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SURFACES IN 4-DIMENSIONAL SPHERE

AKIRA YAMADA

1. Introduction

Let M = (M, J,{ )) be an almost Hermitian manifold and M a sub-
manifold of M. According to the behavior of the tangent bundle TM
with respect to the action of J, we have two typical classes of subman-
ifolds. One of them is the class of almost complex submanifolds and
another is the class of totally real submanifolds. In 1990, B. Y. Chen
[4],[5] introduced the concept of the class of slant submanifolds which
involve the above two classes. He used the Wirtinger angle to measure
the behavior of TM with respect to the action of J.

Let J(M') be the metric twistor bundle over an even-dimensional
oriented Riemannian manifold M’ whose fiber J,(M') (x € M') con-
sists of orthogonal complex structures compatible with the orientation
of M'. We may define two kinds of natural almost Hermitian struc-
tures (J1,{, )¢) and (J2,(, )¢) on J(M'), where c is a positive real
number and J3 is never integrable. Many authors deal with these al-
most Hermitian structures in connection with the study of harmonic
maps (cf. [1],[2],[6],[11],[12] and etc.). N. Ejiri {6] and other authors
(cf. [2]) considered that the Calabi liftings ¢,,¢_ : M — J(S*) of
an isometric immersion ¢ from an oriented Riemannian surface M into
4-dimensional unit sphere S*, and obtained interesting results about
the relationship between ¢ and @, where &, (resp. $_) denotes the
positive Calabi lifting (resp. the negative Calabi lifting) of ¢.

In this paper, we consider the positive Calabi lifting® =&, : M —
(J(S*), J1,{ s Ye) (resp. (J(S*),J2,(, )c)) of an isometric immersion
¢ from an oriented Riemannian surface M into $* by focusing our at-
tention to the relationship between the Wirtinger angle of M in J(S*)
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with respect to J; (resp. Jy) and the geometrical quantities with re-
spect to o, and prove the following Theorem.

THEOREM. Let ¢ : (M,g) — (8%, §) be an isometric immersion
of an oriented Riemannian surface M into 4-dimensional unit sphere
S @M — (J(SY). T, (L)) (resp. (J(SY), T2, (, )e)) the positive
Calabi lifting of ¢ and o (resp. oy ) the Wirtinger angle of M in J(S*)
with respect to Jy (resp. J;). Then we have the following equalities,

(1) 4c?|H||2 cost oy = {1 — ¥ (=1 + r + 5, )} sin? ay

,+4p2( ~14 &+ Ky ),

(1) 42| H|[? cos? ay = {1 — (=1 4 & + &, )} sn® ag,
where H is the mean curvature vector of M with respect to o, x is the
Gaussian curvature of M and «, is the normal Geussian curvature of
M with respect to .

By using the cqualities in the above Theorem, we may obtain an-

other proof of the result of M. F. Atiyah-H. B. Lawson (cf. [6],{7]).

COROLLARY 1. Let ¢ : (M,g) — (5%,§) be an isometric immer-
sion and @ - M — (J(S*), J1.{ . 1.) (or (J(S*),.2.(, )¢)) the posi-
tive Calabi lifting of ¢. Then, we Lave the followirg.

(1) We suppose that ¢ is minirual. Then, ¢ i holomorphic with
respect to Jy if and only if ¢ 1s super-minimal.

(i1) @ 1s pseudo-holomorphic with respect to J, if and only if v 1s
minimal.

Since A. Nijenhuis and W. B. Woolf showed that every almost complex
manifolds has a (local) holomorphic curve passing through any point
with any complex tangent vector (Theorem III of |9]), we may have a
(local) J,-holomorphie curve in J(5*) passing through any point with
any complex tangent vector. By Corollary 1 (ii), we may construct
many minimal surfaces in S* locally by projecting its J,-holomorphic
curves in J(S*) onto $* via the bundle projection m, : J(§*) — §*.
From the above Theoremn, we may also obtain the following.

COROLLARY 2. Let ¢ : (M,g) — (5% §) be an isometric immer-
sion and @ M — (J(SY), J1.{, Yeo) (or (J(S'),Jo, (. }e) ) the
positive Calabi lifting of ¢. Then, we have the following.

