Journal of the Korean Mathematical Society (대한수학회지)
- Volume 33 Issue 1
- /
- Pages.15-23
- /
- 1996
- /
- 0304-9914(pISSN)
- /
- 2234-3008(eISSN)
CANCELLATION OF LOCAL SPHERES WITH RESPECT TO WEDGE AND CARTESIAN PRODUCT
- Hans Scheerer (Mathematisches Institut Freie Universitat Berlin ) ;
- Lee, Hee-Jin (Department of Mathematics Education CHonbuk National University)
- Published : 1996.02.01
Abstract
Let C be a category of (pointed) spaces. For $X, Y \in C$ we denote the wedge (or one point union) by $X \vee Y$ and the cartesian product by $X \times Y$. Let $Z \in C$; we say that Z cancels with respect to wedge (resp. cartesian product) and C, if for all $X, Y \in C$ the existence of a homotopy equivalence $X \vee Z \to Y \vee Z$ implies the existence of a homotopy equivalence $X \to Y$ (resp. for cartesian product). If this does not hold, we say that there is a non-cancellation phenomenon involving Z (and C).
Keywords
- Cancellation of local spheres;
- wedge cancellation of Moor space;
- product cancellation of Eilenberg-Maclane space