# PERMUTATION POLYNOMIALS **OF THE TYPE** $1 + x + \cdots + x^k$

KYUNG HEE KIM\*, JUNE BOK LEE\* AND YOUNG H PARK

#### 1. Introduction

Let  $\mathbb{F}_q$  denote the finite field of order  $q = p^n$ , p a prime. A polynomial  $f \in \mathbb{F}_q[x]$  is called a permutation polynomial over  $\mathbb{F}_q$  if f induces a 1-1 map of  $\mathbb{F}_q$  onto itself. When q is even, permutation polynomials of the type  $h_k(x) = 1 + x + \cdots + x^k$  are useful in the construction of ovals in the projective plane  $PG(2, \mathbb{F}_q)$  and an oval in the projective plane  $PG(2, \mathbb{F}_q)$  is defined to be a set of q+2 points of  $PG(2, \mathbb{F}_q)$  no three of which are collinear [2]. For any  $f \in \mathbb{F}_q[x]$ , let  $A(f) = \{(f(c), c, 1) | c \in \mathbb{F}_q\} \cup \{(1, 0, 0), (0, 1, 0)\}.$  Chou [1] has shown the followings:

THEOREM 1.1. Let  $q = 2^n$  with n > 1. Then  $A(x^{k+1})$  with 1 < n < 1 $k \leq q-2$  is an oval in  $PG(2,\mathbb{F}_q)$  if and only if  $h_k(x)$  is a permutation polynomial of  $\mathbb{F}_q$ .  $\square$ 

THEOREM 1.2. Let  $q = p^n$ , p a prime. If  $h_k(x) = 1 + x + \cdots + x^k$ is a permutation polynomial of  $\mathbb{F}_q$ , then there is a nonnegative integer m such that

1) 
$$k \equiv mp(p-1) + 1 \pmod{p(q-1)}$$
, with  $mp(p-1) + 1 \leq q-2$ 

2) 
$$(mp(p-1)+1,q-1) = 1 = \begin{cases} (\frac{mp(p-1)}{2}+1,\frac{q-1}{2}) & \text{if } q \text{ is odd,} \\ (m+1,q-1) & \text{if } q \text{ is even.} \end{cases}$$

For q odd, permutation polynomials of the type  $h_k(x)$  are completely determined by the following:

Received October 19, 1994. Revised June 10, 1995.

<sup>1991</sup> AMS Subject Classification: 11T06.

Key words: Permutation polynomial, finite field.

<sup>\*</sup> Research supported in part by NON DIRECTED RESEARCH FUND, Korea Research Foundation, 1993 and partially supported by BSRI-94-1423.

THEOREM 1.3 ([3]). For q odd,  $h_k(x) = 1 + x + \cdots + x^k$  is permutation polynomial over  $\mathbb{F}_q$  if and only if  $k \equiv 1 \pmod{p(q-1)}$ .  $\square$ 

Let  $q=2^n$ . In this case, Theorem 1.2 is not enough to determine whether or not  $h_k(x)$  is a permutation polynomial. Let  $\mathbb{N}_q = \{0,1,2,\ldots,q-2\}$ . Then Theorem 1.2 shows that we may consider only those odd  $k \in \mathbb{N}_q$  such that (k,q-1)=(k+1,q-1)=1 to find permutation polynomials of the type  $h_k(x)$ . Let

$$P_q = \{k \in \mathbb{N}_q \mid h_k(x) \text{ is a permutation polynomial over } \mathbb{F}_q\}.$$

We will show that there exists an action of the dihedral group  $D_3$  of order 6 on  $P_q$ . Since  $P_q$  is difficult to determine, we will look at larger  $D_3$ -sets, which are easier to determine, and discuss how to get closer to  $P_q$  using the action of  $D_3$ .

### 2. Permutation Polynomials of $h_k(x)$ when q is even

From now on, we assume that  $q = 2^n$ ,  $n \ge 2$ , unless stated otherwise. There are some classes of permutation polynomials which are easy to determine.

THEOREM 2.1. Let  $q = 2^n$  and m < n.

- (1)  $h_{2^m-1}(x)$  is a permutation polynomial of  $\mathbb{F}_q$  if and only if (m,n)=1.
- (2)  $h_5(x)$  is a permutation polynomial of  $\mathbb{F}_q$  if and only if n is odd.

