D43 and Dyyy for
0 <k <m-—-10with D, /(2) Dy \(2) Dk+2 /.2) Dyis \(2) Dy,

(2) there does not exist any such subsequence.

Case (1): By lemma 3.3, the lattice A5 is a homomorphic image
of the sublattice Ly of L generated by Dg, Dxyy, Dgya. Diys and
Dy 4. Furthermore. bi/ay is a nontrivial quotient in Ly and by /ax is a
critical quotient in As. Since As ¢ V', 8(v') < 4(v') for some v' € “Ly.
Observe that y(v') = v(v') and 6(v') = 5(v"). Also R(As) = 8. Hence
m/&—u’) projects weakly onto bi/ax in 8 steps. Since bi/aj and
¥(v')/6(v') are nontrivial quotients in Lg, by corollary 3.5, there exists
a nontrivial subquotient y/z, with ay < z < y < 4, such that § = by
and T = aj, and such that a subquotient of v(v')/é(+') projects onto
y/x in 9 steps. Since Ly is a modular lattice, therefore a nontrivial
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quotient of b/a projects onto a nontrivial quotient of y(v')/é(¢') in
(k4 9) steps. Since 0 < k < (m — 10), it contains a contradiction.

Case (2): We can choose some integer t, with 7 <t < m — 14 such
that

D¢ A2y Dig1 = Diyg, Deya /(2) Dits

or

D¢ N2) Div1 = Dy, Dig2 N2y PDk+s-

Then Dy U Dy U Dy43 forms a sublattice Ly of L which contains
A, as a homomorphic image, and b,43/a,43 is a prime quotient in
L. Since 4, ¢ V, a(u') > #(u" for some p' € “Ly. Since R(A4,) <
7,a(u')/B(y') projects weakly onto biys/ai+s in 7 steps. Therefore
by corollary 3.5, a nontrivial subquotient of a(u')/3(u') projects onto
bisa/asr3 in 8 steps. Since L is a modular lattice, a prime subquotient
of a(u’)/B3(1') projects onto byi3/a,.4 in 8 steps. So a prime subquo-
tient of a(u’)/3(p') projects onte a nontrivial subquotient of d/c in
(m —t+ 5) steps. This too leads to a contradiction. This completes

the proof. [

COROLLARY 3.6. Let V and V' be finitely based modular lattice
varieties. If Ay ¢ V and AE, the dual of As, is not contained in V',
then V + V' is finitely based.
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Figure 7
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