ON THE SPECTRAL MAXIMAL SPACES OF A MULTIPLICATION OPERATOR

  • 발행 : 1996.02.01

초록

In [13], Ptak and Vrbova proved that if T is a bounded normal operator T on a complex Hilbert space H, then the ranges of the spectral projections can be represented in the form $$ \varepsilon(F)H = \bigcap_{\lambda\notinF} (T - \lambda I) H for all closed subsets F of C, $$ where $\varepsilon$ denotes the spectral measure associated with T.

키워드