Proof. We have 
$$h_{2^m-1}(x)=\frac{1+x^{2^m}}{1+x}=\frac{(1+x)^{2^m}}{1+x}=(1+x)^{2^m-1}$$
. Hence,  $h_{2^m-1}(x)$  is a permutation polynomial of  $\mathbb{F}_q$  iff  $(1+x)^{2^m-1}$  is a permutation polynomial of  $\mathbb{F}_q$  iff  $(2^m-1,2^n-1)=1$  iff  $(m,n)=1$ . This proves (1). To show (2), let  $g_5(x,a)$  denote the Dickson polynomial [2]. Then  $g_5(x+1,1)=\sum_{j=0}^{\lfloor 5/2\rfloor}\frac{5}{5-j}\binom{5-j}{j}(-1)^j(x+1)^{5-2j}=h_5(x)$  over  $\mathbb{F}_{2^n}$ . It is well known that  $g_5(x+1,1)$  is a permutation polynomial of  $\mathbb{F}_{2^n}$  iff  $(5,2^{2^n}-1)=1$  [2]. Since  $(5,2^{2^n}-1)=1$  iff  $n$  is odd, (2) follows.  $\square$ 

We now discuss two theorems, which produce new permutation polynomials from known ones.

THEOREM 2.2 ([1]).  $h_k(x) = 1 + x + \cdots + x^k$  is a permutation polynomial of  $\mathbb{F}_q$  if and only if  $h_{q-2-k}(x) = 1 + x + \cdots + x^{q-2-k}$  is a permutation polynomial of  $\mathbb{F}_q$ .  $\square$ 

LEMMA 2.3 ([2]). Let  $a_0, a_1, \dots, a_{q-1}$  be elements of  $\mathbb{F}_q$ , where  $q = p^n$ , p a prime. Then the following two conditions are equivalent:

(1)  $a_0, a_1, \dots, a_{q-1}$  are distinct;

(2) 
$$\sum_{i=0}^{q-1} a_i^t = \begin{cases} 0 & \text{for } t = 0, 1, \dots, q-2, \\ -1 & \text{for } t = q-1. \end{cases}$$

LEMMA 2.4. Let  $k \in \mathbb{N}_q$ . If  $h_k(x) = 1 + x + \cdots + x^k$  permutes  $\mathbb{F}_q - \{0, 1\}$ , then  $h_k(x)$  is a permutation polynomial over  $\mathbb{F}_q$ .

*Proof.* By Lemma 2.3,  $\sum_{a \in \mathbb{F}_q} h_k(a) = 0$ . Also we have

$$\sum_{a \in \mathbb{F}_q} h_k(a) = h_k(0) + h_k(1) + \sum_{a \in \mathbb{F}_q - \{0,1\}} h_k(a) = 1 + h_k(1) + \sum_{a \in \mathbb{F}_q - \{0,1\}} a$$

$$= 1 + h_k(1) + (-1) = h_k(1).$$

Hence,  $h_k(1) = 0$ . Since  $h_k(0) = 1$ ,  $h_k(x)$  is a permutation polynomial over  $\mathbb{F}_q$ .  $\square$ 

For  $k \in \mathbb{N}_q$  with (k, q-1) = 1, denote by  $k^{-1} \in \mathbb{N}_q$  the multiplicative inverse modulo q-1. For  $k \in \mathbb{N}_q$  with (k+1, q-1) = 1 denote by  $k^*$  the number in  $\mathbb{N}_q$  such that  $(k+1)(k^*+1) \equiv 1 \pmod{q-1}$ . In other words,  $k^* = (k+1)^{-1} - 1 \in \mathbb{N}_q$ .

THEOREM 2.5.  $h_k(x) = 1 + x + \cdots + x^k$  is a permutation polynomial of  $\mathbb{F}_q$  if and only if  $h_{k^*}(x) = 1 + x + \cdots + x^{k^*}$  is a permutation polynomial of  $\mathbb{F}_q$ .

*Proof.* Suppose that  $h_k(x)$  is a permutation polynomial of  $\mathbb{F}_q$ . Then  $k^*$  exists and  $(k^*+1, q-1)=1$ . Thus  $x^{k^*+1}$  is a permutation polynomial of  $\mathbb{F}_q$ . For  $a \neq 0, 1$ ,

$$h_{k^*}(a) = \frac{1 + a^{k^* + 1}}{1 + a} = \frac{1 + a^{k^* + 1}}{1 + a^{(k^* + 1)(k + 1)}} = \frac{1}{h_k(a^{k^* + 1})}.$$

Since  $h_k(x)$  and  $x^{k^*+1}$  permute  $\mathbb{F}_q - \{0, 1\}$ ,  $h_{k^*}(a)$  permutes  $\mathbb{F}_q - \{0, 1\}$ , also. Thus, by Lemma 2.4,  $h_{k^*}(x)$  is a permutation polynomial of  $\mathbb{F}_q$ . The converse does hold by the same way.  $\square$ 

## 3. Orbits of permutation polynomials.

Let  $R_q = \{k \in \mathbb{N}_q \mid (k, q-1) = 1 = (k+1, q-1)\}$ . Define two maps  $\alpha, \beta : R_q \to R_q$  by

$$\alpha(k) = q - 2 - k$$
,  $\beta(k) = (k+1)^{-1} - 1$ .