(1) @ is totally real with respect o (Jy,(, ).) fendonly if s+~ =
1 5.
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(11) @ is totally real with respect to (Ja,(, )) fandonly if k+ Kk, =
1

In the case of ¢ = 1, Corollary 2 (i) gives the result of N. Ejiri [6].
The author is grateful to Prof. K. Sekigawa and Prof. T. Koda for
their kind advice and encouragement.

2. Preliminaries

Let & : M — M be an immersion of a C*°-manifold M into a 2n-
dimensional almost Hermitian manifold M = (M, J,(, }). We endow
M with the induced metric via . We identify the tangent space T, M
at a point + € M and its image ($.).T:M of &,, and denote them
by T, M in the case there is no danger of confusion. For any nonzero
vector X € T, M, the angle 6,(X) between JX and the tangent space
T.M at x € M is called the Wirtinger angle of X

(2.1) 6:(X) = Z(JX, TM), 0<0.(X)< 3

In general, the Wirtinger angle 6,(X) depends on the choice of the
point z € M and the vector X € T, M. If the Wirtinger angle 6,(X)
is constant for any point ¢ € M and vector X € T, M, the immersion
& is called the slant immersion. Almost complex {or holomorphic)
immersion (resp. totally real immersion) is a slant immersion with
6 =0 (resp. § = 7/2).

It is easily seen that, if dim M = 2, then the Wirtinger angle depends
only on the choice of the point z € M; i.e. 6,(X) = 6(x) and 6(x) is
given by

(2.2) cosf(x) = | (JX1,X2) |,

where {X,, X3} is an orthonormal basis of T, M.

We shall now review some fundamental facts on almost Hermitian
structures on the metric twistor bundle J(S*) over S* (in detail, see
[12]). We adopt the same notational convention as used in [12]. Let
S* = ($%,§) be 4-dimensional unit sphere with the fixed orientation
and 7 : F(S*) — 5% the oriented orthonormal frame bundle. We
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denote by 8 and w the canonical forin and the conne-tion form on F(5%)
with respect to the Riemannian connection V of . The structure group
of the principal fiber bundle F(S5*) is the special orthogonal group
S50(4) of degree 4. We denote by so0(4) the Lie algebra of SO(4).
Let R* be the 4-dimensional Euclidean space with the canonical inner
product £ for £, € R*. and J, the linear endomorphism of R* given
by

0 ¢ ~1 0

. 0 ¢ 0 -1

(2.3) o = 1 06 0 0
01 0 0

with respeet to the canonical orthonormal basis {e;,- - .es} of R,
We denote by A* (resp. B(£)) the fundamental ve:tor field (resp. the
basic vector field) corresponding te A € so(4) (resp. € € R*). For each
w € F(S"), we define a linear endomorphism j(1) on Tr(a) 5 by

(2.4) Ju)yi=u o Jyou!

Then, by (2.3) and (2.4), we see iminediately that j «) is an orthogonal
almost complex structure at 7(u) compatible with the orientation of
S*. The linear endomorphism j(u} is called a metric twistor at w(u).
For each point # € S*, we put J,(S*) := {j(u)in(u) = x}. Then
we mdy easily see that .J (b4) 15 diffe ()In()rphl(' to S? = S()( )/U(2)
(I(2) = {a € SO4)|a]y = Jya} (unitary group of degrec 2) ). We
put .](5“) s Ufesn. J,(SY), then it is known that j : F(5%) —
J(S*) is a principal fiber bundle with the structure group U/(2) and
henee J(S*) is the associated fiber bundle of F(S%) with the standard
fiber S*. The fiber bundle 7y : 7(S%) — S* is called the metric
tunstor bundle over S, It is easily seen that the total space J(S?)
is diffcomorphic to CP*. Then we have the following commmtative
diagramn :

J(§Y) 1~ F(S
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Next, we consider the standard fiber S? = SO(4)/U(2). Let o be
the involutive automorphism of SO(4) defined by

(2.6) o(a) = —JoaJy, for a € SO(4).

