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0. Introduction

One of the earliest results about local connectivity of hyper-
space is due to Wojdyslawski. In 1939, he proved that each of
2% and C(X) is locally connected if and only if X is locally con-
nected [16]. In 1970’s Goodykoontz gave characterizations of lo-
cal connectedness (connectedness im kleinen) and locally arcwise
connectedness of 2% only at singleton set {z} € 2X [5, 6, 7]. In
particular he proved that C(X) is locally connected at {z} if and
only if C(X) is connected im kleien at {z} if and only if X is
connected im kleinen at z.

In this paper, further local properties are obtained and a rela-
tionship between the sets of non-locally connected points of the
space X and its hyperspace is given.

In section 1, we state a notion of property k which provides a
certain structure of local property and prove that a metric con-
tinuum X has property k if and only if the projection U of each
open set U of C(X) is open in X.

In section 2, we use the Hausdorff metric topology to shorten
the proofs of Goodykoontz’s results in [5, 6] and add several results
of our own on the local connectivities of the hyperspace C(X).

In section 3, we give a characterization for a point A € C(X)
at which C(X) is not connected im kleinen. Then we show a
relationship between the set N of all points at which X is not

Received December 11. 1995.

113



114 Joo Ran Moon*, Kul Hur*, and Choon Jai Rhee**

connected im kleinen and the set A of all points at which C(X)
is not connected im kleinen.

1. Preliminary

Throughout the paper, X will denote a compact metric con-
tinuum with a metric d. By a continuum we mean a compact and
connected space. Let 2% be the collection of all nonempty closed
subsets of X and let C(X) be the collection of all subcontinua of
X.

Let A € 2% and € > 0. Let N(e, A) be the set of all z € X
such that d(z,a) < € for some a € A. N(e, A) is called the
e—neighborhood of A. For convenience, we write N (e, {z}) = N(e, z).

For A,B € 2% let H{A,B) =inf{e >0: A C N(¢,B) and B C

N(e,A)}. Then H is called the Hausdorff metric for 2%, and we
call (2%,H) and (C(X),H) the hyperspaces of closed sets and

subcontinua respectively. Also the Hausdorff metric for 22" g
denoted by H?2.

There are two special continuous maps:
(i) [11, p.513.] 2* : 2X¥ — 22" is a map defined by 2*(4) =
24V Ae2X.

(i) [11, p.100.] The union map o : 22° — 2X is defined by o(A)
)

UA, VA € 92" | Furthermore o is nonexpansive, i.e, H(c.A,oB
H?(A,B) for A,B € 2",

<

In [9], Kelly introduced a notion of property 3.2, which is now
called property k. The notion has been very useful in hyperspace
theory. In this section we give a necessary and sufficient condition
for a metric continuum to have property k.

LEMMA 1.1. Let A,B € 2X and € > 0. Then H(A,B) < € if
and only if A C N(e,B) and B C N(e, A).

LEMMA 1.2.[11, P.34]. IfA, B,C € 2% such that C C B, then
H(A,AUC)< H(A,B).
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LEMMA 1.3.[13]. If A,B,C,D € 2%, then
H(AU B,CUD)<max{H(A,C),H(B,D)}.

Let D be a subset of X and let C(D) = {A € C(X): AC D}
and 2P = {A €2X : AC D}.

LEMMA 1.4. (a) If U is a connected subset of 2% such that
UNC(X) # 0, then UU is connected. In particular, if U is a
connected subset of C(X), then UU is connected.

(b) A subset D of X is connected if and only if C(D) is connected.
(b') A subset D of X is connected if and only if 2D is connected.
(c) f U is an open subset of X, then C(U) is open in C(X) and
2U is open in 2%.

(c') F is a closed subset of X if and only if C(F) is closed in C(X),
and F is closed in X if and only if 2F is closed in 2X.

(d) If P is a component of an open subset U of X, then C(P) is
a component of C(U) and 2% is a component of 2V.

LEMMA 1.5. Let x € X, and ¢ > 0. Let U = N(e,z) be
the e—neighborhood of z in X and U* = C(U). If U be the
e—neighborhood of {z} in C(X), then U* =U and U = UU.

