CONNECTEDNESS IM KLEINEN AND LOCAL CONNECTEDNESS IN C(X)

JOO RAN MOON*, KUL HUR*, AND CHOON JAI RHEE**

* Dept. of Mathematics, Wonkwang University, Iksan 570-749, Korea.

** Dept. of Mathematics, Wayne State University,

Detroit, Michigan 48202, U.S.A.

0. Introduction

One of the earliest results about local connectivity of hyperspace is due to Wojdyslawski. In 1939, he proved that each of 2^X and C(X) is locally connected if and only if X is locally connected [16]. In 1970's Goodykoontz gave characterizations of local connectedness (connectedness im kleinen) and locally arcwise connectedness of 2^X only at singleton set $\{x\} \in 2^X$ [5, 6, 7]. In particular he proved that C(X) is locally connected at $\{x\}$ if and only if C(X) is connected im kleinen at $\{x\}$ if and only if X is connected im kleinen at $\{x\}$

In this paper, further local properties are obtained and a relationship between the sets of non-locally connected points of the space X and its hyperspace is given.

In section 1, we state a notion of property k which provides a certain structure of local property and prove that a metric continuum X has property k if and only if the projection $\cup \mathcal{U}$ of each open set \mathcal{U} of C(X) is open in X.

In section 2, we use the Hausdorff metric topology to shorten the proofs of Goodykoontz's results in [5, 6] and add several results of our own on the local connectivities of the hyperspace C(X).

In section 3, we give a characterization for a point $A \in C(X)$ at which C(X) is not connected im kleinen. Then we show a relationship between the set N of all points at which X is not

Received December 11, 1995.

connected im kleinen and the set \mathcal{N} of all points at which C(X) is not connected im kleinen.

1. Preliminary

Throughout the paper, X will denote a compact metric continuum with a metric d. By a continuum we mean a compact and connected space. Let 2^X be the collection of all nonempty closed subsets of X and let C(X) be the collection of all subcontinua of X.

Let $A \in 2^X$ and $\epsilon > 0$. Let $N(\epsilon, A)$ be the set of all $x \in X$ such that $d(x, a) < \epsilon$ for some $a \in A$. $N(\epsilon, A)$ is called the ϵ -neighborhood of A. For convenience, we write $N(\epsilon, \{x\}) = N(\epsilon, x)$.

For $A, B \in 2^X$, let $H(A, B) = \inf\{\epsilon > 0 : A \subset N(\epsilon, B) \text{ and } B \subset N(\epsilon, A)\}$. Then H is called the *Hausdorff metric* for 2^X , and we call $(2^X, H)$ and (C(X), H) the *hyperspaces* of closed sets and subcontinua respectively. Also the Hausdorff metric for 2^{2^X} is denoted by H^2 .

There are two special continuous maps:

- (i) [11, p.513.] $2^*: 2^X \to 2^{2^X}$ is a map defined by $2^*(A) = 2^A$, $\forall A \in 2^X$.
- (ii) [11, p.100.] The union map $\sigma: 2^{2^X} \to 2^X$ is defined by $\sigma(\mathcal{A}) = \cup \mathcal{A}, \ \forall \mathcal{A} \in 2^{2^X}$. Furthermore σ is nonexpansive, i.e, $H(\sigma \mathcal{A}, \sigma \mathcal{B}) \leq H^2(\mathcal{A}, \mathcal{B})$ for $\mathcal{A}, \mathcal{B} \in 2^{2^X}$.
- In [9], Kelly introduced a notion of property 3.2, which is now called property k. The notion has been very useful in hyperspace theory. In this section we give a necessary and sufficient condition for a metric continuum to have property k.
- LEMMA 1.1. Let $A, B \in 2^X$ and $\epsilon > 0$. Then $H(A, B) < \epsilon$ if and only if $A \subset N(\epsilon, B)$ and $B \subset N(\epsilon, A)$.
- LEMMA 1.2.[11, P.34]. If $A, B, C \in 2^X$ such that $C \subset B$, then $H(A, A \cup C) \leq H(A, B)$.

LEMMA 1.3.[13]. If $A, B, C, D \in 2^X$, then $H(A \cup B, C \cup D) \leq \max\{H(A, C), H(B, D)\}.$

Let D be a subset of X and let $C(D) = \{A \in C(X) : A \subset D\}$ and $2^D = \{A \in 2^X : A \subset D\}$.

