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A STABILITY RESULT FOR DIRICHLET
PROBLEM OF THE FIRST-ORDER
HAMILTON-JACOBI EQUATIONS

Bum IL HonG

1. Introduction

It is well known that Dirichlet problem of the first-order Hamilton-
Jacobi equations

(H-J) u(z) + H(Vu(z)) = f(z), z€R",

does not have a classical solution even though the Hamiltonian H is
smooth. Therefore it is worth for us to deal with non-smooth solu-
tions if we want a solution of (H-J) which satisfy the equations almost
everywhere. The theory of first-order partial differential equations of
Hamilton-Jacobi type has substantially developed with the introduc-
tion by Crandall and Lions [1] of the class of viscosity solutions, which
turns out to be the correct class of generalized solutions for such type
of equations. They also showed the uniqueness of generalized solutions
that satisfy a so-called“viscosity” condition. The book by Lions [6]
and papers by Jensen and Souganidis [5] and Souganidis {7] provided
a view of the scope of the references to much of the recent literature.
Cauchy problem of Hamilton-Jacobi equations was studied by Crandall
and Lions [2]. Hong [3], [4] showed some regularity results for Cauchy
problem of Hamilton-Jacobi equations.

This paper is organized as follows. In chapter 2, we give the defi-
nition of viscosity solutions of (H-J) in several space dimensions. We
also review both uniqueness and stability of the viscosity solutions.

In chapter 3, we prove the following theorem that is the main result
of this paper.
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THEOREM 1.1. Let bounded and continuous functions u and v be
the viscosity solutions of

u(x) + H(Vu(z): = f(z), e RV,

and

v(e) + Hy(Volzr) =g(z), zeRY,

respectively, where Hy and Hy are Lipschitz continuous. Then
e = vl rny SN = glli=@ny + 1Hy = Hall oo (.

This stability result gives us an error estimate if we approximate the
viscosity solutions of (H-J).

2. Viscosity solutions of (H-J)

The general reference for this section is [6]. To repeat, one cannot in
general find a classical solution of (H-J) on R, while bounded Lipschitz
contimious “generalized solutions” in the almost-eve rywhere sense exist
but are not unique. For example,

u(r)+ ju(r) =1, zeR,

has two solutions that satisfy the equation almost everywhere, namely,
v =1 and
1 e, if ¢ < 2y,
w =

1 - e*o 7 btherwise,

which satisfies the equation classically except on the lines x = 2 for all
xo € R. Moreover, if 4 and v are generalized solutions of (H-J), then
so are min(u, v) and max(w,v). In fact, if the problem is nonlinear,
one can expect infinitely many generalized solutions. Crandall and
Lions [1] resolved the uniqueness problem by intrcducing a notion of
VISCOSIty.



A stability result for Dirichlet problem 33

DEFINITION 2.1. A wiscosity subsolution (respectively, supersolu-

tion) of (H-J) with H € C(R") is a bounded function u € C(R") such
that for every ¢ € C'(RM):

If z¢ is a local maximum point of u — ¢ on RV

(2.1.1)

textthen u(xo) + H(Vé(z9)) < f(ro)-
(respectively,

If zy is a local minimum point of v — ¢ on R,
(2.1.2)

then u(zo) + H(Vé(zo)) > f(xo).)

DEFINITION 2.2. A wiscosity solution of (H-J) is a bounded function
u € C(RV) for which both (2.1.1) and (2.1.2) hold (i.e. u is both a
viscosity subsolution and a viscosity supersolution).

REMARK. If u is a bounded classical solution of (H-J), then it is a
viscosity solution, and if u is a viscosity solution of (H-J), then u(zo)+
H(Vu(xg)) = f(zo) at any point (zo) where u is differentiable.

LEMMA 2.3. Suppose that v and v are viscosity solutions of
o(x) + Ha(Vo(x)) = g(z), =€ RV,

and

w(z) + Hy(Vao(a)) = f(a), @ €RY,
respectively. Then

lw = vl Lo mny < |If = gll oo @)y

Proof. See [1] and {6].

3. Stability of two viscosity solutions

We prove that viscosity solutions are stable under changes in the
nonlinear Hamiltonians H as well as changes in the functions f. To
prove that, we prepare two lemmas.
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LEMMAa 3.1. Let u and w be the viscosity soluzions of
w(z) + Hi(Vul(z) = f(z), zeRY,

and

w(z) + Hy(Vw(z)) = f(z), =€ R,

respectively, where Hy and Hy are Lipschitz continuous. Then
= wll peogmvy < IH = Hal[ ooz ).

Theorem 1.1 follows by combining Lemma 2.3 «nd Lemma 3.1.