REMARK. (i) In general, C(UU) # U. For example, take any

nondegenerate metric continuum X. Let U be a neighborhood of
X in C(X) which does not intersect X* = {{z} : ¢ € X }. Then
UU = X and C(X) £ U.
(ii) If U is an open set in C(X), then UU may not be open in X.
To see it, we define the space Y in the plane as follows : Let a =
(0,1), bp, = (1/n,1/n), ea = (141/n,0), dn = (1/n,~1/n), en =
(1/n,—1/2), e = (0,-1/2), p = (1,0) and put Y1 = ae Upg U
US2 1 (abn U bncn U cndn U dpey), let Yy be the image of Yy under
the symmetry with respect to the origin ¢ = (0,0) and finally
put Y =Y, UY,. Let U = N(4,q9), andlet V = {B € C(X):
H(B,le,e']) < 3}. Weletid = C(U)UV. ThenU is a neighborhood
of {q}. Since B C [a,a'] foreach B € V, Ul = UU{(0,y) € [a,a']:
=3 <y < 2}, which is not open in X.
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DEFINITION 1.6. Let X be a metric continuum. For z € X,
let T(z) = {A € C(X):z € A}. T(z) is called the total fiber of
X at z. We say that a point a € X is a k—point of X provided
that for each ¢ > 0 thereisa 6 > 0 if A € T(a) and b is in the
é—neighborhood of a, then there is an element B € T'(b) such that
H(A, B) < e. If each point of X is a k—point, then we say that X
has property k.

LEMMA 1.7. Let X be a metric continuum. If U is an open
set in C(X), then each k—point of X lying in UU is an interior
point. On the other hand, if a point ¢ € X has the property that
whenever U is an open set in C(X) with UU containing x UU is
open in X, then z i1s a k—point of X.

THEOREM 1.8. A metric continuum X has property k if and
only if UU is open in X for every open set U in C(X).

Proof. Suppose X has property k. Let U be an open set in
C(X). Then each point of UY is an interior point by Lemma 1.7.
Hence U is open in X.

Conversely we suppose that UU is open in X for each open
set U in C(X). Let z € X. We show that z is a k—point of X.
Let A € C(X) such that ¢ € A, and let € > 0. Let O be the
e—neighborhood of 4 in C(X). Let U = UO. Since U is open in
X by assumption, there is a 6 > 0 such that the é§—neighborhood
V of z is contained in U. Let y € V. Then there is an element
B € O such that y € B. Thus z is a k~point of X and hence X
has property k. 0O

THEOREM 1.9. If the singleton set {z} is a k—point of C(X),
then z is a k—point of X.

Proof. Let A € T(z), where T(z) is the total fiber of X at
z. Let ¢ > 0. Then {z} € C(A4) and C(A) is a subcontinuum of
C(X). Since {z} is a k—point of C(X), there exists 6 > 0 such
that for each B € V, where V is the §—neighborhood of {z} in
C(X), there is an element £ € 7(B), where T (B) is the total fiber
of C(X) at B, such that H?(£,C(A)) < e. Since UV = N(§, ),
where N(6,z) is the é—neighborhood of z in X by Lemma 1.5,
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A = UC(A),U€ = D is a subcontinuum of X, and H(D,A) =
H(UE,UC(A)) < H*(E,C(A)) < e. Hence z is a k-point of X. [

2. Connectedness im kleinen and local connectedness
in C(X)

In this section, we include several results of Goodykoontz [5,6)
with different proofs and added several results of our own.

DEFINITIONS 2.1. Let z € X. The space X is said to be con-
nected (arcwise connected) im kleinen at z if for each neighbor-
hood U of z, there is a neighborhood V of z lying in U such that
if y € V then there is a connected (arcwise connected) subset
of U containing both z and y. X is locally connected(locally arc-
wise connected) at z if for each neighborhood U of z, there is a
connected (arcwise connected) neighborhood V of x lying in U.

LEMMA 2.2. If X is connected im kleinen at z, then z is a
k—point of X.

LEMMA 2.3. Let X be a metric continuum. Let ¢ > 0,A €
C(X) and let O be the e—~neighborhood of A in C(X). Suppose
B € O (or B€ O )such that ANB # 0. Then A and B can be

connected by an arc in O (orin O ).

THEOREM 2.4.{1]. Let A € C(X). Suppose A contains a point
z at which X is connected im kleinen. Then C(X) is arcwise
connected im kleinen at A.