- LEMMA 1.4. (a) If \mathcal{U} is a connected subset of 2^X such that $\mathcal{U} \cap C(X) \neq \emptyset$, then $\cup \mathcal{U}$ is connected. In particular, if \mathcal{U} is a connected subset of C(X), then $\cup \mathcal{U}$ is connected.
- (b) A subset D of X is connected if and only if C(D) is connected.
- (b') A subset D of X is connected if and only if 2^D is connected.
- (c) If U is an open subset of X, then C(U) is open in C(X) and 2^U is open in 2^X .
- (c') F is a closed subset of X if and only if C(F) is closed in C(X), and F is closed in X if and only if 2^F is closed in 2^X .
- (d) If P is a component of an open subset U of X, then C(P) is a component of C(U) and 2^P is a component of 2^U .
- LEMMA 1.5. Let $x \in X$, and $\epsilon > 0$. Let $U = N(\epsilon, x)$ be the ϵ -neighborhood of x in X and $U^* = C(U)$. If \mathcal{U} be the ϵ -neighborhood of $\{x\}$ in C(X), then $U^* = \mathcal{U}$ and $U = \cup \mathcal{U}$.
- REMARK. (i) In general, $C(\cup \mathcal{U}) \neq \mathcal{U}$. For example, take any nondegenerate metric continuum X. Let \mathcal{U} be a neighborhood of X in C(X) which does not intersect $X^* = \{\{x\} : x \in X\}$. Then $\cup \mathcal{U} = X$ and $C(X) \neq \mathcal{U}$.
- (ii) If \mathcal{U} is an open set in C(X), then $\cup \mathcal{U}$ may not be open in X. To see it, we define the space Y in the plane as follows: Let $a=(0,1),\ b_n=(1/n,1/n),\ c_n=(1+1/n,0),\ d_n=(1/n,-1/n),\ e_n=(1/n,-1/2),\ e=(0,-1/2),\ p=(1,0)$ and put $Y_1=ae\cup pq\cup\bigcup_{n=1}^{\infty}(ab_n\cup b_nc_n\cup c_nd_n\cup d_ne_n),$ let Y_2 be the image of Y_1 under the symmetry with respect to the origin q=(0,0) and finally put $Y=Y_1\cup Y_2$. Let $U=N(\frac{1}{4},q),$ and let $\mathcal{V}=\{B\in C(X):H(B,[e,e'])<\frac{1}{2}\}.$ We let $\mathcal{U}=C(\mathcal{U})\cup\mathcal{V}.$ Then \mathcal{U} is a neighborhood of $\{q\}.$ Since $B\subset [a,a']$ for each $B\in\mathcal{V},\cup\mathcal{U}=U\cup\{(0,y)\in[a,a']:\frac{-3}{4}< y<\frac{3}{4}\},$ which is not open in X.

DEFINITION 1.6. Let X be a metric continuum. For $x \in X$, let $T(x) = \{A \in C(X) : x \in A\}$. T(x) is called the total fiber of X at x. We say that a point $a \in X$ is a k-point of X provided that for each $\epsilon > 0$ there is a $\delta > 0$ if $A \in T(a)$ and b is in the δ -neighborhood of a, then there is an element $B \in T(b)$ such that $H(A,B) < \epsilon$. If each point of X is a k-point, then we say that X has property k.

LEMMA 1.7. Let X be a metric continuum. If \mathcal{U} is an open set in C(X), then each k-point of X lying in $\cup \mathcal{U}$ is an interior point. On the other hand, if a point $x \in X$ has the property that whenever \mathcal{U} is an open set in C(X) with $\cup \mathcal{U}$ containing $x \cup \mathcal{U}$ is open in X, then x is a k-point of X.

THEOREM 1.8. A metric continuum X has property k if and only if $\cup \mathcal{U}$ is open in X for every open set \mathcal{U} in C(X).

Proof. Suppose X has property k. Let \mathcal{U} be an open set in C(X). Then each point of $\cup \mathcal{U}$ is an interior point by Lemma 1.7. Hence \mathcal{U} is open in X.