Then, by (2.6), we see immediately that SO(4)? = {a € SO(4)|o(a) =
a} = U(2). Furthermore, we have the corresponding Cartan decompo-
sition of s0(4):

(2.7) 50(4) = u(2) ®m,
where u(2) denotes the Lie algebra of U(2). Concretely,
0 a b ¢

T A E )
—-c —¢ —f 0
/ 0 a+ f 2b c+d

_1{ —(a+f) 0 c+d %e

(2.8) B”z —2b —(c+4d) 0 a+ f € u(2),

\Z(ctd) -2 —(a+f) O
/ 0 a"f 0 r?—d

I -a=f) 0 —(c—4d) 0

C__Z— 0 c—d 0 —(a—f) € m,
\—(c=d) 0  a-f 0

A=B+C,

where a, b, c,d, €, f € R. By (2.8), we see that the elements of m can be
represented by (1,2)- and (1,4)-components, so we denote the elements
of m as following,

0 a O b
-a 0 =6 0

(2.9) [a:b] := 0 b 0 —al€™
-b 0 a 0

We sce that Jola : b] = [—b: a] € m and Ad(a)Jy = JyAd(a) on m for
all a € U(2). Thus, Jo gives rise to an SO(4)-invariant almost complex
structure on S?. We define an inner product ( , ) on so0(4) by

(2.10) (A, B) = —trace(AB),
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for A,B € so(4). Then we may easily see that the inner product
( , ) gives rise to a biinvariant Riemannian metric on SO(4) (and
hence an SO(4)-invariant Riemannian metric on $?) and furthermore
(Jo,( , )) is an almost Hermitian structure on S?. Corresponding to
the decomposition (2.7), we may write

(2.11) w = wy + wa,

where w, (resp. w,) denotes u(2)-component (resp. m-compounent) of
w. Then, by taking account of (2.5),(2.7) and (2.11), we see that there
exists a linear isomorphism A(u) : T,y J(S*) — m@R* satisfying the
following two conditions:

(2.12) Alua) = (A(I(a_]) ha ') Mu), forae U(2),

and the diagram

( “ u
TuF(54) —J]m—* J(U)J(S4)
(2.13) H l*‘")
T, F(SY) — meR
(“’2+0)u

is commutative for any u € F(S*). We put

H(j(u)) = Mu)" (RY)

2.14
(214 V{iu)) = Au)™ (m),

for each u € F(S*). Then H and V give rise to differentiable distri-
butions on J(S*) which are called the horizontal distribution and the
vertical distribution on J(S*), respectively.
We define (1,1)-type tensor fields J;,J; on F(S') by
JA* =0, J,A*:=0, for A€ u(2)
(2.15) J A* = (JoA), J,A" := —(JyA)*, for A€m,
J\B(&) = B(Jo€), J,B(£) = B(Jo€), for £ € R".
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Taking account of (2.13), we may define almost complex structures

J1,J2 on J(S*) by

(Jl )j(u) ((j*)uA*) = A(u)_l(.]o ), for A € m,
(JI)J(u) ]* (E) ) - ’\(u) 1(‘]0§ for 6 < R4’
(Jg)j(u)( T uAu) = —/\(u) (J()A) for A € m,

(J2)500, (G )uB(€)a) := A(w) T (Jo€), for £ € RY,

at j(u) € J(S*). By (2.13),(2.15) and (2.16), we get immediately

(2.16)

(2.17) Jioja=jsody, Jroj.=j.cd,

It is known that J; is never integrable. On the other hand, J; is
integrable by self-duality of S* (see [1], [11])

Next, we give a Riemannian metric { , )., (¢is a positive real number)
on F(S*) by

(A*, B*). := c*(A, B),
(2.18) (A*, B(£)), =0
(B(¢), B(n)), =&,

for A, B € s0(4), £,n € R*. Furthermore, by taking account of (2.10),
we may define a Riemannian metric { , ). on J(S*) by

(juA*, juBY)e = cz(A B),
(2.19) (JxA*, 15 B(E))c :
(1+B(£),5+B (17)>c -=£~n,

for A,B € m, £,5 € R'. Then, by (2.18) and (2.19), we see that
7 (F(SY),(,).) — (J(5%),(, )c) is a Riemannian submersion. Also,
by (2.16) and (2.19), we have that (Jy,{, ).) and (J2,{ ,).) are almost
Hermitian structures on J(S*). It is known that (J(S$*),J;,{, )1) is
a Kahlerian manifold and (J(S*), Jo, ( , )1/\/5) is a nearly Kéahlerian
manifold ([12]).
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3. Calabi liftings

Let M = (M, g) be an oriented Riemannian surface and ¢ : (M, g)
------- - (8%, ¢) an isometric immersion. We may see that M = (M, J, g) is
a Hermitian manifold with the natural complex structure J. For any

point .+ € M, we have the orthogonal decomposition T,5* = T, M ¢
THM. For each point .+ € M, we take the oriented orthonormal frame

o= (r 0y, eg9.03,04) € F(S*) of §* such that

(31) €y, €y oo -](1 € :IF‘IFLI, €9, 604 € TIl M.