It is easy to check that  $\alpha$  and  $\beta$  are well-defined and  $\alpha^2 = \beta^2 = 1$ . Let  $\sigma = \alpha\beta$  and  $\tau = \beta\alpha\beta$ , so that

$$\sigma(k) = q - 1 - (k+1)^{-1}$$
, and  $\tau(k) = k^{-1}$ .

Then  $\sigma$  and  $\tau$  satisfy the relations  $\sigma^3 = 1$ ,  $\tau^2 = 1$  and  $\sigma \tau \sigma = \tau$ . Thus the group generated by  $\sigma$  and  $\tau$  is the dihedral group

$$G = D_3 = \{1, \sigma, \sigma^2, \tau, \tau\sigma, \tau\sigma^2\},$$

and G acts on  $R_q$  in an obvious fashion. Since  $\alpha = \tau \sigma$ ,  $\beta = \sigma \tau$ , and  $\tau \sigma$ ,  $\sigma \tau$  generate G, the set of numbers obtained from  $k \in R_q$  by applying  $\alpha$  and  $\beta$  repeatedly is the same as the orbit of k under the action of G. Explicitly, we have

PROPOSITION 3.1. For  $k \in R_q$ , the orbit of k is given by

$$G \cdot k = \{k, q - 1 - (k+1)^{-1}, q - 2 - k^{-1}, k^{-1}, q - 2 - k, (k+1)^{-1} - 1\}.$$

If  $h_k$  is a permutation polynomial, then  $h_{k'}$  is a permutation polynomial for every  $k' \in G \cdot k$ , and if  $G \cdot k$  contains an even number, then  $h_k$  is not a permutation polynomial.  $\square$ 

As an example, the orbit of  $9 \in R_{2^7}$  is  $\{9, 38, 13, 113, 117, 88\}$ , and hence  $h_9$  is not a permutation polynomial over  $\mathbb{F}_{2^7}$ .

It is interesting to note that there are no two consecutive odd k's in  $P_q$  for even n, since one of k, k+1, k+2 and k+3 is divisible by 3 and  $3 \mid 2^n - 1$ . For odd n, besides the three obvious consecutive odds 1,3, and 5 in  $P_q$ , we have the following:

COROLLARY 3.2. Assume n is odd. Then  $2^{\frac{n+1}{2}} - 1$  and  $2^{\frac{n+1}{2}} + 1$  are in  $P_q$ .

*Proof.* Clearly  $k = 2^{(n+1)/2} - 1 \in P_q$ , since  $(\frac{n+1}{2} \ n) = 1$ . By Proposition 3.1,  $k^{-1} = 2^{(n+1)/2} + 1 \in P_q$ .  $\square$ 

An orbit of any  $k \in R_q$  consists of either 1,2,3 or 6 elements. We classify such possibilities.

PROPOSITION 3.3. There is no orbit consisting of 1 element except q=4. There is exactly one orbit consisting of 3 elements, namely  $\{1,\frac{q-2}{2},q-3\}$  for every  $q\neq 4$ . There exist orbits consisting of 2 elements only if  $9 \nmid q-1$  and every prime factor of q-1 is either 3 or congruent to 1 mod 3.

Proof. There are three subgroups  $(\tau)$ ,  $(\tau\sigma)$  and  $(\tau\sigma^2)$  of order 2, and one subgroup  $(\sigma)$  of 3. Let  $k \in R_q$  and  $G_k$  be the stabilizer of k in G. Suppose  $G_k = G$ . Then  $k = k^{-1} = -(k+1)^{-1}$ , so that  $k^2 = 1$  and  $k^2 + k = -1$ . Hence  $4 \equiv 1 \pmod{q-1}$  and thus q = 4. Note that  $R_4 = \{1\}$ . Suppose  $G_k = (\tau)$ . Then  $k = k^{-1}$ , or (k-1)(k+1) = 0, and thus k = 1 since  $(k+1)^{-1}$  exists. Similarly we can show that  $G_k = (\tau\sigma)$  iff  $k = \frac{q-2}{2}$ , and  $G_k = (\tau\sigma^2)$  iff k = q-3. Now  $q-3 = \alpha(1), \frac{q-2}{2} = \beta(1)$  and thus  $\{1, \frac{q-2}{2}, q-3\}$  is an orbit. Finally if  $G_k = (\sigma) = (\sigma^2)$ , then  $k = -(k+1)^{-1}$  or  $(2k+1)^2 = -3$ , and hence  $x^2 \equiv -3 \pmod{q-1}$  is solvable. It is easy to check that  $x^2 \equiv -3$  is solvable modulo 3, but not solvable modulo 9. Let  $p \neq 3$  be a prime factor of q-1. If  $x^2 \equiv -3 \pmod{p}$  is solvable, then  $x^2 \equiv -3 \pmod{p^r}$  is solvable. Furthermore,  $x^2 \equiv -3 \pmod{p}$  is solvable iff  $(\frac{-3}{p}) = 1$  iff  $p \equiv 1 \pmod{3}$ , and hence our claim follows.  $\square$ 