Conversely we suppose that $\cup \mathcal{U}$ is open in X for each open set \mathcal{U} in C(X). Let $x \in X$. We show that x is a k-point of X. Let $A \in C(X)$ such that $x \in A$, and let $\epsilon > 0$. Let \mathcal{O} be the ϵ -neighborhood of A in C(X). Let $U = \cup \mathcal{O}$. Since U is open in X by assumption, there is a $\delta > 0$ such that the δ -neighborhood V of x is contained in U. Let $y \in V$. Then there is an element $B \in \mathcal{O}$ such that $y \in B$. Thus x is a k-point of X and hence X has property k. \square

THEOREM 1.9. If the singleton set $\{x\}$ is a k-point of C(X), then x is a k-point of X.

Proof. Let $A \in T(x)$, where T(x) is the total fiber of X at x. Let $\epsilon > 0$. Then $\{x\} \in C(A)$ and C(A) is a subcontinuum of C(X). Since $\{x\}$ is a k-point of C(X), there exists $\delta > 0$ such that for each $B \in \mathcal{V}$, where \mathcal{V} is the δ -neighborhood of $\{x\}$ in C(X), there is an element $\mathcal{E} \in T(B)$, where T(B) is the total fiber of C(X) at B, such that $H^2(\mathcal{E}, C(A)) < \epsilon$. Since $\cup \mathcal{V} = N(\delta, x)$, where $N(\delta, x)$ is the δ -neighborhood of x in X by Lemma 1.5,

 $A = \cup C(A), \cup \mathcal{E} = D$ is a subcontinuum of X, and $H(D,A) = H(\cup \mathcal{E}, \cup C(A)) \leq H^2(\mathcal{E}, C(A)) < \epsilon$. Hence x is a k-point of X. \square

2. Connectedness im kleinen and local connectedness in C(X)

In this section, we include several results of Goodykoontz [5,6] with different proofs and added several results of our own.

DEFINITIONS 2.1. Let $x \in X$. The space X is said to be connected (arcwise connected) im kleinen at x if for each neighborhood U of x, there is a neighborhood V of x lying in U such that if $y \in V$ then there is a connected (arcwise connected) subset of U containing both x and y. X is locally connected(locally arcwise connected) at x if for each neighborhood U of x, there is a connected (arcwise connected) neighborhood V of x lying in U.

LEMMA 2.2. If X is connected im kleinen at x, then x is a k-point of X.

LEMMA 2.3. Let X be a metric continuum. Let $\epsilon > 0, A \in C(X)$ and let \mathcal{O} be the ϵ -neighborhood of A in C(X). Suppose $B \in \mathcal{O}$ (or $B \in \overline{\mathcal{O}}$) such that $A \cap B \neq \emptyset$. Then A and B can be connected by an arc in \mathcal{O} (or in $\overline{\mathcal{O}}$).

THEOREM 2.4.[1]. Let $A \in C(X)$. Suppose A contains a point x at which X is connected im kleinen. Then C(X) is arcwise connected im kleinen at A.

Proof. Let $\epsilon > 0$. Let $\mathcal{O}_{\epsilon}(A)$ be the ϵ -neighborhood of A. Then there is $\delta > 0$ such that $N(\delta, x) \subset N(\frac{\epsilon}{4}, x)$ such that if $y \in N(\delta, x)$ then x and y are in a connected subset C of $N(\frac{\epsilon}{4}, x)$. Let $B \in \mathcal{O}_{\delta}(A)$. Then $B \cap N(\delta, x) \neq \emptyset$. Let C be a connected subset of $N(\frac{\epsilon}{4}, x)$ containing x and a point $y \in B \cap N(\delta, x)$. Then the subcontinuum $A \cup B \cup \overline{C}$ is contained in $N(\frac{\epsilon}{2}, A)$. Hence there is an order arc α in $\mathcal{O}_{\frac{\epsilon}{2}}(A)$ from A to $A \cup B \cup \overline{C}$. Since $\overline{C} \subset N(\frac{\epsilon}{2}, B)$, $A \cup B \cup \overline{C} \subset N(\frac{\epsilon}{2}, B)$ so that $A \cup B \cup \overline{C} \in \mathcal{O}_{\frac{\epsilon}{2}}(B)$. Hence by Lemma 2.3 we have an order arc β in $\mathcal{O}_{\frac{\epsilon}{2}}(B)$ from B to $A \cup B \cup \overline{C}$. Since $\mathcal{O}_{\frac{\epsilon}{2}}(B) \subset \mathcal{O}_{\epsilon}(A)$, the connected set $\alpha \cup \beta \subset \mathcal{O}_{\epsilon}(A)$. \square

COROLLARY 2.5. If $A \in C(X)$ contains a point at which X is connected im kleinen, then A is a k-point of C(X).