Then T4 M has the natural orientation determined by the orientations
of M and $* So we may define the almost complex structure J+ of
T+ M by

(3.2) JYey =g, Trey = —ey.

We remark that the definition of 7+ is well-defin=d. For each point
r € M, we define the metric twistor j, by

(3.3) Jei= Jeib e J(SY).

Then, j, has following relation to (),
Jr=j{(u)=uoJyou ', where n(u) = z.

We detine the map @ 0 M J(57) by

(3.4) P(r) = Jr

We see that @ is well-defined. This map @ is called the positive Calab:
hifting of . Choosing the reverse orientation of $*, we have another
map of M into J(S*) which is called the negative Calabs lifting of .

& )
M s J(S*) e I F(§%)

(3.5) |1 - | H
(Y L S — 2 2

v] m
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In the rest of this section, we prepare some equalities and Lemmas
for proofs of Theorem and Corollaries. Let V,V be the Riemannian
connections of M, S* with respect to g, §, respectively, and ¢ the second
fundamental form of M with respect to ¢, A the shape operator of M
with respect to p, V< the normal connection of T1M with respect
to ¢, H the mean curvature vector of M with respect to ¢, x the
Gaussian curvature of M and x, the normal Gaussian curvature of M
with respect to ¢. For the point x € M such that o # 0, we consider
the map from T, M into T} M given by

(3.6) XeTM(|X||=1)— o(X,X) e T} M.
We define the oriented orthonormal frame u = (z;ej,ez,e3,e4) €
F(5%) by

lle(er, er)f := ”1?!;'151 lo(X, X)|l, where X € T, M,
(3.7) ey = o(ey,er)
lo(er, e’

This frame is called an E-frame. We consider the geodesic v in M
passing through = € M with the initial vector ¥(0) = X € T, M:

(3.8) ¥(t) == exp, (tX).

Then, we get a V (resp. V1)-parallel vector field e;(t) (resp. ey(t))
such that e,(0) = e, (resp. e2(0) = e3) by the parallel translation
along v with respect to V (resp. V1). Thus, we get a V, V+-parallel
frame ficld u(t) along ~v:
(3.9)

u(t) = ((t); e1(t), e2(t), ea(t) = Jey(t), es(t) = JJ‘ez(t)) € F(S%).

e3:=Jey, e4:= .]'L€2.

From now on, we use the range of indices: ¢,j == 1,3 and o = 2,4.
With respect to this local frame field, we obtain

(3(olese;)en)) = (3 2)
(3.10)

(itoteneshe) = (7).

v
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where A, i, v and é are locally smooth functions. We remark that, at
a geodesic point i.e. 0 = 0, we may consider A = p =v =6 = 0. By
the definition of H, the equation of Gauss and the equation of Ricei,
we easily obtain the following equalities:

. 1 .
(3.11) IHN* = 2+ )" + 8%},
(3.12) k=14 A — v
(3.13) Ky = V(A —p).

We consider the image
(3.14) E,:={o(X.X)|X e .M, ||X]| =1} CT}M

of the map (3.6) which is called the ellipse of currature.

LEMMA 1. Ellipse of curvature E, at r € M is a circle if and only
if
A —q
2 bl

v=+4 6 =0.
In particular, the map (3.6) preserves or reverses the orientation ac-
cording as v = (A — p)/2 or v = —( X — u)/2.

If the ellipse of curvature Ex is a circle and the map (3.6) preserves
(resp. reverses) the orientation, E, is called the positive (resp. nega-
tive) circle. In particular, a minimal immersion of M into 54 is called
super-minimal if and only if the ellipse of curvature is a positive circle.
Taking account of (3.10) and Lemma 1, we have the following.