LEMMA 3.2. Assume that v and w are in Lemma 3.1. Let y(z)
be a smooth nonnegative function on R such that n(—z) = n(z),
0 < n(z) <1, n90) =1 and nlz) = 0if |z| > 1, and let M =
max{|lu]| s gy, Wl gy} Suppose that ’

o = sup(u(x) —w(zx)) > 0.
]RN

For any € > 0, define
ag. .
U y) = ule) = w(y) + (3M + D)ddr —y),

where f3,(z) is defined on RY by £,(x) = H:\il n(2i). If

(3.2.1) sup |u(x)] and sup |lw(z)] -0 as R— oo,
- lef> & Iz R

then there exists a point (&g, yg) € RN x RN such that ¥(ro,ye) >
Y(x,y) on RN x RV,

Proof. Fix € > 0. If there is a sequence {(z;,1;)}i>1 in RN x RN
such that

UV’(Iisyi) -+ sup ¥,
(3.2.2) aaup

then (.r;,y;) remains bounded by the following arguments.
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First,
sup Y > u(zr) — wiz)+ (3M + )ﬂf(t T)
]RN
=u(z)—w(:1:)+3M+§ for all z € RY.
Therefore,

sup Y > sup(u(:r) - w(z)) +3M +2
RN xRN 2

(3.2.3) =0+3M + 5

=3M + ga.

If Be(x —y) =0, then

b(z,y) = u(z) — w(y)
< 2M.

Hence, (3.2.2) implies that 8 (z;—y;) > 0 for large 7, whence |z; —y;| <
e. If |z;] — oo and |y;| — oo, then

Im sup ¥(zi,y:;) <3M + g— by 3.2.1.

P OO RN RN

This contradicts (3.2.2) and (3.2.3). Therefore, {(z:,y:)}i>1 is a boun-
ded sequence and there is a convergent subsequence of {(zs,yi)}ix1-
Let (xo,y0) be the limit of the above subsequence. This completes the
proof. O

Proof of Lemma 3.1. We will prove that o, defined in Lemma 3.2,
satisfies
g S HH] - H2||Loo(mN).

By symmetry in u and w, we see that this implies

lu — wl|poo(mvy < ||Hy — Hal|poo (m)-
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We first assume that

(A) sup |u(z)] and  sup |w(z)| -0 as R — .
lr|>R l2|> 12

If o0 = 0, then we are done. Otherwise, by Lemma 3.2, for any € > 0
we can find a point (¢, y0) € RY « RV such that

u{r) — (uv(y(,) — (M + —;—r-)ﬂ((.r - z/u)>

attains a local maximum at (z¢), whence
o , \
(B11)  uleo) + Hi(=(3M 4 S)Vapi(e0—10)) < flro)

Similarly
—w(y) ~ (~'u.(:r0) {(3M + — )H (rg — y))

attains local maximum at y = yy and therefore
w(y) - (‘u( o)+ (3M + = )3 {ag — 1 ))

attains local minimnm at y = yo By the definition of the viscosity
solution,

T -
w(yo) + Ha ((3M + 5)Vyi (a0 = yo)) = flyo)
Sill('() v.rﬂf('r - !/())!r:r(, = *vyﬁf‘:-rﬂ - ’.‘/)ly:ym

(312)  wiy) + Ho(~(3M 4 2)¥,8x0 — 10)) = flyo)

Lo

Combining (3.1.1) and (3.1.2) gives
(3.1.3)

ulzg) — w(yo) < Ha(~(3M + 219, B (20 — y0))

- H, ((3M + 2[;)%,6((% ~ o)+ f (o)~ flyo)
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For all z € RV,

u(x) — w(z) + 3M + % = ¢(z, z)
(3.1.4) < ¥(z0,Y0)
< u(zo) — wlyo) +3M + 92-

Therefore, by 3.1.3 and 3.1.4,

o <Hy(~(3M + 2)V.B(zo — yo)) — Ha ((3M + Z)V,Bc(z0 = v0)
+ f(zo) — f(vo)
<IIH: (-(3M + 2)9.B(z0 = o))

— Hao (=M + 2)V.Ad(z0 — 40) )l qam) + w5(e)

where w¢(e) is the modulus of continuity of f. Since € is arbitrary,
2 S ”H] - Hz”Loo(mN).

We now drop the assumption (A). For R > 0, let p(z) be a smooth
function having support in the ball B(0, R4+1) = {z € RV | |z| < R+1}
such that p(z) = 1 on |z| £ R. Suppose that u?(z) = p(z)u(z) and
w?(z) = p(x)w(z). Then the corresponding viscosity solutions u®(r)
and w?(x) have the following properties:

u?(z) = u(z) on |z| < R—|Hijip and
wf(z) =w(z) on |z| <R - |Ha|Lip;
see [6]. Let L = max{|H1|Lip, |H2|Lip}. Then
L lu(z) — w(z)| = e luf(z) — w(z)]
<||Hy — H2||g-(g~) by the previous argument.

Hence, letting R — oo, we have

e — wll o mry < | Hy — Hal poo mr)y.-
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This completes the proof. O

of

We now prove Theorem 1.1.

Proof of Theorem 1.1. In addition to the equation in the statement
Theorem 1.1, consider

w(r) + Hy(Vw(z)) = f(z), € RN,

Then, by Lemma 3.1 and Lemma 2.3,

le = vl oo mry <l = wl|j o mvy + fw = | o )
< || Hy = Hollpeomny + 1f - g~ mn)y.

This completes the proof. [
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