Proof. Apply Theorem 2.4 and Lemma 2.2.

COROLLARY 2.6.[5]. X is connected im kleinen at x if and only if C(X) is connected im kleinen at $\{x\}$.

Proof. If X is connected im kleinen at x then C(X) is connected im kleinen at $\{x\}$ by Theorem 2.4.

Suppose C(X) is connected im kleinen at $\{x\}$. Let U be a neighborhood of x in X. Let $U^* = C(U)$. Then U^* is a neighborhood of $\{x\}$ in C(X). So there is an ϵ -neighborhood \mathcal{V} of $\{x\}$ in C(X) contained in U^* such that if $B \in \mathcal{V}$ then there is a connected subset \mathcal{C} of U^* containing both $\{x\}$ and B. Let $0 < \delta < \epsilon$, and let W be the δ -neighborhood of x in X such that $W \subset U$. Let $y \in W$, and let \mathcal{C} be a connected subset of U^* containing both $\{x\}$ and $\{y\}$. Then $C = \cup \mathcal{C}$ is connected subset of U containing both x and y. \square

COROLLARY 2.6.1.[5]. If X is locally connected at $x \in X$, then C(X) is locally connected at $\{x\}$.

Proof. Suppose X is locally connected at x, and let \mathcal{U} be an ϵ -neighborhood of $\{x\}$ in C(X). Then $U = \cup \mathcal{U}$ is an ϵ -neighborhood of x by Lemma 1.5. Let V be a connected neighborhood of x contained in U. Then C(U) is a connected neighborhood of $\{x\}$ in C(X) contained in \mathcal{U} .

COROLLARY 2.6.2.[5]. C(X) is locally connected at $\{x\}$ if and only if X is connected im kleinen at x.

Proof. Let $\epsilon > 0$ and $U = N(\epsilon, x)$. Then $\mathcal{U} = C(U)$ is an ϵ -neighborhood of $\{x\}$ in C(X). Since C(X) is locally connected at $\{x\}$, there is a connected neighborhood \mathcal{V} of $\{x\}$. Let $0 < \delta < \epsilon$ such that the δ -neighborhood \mathcal{W} of $\{x\}$ is contained in \mathcal{V} . Then $W = N(\delta, x) = \cup \mathcal{W}$ by Lemma 1.5. Since $\cup \mathcal{V}$ is connected by Lemma 1.4 and is contained in $\cup \mathcal{U} = U$ and $W \subset \cup \mathcal{V}, X$ is connected im kleinen at x.

Now suppose X is connected im kleinen at x. Then 2^X is connected im kleinen at $\{x\}$ by [5, Corollary 1] and hence C(X)

is locally arcwise connected at $\{x\}$ by [6, Theorem 1]. This implies that C(X) is locally connected at $\{x\}$. \square

COROLLARY 2.6.3. If X is locally arcwise connected at $x \in X$, then C(X) is locally arcwise connected at $\{x\}$.

Proof. Let \mathcal{U} be an ϵ -neighborhood of $\{x\}$ in C(X) and $U = \cup \mathcal{U}$. Let V be a arcwise connected neighborhood of x in X contained in U. Let V = C(V) and $B \in \mathcal{V}$. Let $y \in B$ and C be an arc in V joining x and y. Then there are order arcs α in V from $\{x\}$ to $B \cup C$ and β from B to $B \cup C$ in V. So that there exists an arc in V joining $\{x\}$ to B. \square

REMARK. The converse of Corollary 2.6.3. is not true: there is a continuum Y which is locally connected but not locally arcwise connected at a point x and C(X) is locally arcwise connected at $\{x\}$. Let Y_n be the closure in the plane of the set $\{(u, v+4n) : v = \sin(\frac{1}{u}) \text{ for some } 0 < u \leq 1\}$, and $M = \{(0, v) : v \geq -1\}$. Let Y be the one-point compactification of $\bigcup_{n=0}^{\infty} Y_n \cup M$. Then one sees that Y is locally connected but not locally arcwise connected at ∞ . Also C(Y) is locally arcwise connected at ∞ .