Proof. Let € > 0. Let O,(A) be the e—neighborhood of A. Then
there is § > 0 such that N(6,z) C N(3,z) such that if y €
N(8,z) then z and y are in a connected subset C of N(%,z). Let
B € Os(A). Then BN N(8,z) # 0. Let C be a connected subset
of N(£,z) containing = and a point y € BN N(6,z). Then the
subcontinuum A U B U C is contained in N(%,A). Hence there
is an order arc o in Og(A) from A to AUBU C. Since C C
N(%£,B), AUBUC C N(%,B)sothat AUBUC € O<(B). Hence by
Lemma 2.3 we have an order arc § in O¢(B) from B to AUBUC.
Since O¢(B) C O(A), the connected set a U 8 C O(A). O
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COROLLARY 2.5. If A € C(X) contains a point at which X is
connected im kleinen, then A is a k—point of C(X).

Proof. Apply Theorem 2.4 and Lemma 2.2.

CoOROLLARY 2.6.[5]. X is connected im kleinen at z if and
only if C(X) is connected im kleinen at {z}.

Proof. If X is connected im kleinen at z then C(X') is connected
im kleinen at {z} by Theorem 2.4.

Suppose C(X) is connected im kleinen at {x}. Let U be a neigh-
borhood of z in X. Let U* = C(U). Then U* is a neighborhood
of {z} in C(X). So there is an e—neighborhood V of {z} in C(X)
contained in U* such that if B € V then there is a connected
subset C of U* containing both {z} and B. Let 0 < § < ¢, and
let W be the é—neighborhood of z in X such that W C U. Let
y € W, and let C be a connected subset of U* containing both {z}
and {y}. Then C = UC is connected subset of U containing both
zandy. [J

COROLLARY 2.6.1.[5]. IfX is locally connected at ¢ € X, then
C(X) is locally connected at {z}.

Proof. Suppose X is locally connected at z, and let f be an € -
neighborhood of {z} in C(X). Then U = UU is an e—neighborhood
of z by Lemma 1.5. Let V be a connected neighborhood of z con-
tained in U. Then C(U) is a connected neighborhood of {z} in
C(X) contained in U.

COROLLARY 2.6.2.[5]. C(X) is locally connected at {z} if and
only if X is connected im kleinen at z.

Proof. Let € > 0 and U = N(e,z). Then U = C(U) is an
e—neighborhood of {z} in C(X). Since C(X) is locally connected
at {z}, there is a connected neighborhood V of {z}. Let 0 <
§ < € such that the §—neighborhood W of {r} is contained in V.
Then W = N(6,2) = UW by Lemma 1.5. Since UV is connected
by Lemma 1.4 and is contained in U{ = U and W C UV, X 1s
connected im kleinen at z.

Now suppose X is connected im kleinen at z. Then 2% is
connected im kleinen at {z} by [5, Corollary 1] and hence C(X)
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is locally arcwise connected at {z} by [6, Theorem 1]. This implies
that C(X) is locally connected at {z}. O

COROLLARY 2.6.3. If X is locally arcwise connected at z € X,
then C(X) is locally arcwise connected at {z}.

Proof. Let U be an e—neighborhood of {z} in C(X) and U =
UU. Let V be a arcwise connected neighborhood of z in X con-
tained in U. Let V= C(V) and B € V. Let y € B and C be an
arc in V joining z and y. Then there are order arcs o in V from
{z} to BUC and 8 from B to BUC in V. So that there exists
an arc in V joining {z} to B. O

REMARK. The converse of Corollary 2.6.3. is not true : there is
a continuum Y which is locally connected but not locally arcwise
connected at a point z and C(X) is locally arcwise connected at
{z}. Let Y, be the closure in the plane of the set {(u,v+4n):v =
sin (1) for some 0 < u < 1}, and M = {(0,v) : v > —1}. Let ¥
be the one-point compactification of Us>,Y, U M. Then one sees
that Y is locally connected but not locally arcwise connected at
0o. Also C(Y) is locally arcwise connected at co.

COROLLARY 2.6.4. If X is arcwise connected im kleinen at z,
then C(X) is arcwise connected im kleinen at {z}.

We give a different proof for the next theorem.

THEOREM 2.7.[5]. Let A € C(X). K, for each open set U in
X containing A, the component of U containing A contains A in
its interior, then C(X) is arcwise connected im kleinen at A.

Proof. Let € > 0. Let U be the e—neighborhood of A in C(X).
Let Cy be the component of N(£, A) containing A in its interior.
Let 0 < 6 < £ such that the é—neighborhood V of a point a € A is
contained in Int(Cy). Let V be the §—neighborhood of 4 in C(X)
and B € V. Then H(A, B) < é implies that BNV # 0 and B C
N(%,A). Hence B C Cy. Furthermore, since AU B C Cy, there
are two order arcs a and 3 in C(X ) from A and B respectively to
Co. Clearly if D € a U then D C N(5,4) C N(¢,A). f D € a
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then A C D C N(£,D). So that H(A,D) < e. If D € 8 then
AC N(6,B)and B C Dimply AC N(£,D). Hence H(A4,D) < e.
Therefore a U 8 C U and there is an arc in o U 8 between A and
B. O

The following is a generalization of Theorem 2.7.

