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PERMUTATION POLYNOMIALS
OF THE TYPE 142+ --- 4 z*

KYUNG HEE KiM*, JUNE Bok LEE* AND YOUNG H PARK

1. Introduction

Let F, denote the finite field of order ¢ = p", p a prime. A polyno-
mial f € Fy[z] is called a permutation polynomial over F, if f induces
a 1-1 map of F; onto itself. When ¢ is even, permutation polyno-
mials of the type hi(z) = 1 + 2 4 --- + z* are useful in the con-
struction of ovals in the projective plane PG(2,F,) and an oval in the
projective plane PG(2,F,) is defined to be a set of ¢ + 2 points of
PG(2,F,) no three of which are collinear [2]. For any f € F,[z], let
A(f) = {(f(c),c,1)|c € Fg} U{(1,0,0),(0,1,0)}. Chou [1] has shown

the followings:

THEOREM 1.1. Let ¢ = 2" withn > 1. Then A(z**') with 1 <
k < q—2isan oval in PG(2,F,) if and only if hy(z) is a permutation
polynomial of F,. O

THEOREM 1.2. Let ¢ = p™, p aprime. If hy(z) =1+ + -+ z*
is a permutation polynomial of Fy, then there is a nonnegative integer
m such that
1) k=mp(p—1)+1 (mod p(q — 1)), with mp(p —1)+1 < g —2

mp(p—1) -1 : :
2) (mp(p—1)+1,g-1)=1= { (TrTALG) g odd,
(m+1,g-1) ifgiseven. O

For g odd, permutation polynomials of the type hx(z) are completely
determined by the following:
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THEOREM 1.3 ([3]). For q odd, hg(z) =1+ + -+ a* is permu-
tation polynomial over F, if and only if k =1 (mod p(¢ — 1)). O

Let ¢ = 2". In this case, Theorem 1.2 is not enough to deter-
mine whether or not hg(z) is a permutation polynomial. Let N, =
{0,1,2,...,9 — 2}. Then Theorem 1.2 shows that we may consider
only those odd & € Ny such that (k,¢ - 1) =(k+1,¢ —1) =1 to find
permutation polynomials of the type hi(z). Let

P, = {k € Ny | hg(x) is a permutation polynomial over F,}.

We will show that there exists an action of the dihedral group Dj of
order 6 on P,. Since Py is difficult to determine, we will look at larger
Dj;-sets, which are easier to determine, and discuss how to get closer
to P, using the action of Dj.

2. Permutation Polynomials of hi(z) when ¢ is even

From now on, we assume that g = 2", n > 2, unless stated otherwise.
There are some classes of permutation polynomials which are easy to
determine.

THEOREM 2.1. Let ¢ = 2" and m < n.
(1) hom_y(x) is a permutation polynomial of Fq if and only if
(rm,n) = 1.
(2) hs(x) is a permutation polynomial of Fy if and only if . is odd.

1 = 27” 1 /.\ 2r" bead
+a?  (1+a) (14

E + ! - 1 + - Hm
Hence, hym_((2) is a permutation polynomial of F, iff (1 4+ )% ! is
-1

Proof. We have hym () =

a permutation polynomial of Fg iff 22" 1 is a perrautation polynomial
of F iff (2™ — 1,2" — 1) = 1iff ’n,n) = 1. This proves (1). To show
(2), let gs(z,a) denote the Dickson polynomial [2]. Then gs(z+1,1) =
Z]L /”21 ,)Z’ .(’;j)(—-l)f(:r + 1)°7% = hg(z) over Fyn. It is well known
that gs(z + 1,1) is a permutation polynomial of Fon iff (5,2*" — 1) =1
[2]. Since (5,227 —~ 1) = 1 iff n is odd, (2) follows. 0O