For example, if  $4 \mid n$ , then  $5 \mid q-1$  and if  $6 \mid n$ , then  $9 \mid q-1$ . Thus, as a corollary, there is no orbit consisting of 2 elements if 4 or 6 divides n. Also an orbit containing 2 elements may or may not be in  $P_q$ . For n=9,  $\{81,429\}$  is an orbit not in  $P_q$  but for n=5,  $\{5,25\}$  is an orbit in  $P_q$ .

Now recall that  $P_q$  consists of odd numbers. Thus it is enough to consider

$$R'_{q} = \{k \in R_{q} \mid k \text{ is odd}\}.$$

Even though  $k \in R'_q$ , its orbit can contain even numbers. According to our computation, a large number of orbits of  $k \in R'_q$  contain even numbers. Now  $G \cdot k$  contains only odd numbers iff k is in the set

$$R_q'' = \{k \in R_q \mid k, \, \sigma(k) \text{ and } \sigma^2(k) \text{ are odd}\}$$

The set  $R_q''$  is G-stable. A further reduction to  $P_q$  is possible by the following

PROPOSITION 3.4. Suppose  $m \mid n$ . Let  $q_0 = 2^m$  and let  $r = r_m : R_q \to R_{q_0}, k \mapsto k \pmod{q_0 - 1}$ . Then

- (1)  $r(P_q) \subset P_{q_0}$ .
- (2) the action of G commutes with r, and hence for  $k \in P_q$ , we have  $r(G \cdot k) = G \cdot r(k)$ .

*Proof.* The map r is well defined, since  $q_0 - 1 \mid q - 1$ . Since the coefficients of  $h_k$  are in  $\mathbb{F}_{q_0}$  for any k,  $h_k(\mathbb{F}_{q_0}) \subset \mathbb{F}_{q_0}$ , which shows (1). To prove (2), note that  $kk' \equiv 1 \pmod{q-1}$  implies  $r(k)r(k') \equiv 1 \pmod{q_0-1}$ , and hence r commutes with  $\sigma$  and  $\tau$ .  $\square$ 

If we let

$$R_q''' = \{k \in R_q'' \mid r_m(k) \in P_{2^m} \text{ for any } m \mid n\},$$

then we have a series of G-stable sets  $R_q \supset R_q'' \supset R_q'''$ 

Up to n=29, the set  $P_q$  is known for some time. For n=3 to 16 we list the number of orbits under  $G=D_3$  of the various sets. Here N', N'', N''', N denote the number of orbits generated by  $k \in R'_q$ , that of  $R''_q$ , that of  $R''_q$ , and that of  $P_q$ , respectively for each  $q=2^n$ .

TABLE

| n  | N'            | N'' | N''' | $\overline{N}$ |
|----|---------------|-----|------|----------------|
| 3  | $\frac{2}{2}$ | 1   | 1    | 1              |
| 4  | 2             | 1   | 1    | 1              |
| 5  | 4             | 3   | 3    | 3              |
| 6  | 3             | 1   | 1    | 1              |
| 7  | 16            | 6   | 6    | 5              |
| 8  | 7             | 3   | 3    | 2              |
| 9  | 51            | 13  | 8    | 5              |
| 10 | 39            | 7   | 3    | 2              |
| 11 | 248           | 52  | 52   | 8              |
| 12 | 75            | 13  | 5    | 2              |
| 13 | 1189          | 180 | 180  | 9              |
| 14 | 744           | 114 | 21   | 3              |
| 15 | 3095          | 504 | 113  | 7              |
| 16 | 1675          | 233 | 52   | 4              |

#### References

- 1. W.-S. Chou, Permutation Polynomials over Finite Fields and Combinatorial Applications, Ph.D. Diss., the Pennsylvania State University, 1990.
- R. Lidl and H. Niederreiter, Finite Fields, Encyclopedia Math. Appl., vol. 20, Addison-Wesley, Reading, MA, 1983.
- 3. R. Matthews, Permutation properties of the polynomials  $1 + x + \cdots + x^k$  over a finite field, Proc. Amer. Math. Soc. 120 no. 1 (1994). 47-51.

Kyung Hee Kim Department of Mathematics Yonsei University Kangwondo 220-701, Korea

June Bok Lee Department of Mathematics Yonsei University Seoul 120-749, Korea

Young H Park Department of Mathematics Kangwon National University Chuncheon 200-701, Korea