COROLLARY 2.6.4. If X is arcwise connected im kleinen at x, then C(X) is arcwise connected im kleinen at $\{x\}$.

We give a different proof for the next theorem.

THEOREM 2.7.[5]. Let $A \in C(X)$. If, for each open set U in X containing A, the component of U containing A contains A in its interior, then C(X) is arcwise connected im kleinen at A.

Proof. Let $\epsilon > 0$. Let \mathcal{U} be the ϵ -neighborhood of A in C(X). Let C_0 be the component of $N(\frac{\epsilon}{2},A)$ containing A in its interior. Let $0 < \delta < \frac{\epsilon}{2}$ such that the δ -neighborhood V of a point $a \in A$ is contained in $Int(C_0)$. Let V be the δ -neighborhood of A in C(X) and $B \in \mathcal{V}$. Then $H(A,B) < \delta$ implies that $B \cap V \neq \emptyset$ and $B \subset N(\frac{\epsilon}{2},A)$. Hence $B \subset C_0$. Furthermore, since $A \cup B \subset C_0$, there are two order arcs α and β in C(X) from A and B respectively to $\overline{C_0}$. Clearly if $D \in \alpha \cup \beta$ then $D \subset \overline{N(\frac{\epsilon}{2},A)} \subset N(\epsilon,A)$. If $D \in \alpha$

then $A \subset D \subset N(\frac{\epsilon}{2}, D)$. So that $H(A, D) < \epsilon$. If $D \in \beta$ then $A \subset N(\delta, B)$ and $B \subset D$ imply $A \subset N(\frac{\epsilon}{2}, D)$. Hence $H(A, D) < \epsilon$. Therefore $\alpha \cup \beta \subset \mathcal{U}$ and there is an arc in $\alpha \cup \beta$ between A and B. \square

The following is a generalization of Theorem 2.7.

THEOREM 2.7.1. Let $A \in C(X)$. If, for each open set U in X containing A, the component C of U has nonempty interior such that $Int(C) \cap A \neq \emptyset$, then C(X) is arcwise connected im kleinen at A.

Proof. Let \mathcal{U} be an ϵ -neighborhood of A in C(X). Let C be the component of $N(\frac{\epsilon}{2},A)$ which contains A. Let $a\in A\cap Int(C)$. Then there is $0<\delta<\epsilon$ such that the δ -neighborhood V of a in X is contained in Int(C). Let V be the δ -neighborhood of A in C(X). Let $B\in \mathcal{V}$. Since $H(B,A)<\delta, B\cap C\neq\emptyset$ so that $B\subset C$. And $\overline{C}\subset \overline{N(\frac{\epsilon}{2},A)}$. Hence, there are order arcs α from A to \overline{C} and β from B to \overline{C} in \mathcal{U} . Therefore C(X) is arcwise connected im kleinen. \square

COROLLARY 2.7.2. Let $A \in C(X)$. If, for each open set U of X containing A, there exists a connected open set V of X containing A such that $V \subset U$, then C(X) is arcwise connected im kleinen at A.

Proof. If C is the component of U, then $V \subset C$. Hence the conclusion follows from Theorem 2.7.1. \square

COROLLARY 2.8. If C(X) is locally connected at $A \in C(X)$, then it is arcwise connected im kleinen at A.

Proof. Let $\epsilon > 0$ and let $\mathcal U$ be the ϵ -neighborhood of A in C(X). Let $\mathcal V$ be a connected neighborhood of A whose closure is contained in the $\frac{\epsilon}{2}$ -neighborhood of A. Let $C = \cup \overline{\mathcal V}$. Then $C \in C(X)$. Since $H(B,A) \leq \frac{\epsilon}{2}$ for each $B \in \overline{\mathcal V}, C \subset N(\epsilon,A)$. Also $A \subset N(\epsilon,C)$ so that $H(C,A) < \epsilon$. Now we have an order arc α in $\mathcal U$ from A to C, another one β in $\mathcal U$ from B to C for each $B \in \mathcal V$. Hence C(X) is arcwise connected im kleinen. \square

COROLLARY 2.9.[5]. C(X) is locally arcwise connected at $\{x\}$ if and only if C(X) is connected im kleinen at $\{x\}$.