We now discuss two theoremns, which produce new permutation poly-
nomials from known ones.
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THEOREM 2.2 ([1]). he(z) = 1 4+ z + --- + z¥ is a permutation
polynomial of ¥y if and only if hy_g_¢(z) =1+z+ -+ 2972 % jsa
permutation polynomial of F,. (I

LEMMA 2.3 ([2]). Let ag,ay, - ,a4—1 be elements of F,, where
g = p", p a prime. Then the following two conditions are equivalent:
(1) ag,ay, - ,aqy—1 are distinct;
_ 0 fort=0,1,...,¢—2,
() £t = { ‘
- -1 fort=q-1. O

LEMMA 2.4. Let k € Ng. If hy(z) = 14+ 2+ ---+ z* permutes
Fg — {0,1}, then hi(z) is a permutation polynomial over F,.

Proof. By Lemma 2.3, 3_ 5, hr(a) =0. Also we have
D h(a) =h(0)+he(D)+ DY R(e)=1+h()+ Y a

a€l, a€f—{0,1} a€F,—{0,1}
=14 hi(1) + (—1) = hi(1).

Hence, hg(1) = 0. Since hi(0) = 1, hi(z) is a permutation polynomial

over F,. O

For k € N, with (k,¢g—1) = 1, denote by k= € N, the multiplicative
inverse modulo ¢ — 1. For k € Ny with (k+1,¢ — 1) =1 denote by k*
the number in Ny such that (k4 1)(k* +1) =1 (mod ¢ — 1). In other
words, k* = (k+1)"! — 1 € N,.

THEOREM 2.5. hi(z) = 142+ --+z* is a permutation polynomial
of F, if and only if hg (z) = 142+ - -+z* is a permutation polynomial
of F,.

Proof. Suppose that hi(z) is a permutation polynomial of F,;. Then
k* exists and (k* +1,¢ — 1) = 1. Thus z*¥"*! is a permutation polyno-
mial of Fy. For a # 0,1,

1 +ak'+1 B 1 +ak'+1 3 1
14a = 14k +Dk+1) hi(ak*+1)
Since hi(z) and ¥ *' permute F, — {0, 1}, k- (a) permutes F,— {0, 1},
p 7 q

also. Thus, by Lemma 2.4, hz-(z) is a permutation polynomial of F,.
The converse does hold by the same way. O

hk.(a) =
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3. Orbits of permutation polynomials.

alk)y=¢-1-(k+ 1), and 7(k)= k"

Then o and 7 satisfy the relations o? = 1, 72 = 1 and oreo = 7. Thus

the group generated by o and 7 is the dihedral greup

G = D3 =1{1,0.0% 1,70, 70%},
and G acts on R, in an obvious fashion. Since & = 70, 3 = o7, and ro,
o1 generate G, the set of numbers obtamed from = € R, by applying
a and 4 repeatedly is the same as the orbit of k -inder the action of
G. Explicitly, we have

Prorosirion 3.1, For k € R, the orbit of k 1s given by
G-k={kq-1-(k+1)""g-2- k" k7 qg=2~k (k4 1)~ =1}
If hy is a permutation polynomial, then hy is a permutation polynomial
for every &' ¢ G -k, and if G - k contains an even number, then hy is
not a permutation polynomial. [

As an example, the orbit of 9 € Ry7 1s {9,38,13,113,117,88}, and
hence lig 1s not a permmtation polynomial over Fyr.

It is interesting to note that there are no two consecutive odd k's in
P, for even n, since one of k, k4 1, k + 2 and k + 3 is divisible by 3
and 3| 2" — 1. For odd n, besides the three obvious consecutive odds
1.3, and 5 i P,. we have the following:

: q s : ngs ol

COROLLARY 3.2, Assume n is odd, Then 277 ~ 1 and 277 + 1
are i Iy

Proof. Clearly k = 2"+1D/2 — 1 ¢ P, since (% n) = 1. By Propo-
sition 3.1, k™! = 20t1/2 4 1 e P ]

An orbit of any & € R, consists of either 1,23 or 6 clements. We
classify suels possibilities.
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PROPOSITION 3.3. There is no orbit consisting of 1 element except
g = 4 There is exactly one orbit consisting of 3 elements, namely
{1,452, q — 3} for every ¢ # 4. There exist orbits consisting of 2
elements only if 94 ¢ — 1 and every prime factor of ¢ — 1 is either 3 or
congruent to 1 mod 3.