THEOREM 2.7.1. Let A € C(X). If, for each open set U in X
containing A, the component C of U has nonempty interior such
that Int(C)N A # 0, then C(X) is arcwise connected im kleinen
at A.

Proof. Let U be an e—neighborhood of A in C(X). Let C be
the component of N(§, A) which contains A. Let a € AN Int(C).
Then there is 0 < § < € such that the §—neighborhood V of ¢ in
X is contained in Int(C). Let V be the é—neighborhood of 4 in
C(X). Let B € V. Since H(B,A) < §, BNC # B so that B C C.
And C C N(%,A). Hence, there are order arcs a from 4 to C
and S from B to C in U. Therefore C(X) is arcwise connected im
kleinen. [J

COROLLARY 2.7.2. Let A € C(X). If, for each open set U of X
containing A, there exists a connected open set V of X containing
A such that V C U, then C(X) is arcwise connected im kleinen
at A.

Proof. If C is the component of U, then V C C. Hence the
conclusion follows from Theorem 2.7.1. [J

COROLLARY 2.8. If C(X) is locally connected at A € C(X),

then it is arcwise connected im kleinen at A.

Proof. Let € > 0 and let U be the e—neighborhood of A in
C(X). Let V be a connected neighborhood of A whose closure
is contained in the §—neighborhood of A. Let C = UVY. Then
C € C(X). Since H(B, A) < & for each B € V,C C N(¢, A). Also
A C N(e,C) so that H(C, A) < e. Now we have an order arc a in
U from A to C, another one 8 in U from B to C for each B € V.
Hence C(X) is arcwise connected im kleinen. (]
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COROLLARY 2.9.[5]. C(X) is locally arcwise connected at {z}
if and only if C(X) is connected im kleinen at {z}.

Proof. Locally arcwise connectedness implies connected im klei-
nen. For the converse, we give a slightly different proof : Let ¢ > 0.
Let U be the e—-neighborhood of {z} in C(X). Let 0 < 6 < € so
that the closure in C(X) of the é—neighborhood V is contained in
U. Since C(X) is connected im kleinen at {z}, thereis 0 <1 < 6
such that the 7—neighborhood W of {z} is contained in the com-
ponent C of V. Let U = N(¢,z),V = N(é,z), and W = N(r,z).
Let U* = C(U),V* = C(V) and W* = C(W). Then by Lemma
1.5, U* =U and V* =V and W* = W. Let C be the closurein X
of UC. Then C is a connected subset of V and H({z},C) < 8. Let
N={AeC(X):WNA#0and ACU}. Then{z},C e N CU.
We show first that A" is open. Let B € N. Since B C U, there
is 6; > 0 such that N(é;,B) C U. Let y € W N B. Then there
is 63 > 0 such that the 6;—neighborhood V, of y is contained in
W. We let m = min{é;, 82,7} and let O, be the 7—neighborhood
of B in C(X). Let B' € O,. Then H(B,B') < n implies that
B'NW # @ and B' C N(m,B) C N(61,B) C U. So that B' € V.
Hence O, C N. Now we show that A is arcwise connected. Let
B;eN,i=1,2.Then CNB; # @ foreachiand CUB,UB, C U
that C U B; U By € N. Let a; be order arc in C(X) from B;
to C U By UB, for i = 1,2. It is easy to see that c US C N.
Hence there is an arc in N between B; and B,. This completes
the proof. [

3. Decomposition of set of points of non-connected im
kleinen

Let X be a metric continuum. Let N be the set of all z € X at
which X is not connected im kleinen, and let A be the set of all
A € C(X) at which C(X) is not connected im kleinen, let K be
the set of all A € C(X) at which C(X) is connected im kleinen,
and finally let £ be the set of all A € C(N) at which C(X) is
connected im kleinen. We may note here that if N # @ then each
of the components of N is nondegenerate {12,5.13]. Let us note
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that C(X) =N UK and £ C XK.

In this section, we give a necessary and sufficient condition for
which C(X) is not connected im kleinen (Theorem3.3). Then we
show that there is a relation between N and V.