Proof. Locally arcwise connectedness implies connected im kleinen. For the converse, we give a slightly different proof: Let $\epsilon > 0$. Let \mathcal{U} be the ϵ -neighborhood of $\{x\}$ in C(X). Let $0 < \delta < \epsilon$ so that the closure in C(X) of the δ -neighborhood $\mathcal V$ is contained in \mathcal{U} . Since C(X) is connected im kleinen at $\{x\}$, there is $0 < \tau < \delta$ such that the τ -neighborhood W of $\{x\}$ is contained in the component \mathcal{C} of \mathcal{V} . Let $U = N(\epsilon, x), V = N(\delta, x)$, and $W = N(\tau, x)$. Let $U^* = C(U), V^* = C(V)$ and $W^* = C(W)$. Then by Lemma 1.5., $U^* = \mathcal{U}$ and $V^* = \mathcal{V}$ and $W^* = \mathcal{W}$. Let C be the closure in X of $\cup C$. Then C is a connected subset of \overline{V} and $H(\{x\},C) \leq \delta$. Let $\mathcal{N} = \{A \in C(X) : W \cap A \neq \emptyset \text{ and } A \subset U\}. \text{ Then } \{x\}, C \in \mathcal{N} \subset \mathcal{U}.$ We show first that \mathcal{N} is open. Let $B \in \mathcal{N}$. Since $B \subset U$, there is $\delta_1 > 0$ such that $N(\delta_1, B) \subset U$. Let $y \in W \cap B$. Then there is $\delta_2 > 0$ such that the δ_2 -neighborhood V_2 of y is contained in W. We let $\pi = \min\{\delta_1, \delta_2, \tau\}$ and let \mathcal{O}_{π} be the π -neighborhood of B in C(X). Let $B' \in \mathcal{O}_{\pi}$. Then $H(B, B') < \pi$ implies that $B' \cap W \neq \emptyset$ and $B' \subset N(\pi, B) \subset N(\delta_1, B) \subset U$. So that $B' \in \mathcal{N}$. Hence $\mathcal{O}_{\pi} \subset \mathcal{N}$. Now we show that \mathcal{N} is arcwise connected. Let $B_i \in \mathcal{N}, i = 1, 2$. Then $C \cap B_i \neq \emptyset$ for each i and $C \cup B_1 \cup B_2 \subset U$ that $C \cup B_1 \cup B_2 \in \mathcal{N}$. Let α_i be order arc in C(X) from B_i to $C \cup B_1 \cup B_2$ for i = 1, 2. It is easy to see that $\alpha \cup \beta \subset \mathcal{N}$. Hence there is an arc in \mathcal{N} between B_1 and B_2 . This completes the proof.

3. Decomposition of set of points of non-connected im kleinen

Let X be a metric continuum. Let N be the set of all $x \in X$ at which X is not connected im kleinen, and let \mathcal{N} be the set of all $A \in C(X)$ at which C(X) is not connected im kleinen, let \mathcal{K} be the set of all $A \in C(X)$ at which C(X) is connected im kleinen, and finally let \mathcal{L} be the set of all $A \in C(N)$ at which C(X) is connected im kleinen. We may note here that if $N \neq \emptyset$ then each of the components of N is nondegenerate [12,5.13]. Let us note

that $C(X) = \mathcal{N} \cup \mathcal{K}$ and $\mathcal{L} \subset \mathcal{K}$.

In this section, we give a necessary and sufficient condition for which C(X) is not connected im kleinen (Theorem3.3). Then we show that there is a relation between N and N.

THEOREM 3.1.[16]. Let X be a metric continuum. The followings are equivalent:

(1) X is locally connected. (2) $\mathcal{N} = \emptyset$. (3) C(X) is locally connected. (4) $N = \emptyset$.

Proof. If a continuum X is connected im kleinen at each of its points, then it is locally connected.