LEMMA 2. ¢ is super-minimal if and only if the second fundamental
form o of M with respect to ¢ is of the following forms with respect

to the local frame field (3.9),
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where X is locally smooth function.

Next, We shall calculate the differential map &, of the positive Cal-
abi lifting #. We denote by X the tangent vector of u(t) at u = u(0),

(3.15) X = 4 u(t) € T, F(S*).
t=0

Then, by (2.13),(3.4),(3.5),(3.8),(3.9) and (3.15), we have following se-
ries of equalities:

(3.16) 7o u(t) = ~(t),

(3.17) (m)uX = 7(0) = X,

(3.18) (m1008,): X = () X,

(3.19) P(v()) = u(t) o Jo o u(t) ™! = j(u(t)),
(3.20) ($.):X = (ju)uX,

(3.21) Mu)(Pa)e X = (w2)u(X) + 8u(X).

Now we put
(3.22) 0u,(X)=u (7)) X =u™ X = £
We shall calculate w(X'). With respect to the frame field (3.9), we have

v.\’ei =o0(X,e;) = !7(0(X,6i),€2)62 + §(U(X» ei), 64)64’
@xea = —Ae, X = —g(o(X,e1),ea)er — §(0(X, €3), €q)e3.

If we express
(vxelvﬁxfa, ?Xﬁs,vxfu) = (e1, ez, €3, 64)0-’(5()’

then we have

0 —g(O'(X,G]),CQ) 0 _g(a(x9el)ve4)
W(X) = g(o(X,e1),€e2) 0 g(o(X,e3),e32) 0
T 0 —9(o(X,e3),e2) 0 —g(o(X,e3),e4q)

g(U(X,C]),E’4) 0 g(a(X,eg),ea,) 0
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Thus, by (2.8),{(2.9) and (2.11),
1 .
(3.23) we(X) = 5[(1()( ) b(X)],

where

0’(“’) = g(a(lx" ('3)7(:‘1) - g(U()(- €1 )7 (12),

3.24
( ) B(X):i= —g(la(X,ey).cq) — g(o(X,€e3),e2).

By (2.16) and (3.20)~(3.23), we have the following equalities:

o 1
(3.25) (@)X = Go)uB(EOu ~+ 504 )u[a(X) - MX)]5

| . 1. .
(3.26) JUD): X = (u)uB(Jol)u + 5(_;*)u[—b{X) ca( X))

_ 1 . .
J’z(gp*):}{ = (‘/*)uB(JUS)u + 5(/*)11[1)(‘&) : _a("Y)]u'

«
)
-3

4. Proofs

In this section, we prove Theorem and Corollary 1,2

Proof of Theorem. In general, g does not coincide with the induced
metric via @. So we first seek an orthonormal basis {X;, X2} of
(@,):T: M with respect to (, }.. By (3.25), we have

1
(Q*).’r(l :(j*)‘llB(el)u t 5(7*)11[(1'((]) : b((l)]:*

1 )
(¢*)r(3 ::(.j*)tLB(efi)u i :)*(j*)u[(l(ﬁg) : b((3)]1*1

e

To get the length of (@.),¢; and (P,),¢3, we calculate the followings:
(1) (la(er) s blen)] Jater) : bler)]) =4{a(er)? + bler)*)
=4(\ —v),
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(4.2)
([aler) : b(er)], [a(es) : b(es)]) =4{a(e1)ales) + b(eq)b(es)}
=46(v — A),

(4.3) ([a(es) : b(es)], [a(ea) : bles)]) =4{a(es)® + b(es)?}
=4{8* + (n +v)*}.
By (2.19) and (4.1)~(4.3), we get

(4.4) (Da)cer, (Pu)rer)e =1+ *(A —v)?,
(4.5) ((Pa)z€r, (Pu)zes)e =c26(1/ —A),
(4.6) ((Bo)rea, (Pa)rea)e =1+ {67 + (1 + 1)}

By applying the Gram-Schmidt orthonormalization to (&,),e; and
(P+)re3, we make an orthonormal basis {X;, X»} of (8.),T, M with
respect to (, ).