THEOREM 3.1.[16]. Let X be a metric continuum. The fol-
lowings are equivalent :
(1) X is locally connected. (2) N = 0. (3) C(X) is locally con-
nected. (4) N = 0.

Proof. If a continuum X is connected im kleinen at each of its
points, then it is locally connected.
(1) = (2) : Let A € C(X) and let U be an open set in X
containing A. Then by local connectedness of X, the component
of U containing A is open. Hence by Theorem 2.7 C(X) is arcwise
connected im kleinen at A. Therefore C(X) is locally connected,
ie, N =0.
(2) = (3): Obvious. (3) = (4): N#£@=N#0= C(X)
is not locally connected. (4) = (1) : Obviéus. O

PROPOSITION 3.2. Suppose C(X) is not connected im kleinen
at A€ C(X) (ie, A€ C(X)\K ). Then AC N.If A€ N then
A€ C(N).

Proof. The first part is a consequence of Theorem 2.4. If 4 € N
then there is a sequence {A,} in A which converges to A. Hence
ACN. O

THEOREM 3.3. C(X) is not connected im kleinen at A € C(X)
ifand only if (1) A € C(N) and (2) there is an open set U contain-
ing A having a sequence {C, } of components and a sequence {A,}
of subcontinua of X with A, C C, for each n which converges to
A.

Proof. Suppose C(X) is not connected im kleinen at A. Then
by Proposition 3.2, A € C(N), and there exists an e—neighborhood
U of Ain C(X) and a sequences {C,} of distinct components of
U which converges to a limit continuum C which contains A [15,
Theorem 12.1, p.18], i.e., LtC,, = C. Therefore there is a sequence
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{Anr} of subcontinua of X, A, € C,, such that lim A, = A. Let p
be a positive integer such that H(A,, A) < {5 for all n > p and
U= N(5,A). Then A, C U for all n > p. Let C be the closure of
the component C' of U containing A4, and for each positive integer
n > p let C,, be the closure of the component C,, of U containing
An. We claim that CN A, = @ foreach n > pand 4, N Ay = 0
for m # n and n,m > p. First we note that H(C,A) < £
and H(C,,A) < § for each n > p. Hence H(C,,Cr) <
for n,m > p. Now suppose that C N A, # @ for some n > p.
Then, since A, C N(55,A) implies A, N (C\C) =0, A, NC # 0.
Hence A, ¢ C C C. Let o be an order arc in C(X) from A,
to C and let B € a. Then, since A C B C C C N(§,A) and
ACN(§,B),H(B,A) < § < ¢. Hence B € U. Thus a is an or-
der arc in U from A, to C. There is also an order arc in I from
A to C by Lemma 2.3. This means that A and A, are in the
same component of I which contradicts the choice of A,,. Now
we show that C, N Cp = @ for m # n. Suppose C, N Cp # 0.
Then C', U C,, is a subcontinuum of X and H(C, U Cp,, A) =
H(CoUCn,AUA)< H(Cyn,A)+ H(Cpn, A) < ¥ by Lemma 1.3
so that C, UCr, € U. Let a be an order arc in C(X) from 4, to
C,UC,, and B € o. Then H(B, A) < 295 so that B € U. Hence
o is an order arc in Y. Similarly, there is an order arc in U from
A, to C,UC,,. Thus A, and A,, are in the same component of
U, which contradicts the choice of A, and A,,. So we must have
C.NC,, = 0. Since A, and A,, are contained in C, and Cp,
respectively, 4, N A,, = §.

For the converse, we have C(U) is open in C(X) and {C(C,)}
is a sequence of distinct components of C(U) by Lemma 1.4. If
V is any é~neighborhood of A contained in C(U), then there is
a positive integer p such that A, € V for all n > p. This means
that there is no connected subset of C(U) containing both A and
A, for n > p. Hence C(X) is not connected im kleinen at A. O

COROLLARY 3.4. If N # 0, then C(N) = NUL and LNN = 0.

Proof. If z € N then {z} ¢ K by Corollary 2.6. Hence {z} €
N. If A is a nondegenerate subcontinuum contained in N, then

©[Ro
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either Ac LorAeN. O

COROLLARY 3.5. Let Ny be a component of N. Then UNy C

Ny, where Ny is a component of N.

Proof. Since Ny is connected and each elememt of it is con-

tained in a component of N, and UN is connected by Lemma
1.1, UNf must be contained in a component of N. O

10.
11.
12.
13.
14.
15.

16.
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