- (1) \Rightarrow (2): Let $A \in C(X)$ and let U be an open set in X containing A. Then by local connectedness of X, the component of U containing A is open. Hence by Theorem 2.7 C(X) is arcwise connected im kleinen at A. Therefore C(X) is locally connected, i.e., $\mathcal{N} = \emptyset$.
- (2) \Rightarrow (3): Obvious. (3) \Rightarrow (4): $N \neq \emptyset \Rightarrow \mathcal{N} \neq \emptyset \Rightarrow C(X)$ is not locally connected. (4) \Rightarrow (1): Obvious. \square

PROPOSITION 3.2. Suppose C(X) is not connected im kleinen at $A \in C(X)$ (i.e., $A \in C(X) \setminus \mathcal{K}$). Then $A \subset N$. If $A \in \overline{\mathcal{N}}$ then $A \in C(\overline{N})$.

Proof. The first part is a consequence of Theorem 2.4. If $A \in \overline{\mathcal{N}}$ then there is a sequence $\{A_n\}$ in \mathcal{N} which converges to A. Hence $A \subset \overline{\mathcal{N}}$. \square

THEOREM 3.3. C(X) is not connected im kleinen at $A \in C(X)$ if and only if (1) $A \in C(N)$ and (2) there is an open set U containing A having a sequence $\{C_n\}$ of components and a sequence $\{A_n\}$ of subcontinua of X with $A_n \subset C_n$ for each n which converges to A.

Proof. Suppose C(X) is not connected im kleinen at A. Then by Proposition 3.2, $A \in C(N)$, and there exists an ϵ -neighborhood \mathcal{U} of A in C(X) and a sequences $\{\mathcal{C}_n\}$ of distinct components of $\overline{\mathcal{U}}$ which converges to a limit continuum \mathcal{C} which contains A [15, Theorem 12.1, p.18], i.e., $Lt\mathcal{C}_n = \mathcal{C}$. Therefore there is a sequence

 $\{A_n\}$ of subcontinua of $X, A_n \in \mathcal{C}_n$, such that $\lim A_n = A$. Let p be a positive integer such that $H(A_n,A)<\frac{\epsilon}{10}$ for all n>p and $U=N(\frac{\epsilon}{10},A)$. Then $A_n\subset U$ for all n>p. Let \overline{C} be the closure of the component C of U containing A, and for each positive integer n>p let \overline{C}_n be the closure of the component C_n of U containing A_n . We claim that $\overline{C} \cap A_n = \emptyset$ for each n > p and $A_n \cap A_m = \emptyset$ for $m \neq n$ and n, m > p. First we note that $H(\overline{C}, A) < \frac{\epsilon}{9}$ and $H(\overline{C}_n, A) < \frac{\epsilon}{9}$ for each n > p. Hence $H(\overline{C}_n, \overline{C}_m) < \frac{2\epsilon}{9}$ for n, m > p. Now suppose that $\overline{C} \cap A_n \neq \emptyset$ for some n > p. Then, since $A_n \subset N(\frac{\epsilon}{10}, A)$ implies $A_n \cap (\overline{C} \setminus C) = \emptyset, A_n \cap C \neq \emptyset$. Hence $A_n \subset C \subset \overline{C}$. Let α be an order arc in C(X) from A_n to \overline{C} and let $B \in \alpha$. Then, since $A \subset B \subset \overline{C} \subset N(\frac{\epsilon}{9}, A)$ and $A \subset N(\frac{\epsilon}{9}, B), H(B, A) < \frac{\epsilon}{9} < \epsilon$. Hence $B \in \mathcal{U}$. Thus α is an order arc in \mathcal{U} from A_n to \overline{C} . There is also an order arc in \mathcal{U} from A to \overline{C} by Lemma 2.3. This means that A and A_n are in the same component of \mathcal{U} which contradicts the choice of A_n . Now we show that $\overline{C}_n \cap \overline{C}_m = \emptyset$ for $m \neq n$. Suppose $\overline{C}_n \cap \overline{C}_m \neq \emptyset$. Then $\overline{C}_n \cup \overline{C}_m$ is a subcontinuum of X and $H(\overline{C}_n \cup \overline{C}_m, A) =$ $H(\overline{C}_n \cup \overline{C}_m, A \cup A) \leq H(\overline{C}_n, A) + H(\overline{C}_m, A) < \frac{2\epsilon}{9}$ by Lemma 1.3 so that $\overline{C}_n \cup \overline{C}_m \in \mathcal{U}$. Let α be an order arc in C(X) from A_n to $\overline{C}_n \cup \overline{C}_m$ and $B \in \alpha$. Then $H(B,A) < \frac{2\epsilon}{9}$ so that $B \in \mathcal{U}$. Hence α is an order arc in \mathcal{U} . Similarly, there is an order arc in \mathcal{U} from A_m to $\overline{C}_n \cup \overline{C}_m$. Thus A_n and A_m are in the same component of $\overline{\mathcal{U}}$, which contradicts the choice of A_n and A_m . So we must have $\overline{C}_n \cap \overline{C}_m = \emptyset$. Since A_n and A_m are contained in \overline{C}_n and \overline{C}_m respectively, $A_n \cap A_m = \emptyset$.