(4.7)

-‘YI = \/1-+-C21(Tl/)2 {(j*)uB(el)‘u + %(j*)"[a(el) : b(el)]:} 1
(4.8)
X2 '——% [(j.)uB(eg)u + Ii_igé\‘)::_‘_u—z)‘z(j*)uB(el)u

5 {Goulaten) s deall + T2 laten) : e},
where
14+2(XA—=v)2+c262 4 c2(u+ )21 +c2(X—v)?

(4.9) L:=\/ A-v) 1+c2()\(ﬁil/)2){ Q=)

By (2.2),(3.26),(3.27) and (4.1)~(4.8), we have

(4.10) cos ay _1+ O - vt v)|
L\/14 %A —v)? ’
= =v)(p+v)

4.11 = .
(411) e L\/14 (A —v)?
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For the sake of simplicity, we put 4 := A — v and B := ju + v. Then
A+ DB =)+ pu By (3.11)~(3.13), we get
2 1 2, 42 1 V2 g2
" = {4 0)" + 05} = (A + B)* + &%},
AB=(A—v)(pp+v)= =1+ rK+ x,.

We square the both sides of (4.10) and express by A, B and 6.

(1+c2AB)?
14 c2A% + 262 + ¢2B%(1 + ¢2A4?)
4c*||H||* cos* oy = (1 — *AB)?sin® a; -+ 4c*AB

(‘()Sz ky =

Thus, we obtain
4| H | cos? oy = {1 =2 =14 x -+ Ky} isin®ag - 4et (=1 4/ +xy )
We square the both sides of (4.11) and express by A, B and é.

(1 c2AB)?
14 c2A% 4 262 + 2B%(1 + 2 A?)

4 ||H||* cos® g = (1 — ¢*AB)*sin’ ay

cos? g =

Thus, we obtain
4P HY? cos® ap = {1 — H{~14 & + Kk, )} sin? ay.

This completes the proof of Theorem. [

REMARK. By (4.4)~(4.6) and Lemma 2, we easily see that ¢ coin-
cides with the induced metric via @ if and only if © is super-minimal.

Proof of Corollary 1. (1) We suppose that @ is holomorphic with
respect to Jy, that is, oy = 0. By Theorem (i), we have

—l4r+ry, =0, ic. (A=v)u+v)=0.

By (3.11), we have A+ = 0 and é == 0. Therefore we get = — A\, v = A
and & = 0. By Lemma 2, ¢ is super-minimal.
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Conversely, we suppose that ¢ is super-minimal. By Lemma 2, we
have p = —A,v = A and § = 0. Thus we have

14+ x+k, =0

Then, by Theorem (i), we get a; = 0. Therefore @ is holomorphic with
respect to Jj.
(i1) We suppose that @ is pseudo-holomorphic with respect to Jy,
that is, @z = 0. By Theorem (ii), we get H = 0. Hence ¢ is minimal.
Conversely, we suppose that ¢ is minimal. By Theorem (ii), we have

1-c3(-14+k+4,)=0 or ay=0.
On the other hand, by (3.11), A + ¢ = 0 and é = 0, so we have
1—cA(—14+k+6y)=1+EA—-v)2 #£0

Therefore, @y = 0 and so ¢ is pseudo-holomorphic with respect to
Jo. O

Proof of Corollary 2. (i) We suppose that @ is totally real with
respect to (Ji,{ , )¢), that is, a; = n/2. By Theorem (i), we get
K+Ky=1-1/c%

Conversely, we suppose that « + x, = 1 — 1/c*. By Theorem (i),
we have

(14 2| H||*)cos’ a1 =0
Since 1 + c%||H||? # 0, we get a; = 7/2 and so @ is totally real with
respect to (J1,{ , )¢)-

(ii) We suppose that @ is totally real with respect to (J2,( , )c),
that is, ay = 7/2. By Theorem (ii), we get k + ky =1+ 1/c?.

Conversely, we suppose that « + k, = 1+ 1/c?. By Theorem (ii),
we have

| H||? cos® a2 = 0.
Thus H = 0 or a3 = 7/2. On the other hand, by « + «, =1+ 1/c?,

we have
1
(A=v)p+v)= X
A= ————
ot

_ 1Py

At p= pETp #0.
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Hence by (3.11), we have H # 0. Thus we get a; = 7/2 and so @ is
totally real with respect to (Ja,(, ).). O

6.

10.
11

12.
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