Proof. There are three subgroups (7), (ro) and (70?) of order 2,
and one subgroup (o) of 3. Let k € R, and Gy be the stabilizer of k
in G. Suppose Gx = G. Then k = k™! = —(k + 1)7!, so that k2 =1
and k2 + k = —1. Hence 4 = 1 (mod g — 1) and thus ¢ = 4. Note that
R4y = {1}. Suppose G = (7). Thenk = k™', or (k—1)(k+1) =0, and
thus k = 1 since (k+1)7! exists. Similarly we can show that Gy = (7o)
iff kb = 2 ande_(Ta )iff k = ¢—3. Now ¢—3 = a(1), 52 = (1)
~and thus {1,435 Z ¢ — 3} is an orbit. Finally if G4 = (o) = (0?),then

k=—(k+1)""' or (2k + 1) = -3, and hence 22 = -3 (mod ¢ — 1) is

solvable. It is easy to check that 2 = —3 is solvable modulo 3, but not
solvable modulo 9. Let p # 3 be a prime factor of ¢ — 1. If :r2 = —
(mod p) is solvable, then 2 = —3 (mod p") is solvable. Furthermore,

z? = -3 (mod p) is solvable iff (-p—) =1iff p=1 (mod 3), and hence

our claim follows. [J

For example, if 4 | n, then 5 | ¢ — 1 and if 6 | n. then 9 | ¢ — 1. Thus,
as a corollary, there is no orbit consisting of 2 elements if 4 or 6 divides
n. Also an orbit containing 2 elements may or may not be in P,. For
n =9, {81,429} is an orbit not in Py but for n = 5, {5,25} is an orbit
in Py.

Now recall that P, consists of odd numbers. Thus it is enough to
consider

R' = {k € R, | k is odd}.
q q

Even though k € Ry, its orbit can contain even numbers. According
to our computation, a large number of orbits of k € R contain even
numbers. Now G - k contains only odd numbers iff k is in the set

R] = {k € Ry | k, o(k) and o?(k) are odd}

The set R} is G-stable. A further reduction to P, is possible by the
following
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PROPOSITION 3.4. Suppose m | n. Let go = 2™ and let r = r,, :

Ry — Ry, k— k (mod g9 — 1). Then
(1) 7‘(Pq)CPqOu
(2) the action of G commutes with r, and hence for k € P,, we

have r(G - k) = G - r(k).

Proof. The map r is well defined, since g — 1 | ¢ — 1. Since the
coefficients of iy are in Fg, for any k, hg(Fy,) C F,,, which shows (1).
To prove (2), note that kk' = 1 {mod ¢ — 1) implies r(k)r(k') = 1
(mod ¢g¢ — 1), and hence r commutes with ¢ and 7. [

If we let
Ry = {k e R | rp(k) € Py for any m | n},

then we have a series of G-stable sets R, D Ry O Ry
Up to n = 29, the set Py is known for some time. For n = 3 to 16 we

N"  N" N denote the number of orbits generated by k € Ry, that of
Ry, that of R)', and that of P, respectively for each ¢ = 2",

TABLE
n N’ NV N N
3 2 1 1 1
4 2 1 1 1
5 4 3 3 3
6 3 1 1 1
7 16 6 6 5
8 7 3 3 2
9 51 13 8 5
10 39 7 3 2
11 248 52 52 8
12 75 13 5 2
13 1189 180 180 9
14 744 1.4 21 3
15 3095 504 113 7
16 1675 233 52 4
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