For the converse, we have C(U) is open in C(X) and $\{C(C_n)\}$ is a sequence of distinct components of C(U) by Lemma 1.4. If \mathcal{V} is any δ -neighborhood of A contained in C(U), then there is a positive integer p such that $A_n \in \mathcal{V}$ for all n > p. This means that there is no connected subset of C(U) containing both A and A_n for n > p. Hence C(X) is not connected im kleinen at A. \square

COROLLARY 3.4. If $N \neq \emptyset$, then $C(N) = \mathcal{N} \cup \mathcal{L}$ and $\mathcal{L} \cap \mathcal{N} = \emptyset$.

Proof. If $x \in N$ then $\{x\} \notin \mathcal{K}$ by Corollary 2.6. Hence $\{x\} \in \mathcal{N}$. If A is a nondegenerate subcontinuum contained in N, then

either $A \in \mathcal{L}$ or $A \in \mathcal{N}$. \square

COROLLARY 3.5. Let \mathcal{N}_f be a component of \mathcal{N} . Then $\cup \mathcal{N}_f \subset N_f$, where N_f is a component of N.

Proof. Since \mathcal{N}_f is connected and each element of it is contained in a component of N, and $\cup \mathcal{N}_f$ is connected by Lemma 1.1, $\cup \mathcal{N}_f$ must be contained in a component of N. \square

References

- Borsuk, K. and Mazurkiewicz, S., Sur l'hyperspace d'un continu, Comptes Rendus des Seances de la Societe des Sciences et des Letters de Varsovie 24 (1931), 149-152.
- Charatonik, W. J., Rⁱ-continua and hyperspaces, Topology and its Applications 23 (1986), 207-216.
- Czuba, S. T., Rⁱ continua and contractibility, Proc. of International Conference on Geometric Topology, PWN-Polish Scientific Publisher, Warazawa, 1980, pp. 75-79.
- 4. Eberhart, C., Continua with locally connected Whitney continua, Houston J. Math. 4 (1978), 165-173.
- 5. Goodykoontz, J. T., Jr., Connectedness im kleinen and local connectedness in 2^X and C(X), Pacif. J. Math. 53 (1974), 387-397.
- 6. —, More on connectedness im kleinen and local connectedness in C(X), Proc. Amer. Math. Soc. 65 (1977), 357-364.
- 7. —, Local arcwise connectedness in 2^X and C(X), Houston J. Math. 4 (1978), 41-47.
- 8. Hocking, J. G and Young, G. S., Topology, Addison-Wesley Publishing Co, 1961.
- 9. Kelley, J. L., Hyperspaces of Continuum, Trans. Amer. Math. Soc. 52 (1942), 22-36.
- 10. Michael, E., Topologies on spaces of subsets, Trans. Amer. Math. Soc. 71 (1951), 151-182.
- 11. Nadler, S. B., Jr., Hyperspaces of sets, Marcel Dekker, Inc., 1978.
- 12. —, Continuum Theorey an Introduction, Marcel Dekker, Inc., 1992.
- 13. Nishiura , T and Rhee, C.J., Cut points of X and the hyperspace of subcontinua C(X), Proc. Amer. Math. Soc. 82 (1981), 149-154.
- 14. —, Admissible condition for contractible hyperspaces, Topology Proc. 8 (1983), 303-314.
- 15. Whyburn, G. T., Analytic Topology, vol. 28, Amer. Math. Soc. Colloq.Publication, 1942.
- Wojdyslawski, M., Retractes absolus et hyperspaces des continus,, Fund. Math. 32 (1939), 184-192..