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EXACT SEQUENCES OF pR~-HOMOMORHPISMS
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Throughout the following, R will denote a ring with unit el-
ement 1 and R-mod will denote the category of all unitary left
R-modules.

Following the definition in [4], we say that a fuzzy left R-module
is a pair (M, ¢ ) consisting of a left R-module M and a function
éum from M to [0,1] satisfying the following conditions:

(1) om(Om) =1,

(2) dp(m +m') > min{dp(m), dm(m')} for all m,m’ € M,

(3) ém(am) > ¢p(m) for all m € M and all @ € R.
The notion of a fuzzy module is closely tied to the notion of a
normed module studied by Fleischer in [1]. Changing his definition
slightly, by a pseudonormed left R-module [2] with values in [0, 1}
we mean a pair (M,a) consisting of a left R-module M and a
function a : M — [0, 1] satisfying the following conditions:

(4) a(0m) =0,

(8) a(m + m') < max{a(m), a(m")},

(6) a(rm) < a(m),
for all m,m' € M and r € R. We denote it by ap. Note from (6)
that a(—m) = a(m) for all m € M.

In what follows, a pseudonormed R-module (briefly, pR-module)
will mean a pseudonormed left R-module.
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DEFINITION 1. Let ap and 8y be pR-modules. A function
frapy — B is called a pseudonormed R-homomorphism (briefly,
pR-homomorphism) if

(7) f: M — N is an R-homomorphism.
(8) a(m) > B(f(m)) for all m € M.

We call 3 imf the image of f, denoted by 1mf, and apy, the kernel
of f, denoted by kerf, where M, = {m € M|B(f(m)) = 0}.

We note that kerf C kerf For any m € kerf, ,@(f(m))
B(0n) = 0 and so m € kerf. As imf is a submodule of N, mlf is

a pseudonormed submodule of By. Let m, m' € ker f andr, 7' € R.
Then

B(f(rm+r'm')) = B(f(rm) + f(r'm'))
= B(rf(m) + r' f(m"))
< max{8(r f(m)), B(r' f(m"))}

< max{8(f(m)), B(f(m'))}
= (.

Hence rm+r'm' € kerf and so ker f is a pseudonormedsubmeodule
of ap.

DEFINITION 2. Let f apy — [y be a pR-homomorphism. We
call f epic (resp. momc} if f is epic (resp. monic). We say that
F is quasi-monic if ker f = ay/, where M' = {m € M|a(m) = 0}.

REMARK 3. It is clear that if kerf = {0}, then quasi-monic is
just ordinary monic.

DEFINITION 4. A sequence of pR-homomorphisms

aM"“f*"ﬂN"‘g“"7P

is ezact at By if imf: kerg.
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A sequence of pR-homomorphisms

Tl el Mo B

is ezact if each adjacent pair of pR-homomorphisms is exact.
The exact sequence of pR-homomorphisms

60—i-)aM—!—}ﬁN——§—)7p-—j—-)6o

is called the short ezact sequence of pR-homomorphisms, where
8o is a singular pR-module, that is, §(m) =0 for all m € M.

Let a4 be any pseudonormed submodule of a pR-module a .
Then a map @ : M/A — [0, 1] given by

» A _{0 ifmeA
Am+A) =\ suplak)k e m+ A} fmgA

can determined the pseudonormed quotient R-module, denoted
by a M/fA-

PROPOSITION 5. If ap is a pR-module and if m and m' are
elements of M satisfying a(m) # a(m'), then a(m + m') =
max{a(m), a(m')}.

Proof. Without loss of generality, we may assume that a(m) >
a(m'). Then by (5), a(m +m') < a(m). Now
a(m) = a(m+m' —m')
< max{a(m + m'), a(-m')}
= max{a(m +m'),a(m')}
= a(m+m')

because a(m) > a(m'). Hence a(m) = a(m + m') and therefore
a(m + m') = max{a(m),a(m’)}. O
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THEOREM 6. Let

-~

b0 — am -1 By L vp 1o 64

be a short ezact sequence of pR-homomorphisms. Then
(a) im?v: kerf = oM,
(b) imf = kerg 2 8w,
(c) g s epic,
where M' = {m € M|a(m) = 0} and N' = {n € N|B(n) = 0}.

Proof. (a): Assume that imi=kerf # app. f kerf Z apy, then
there is some m € kerfsuch that m ¢ ap. Hencem € imi and so
i(c) = m for some ¢ € . Since: is a pR-homomorphism, therefore
a(m) = a(i(c)) < é(c) = 0, which implies that a(m) = 0. Hence
m € appv, a contradiction.

If kerj? 2 aum, then there exists m € apr such that m ¢
kerf. Thus a(m) = 0, and so B(f(m)) < a(m) = 0 which implies
that A( f(m)) = 0. Hence m € kerf. This is a contradiction.
Consequently we have the result (a).

(b): Since g is a pR-homomorphism, we have that for any n €
Bnt, v(g(n)) < B(n) =0, and that ¥(g(r)) = 0. This implies that
n € kerg. N

(¢): For any z € vp, we have that 6(;(3:)) = 0. Thus z € kerj,
and so kerj = yp= img. Therefore § is epic. O]

DEFINITION 7. Let f: apy — BN be a pR-homomorphism.
Then f is called a pseudonormed weak tsomorphism, denoted apy =,
Bn,if f: M — N is an R-isomorphism.

THEOREM 8. Let

50—1—*0M—f-*ﬂ1v-—g~+7p~i*5o

be a short ezact sequence of pR-homomorphisms. Then we have

Ot rkerf Sw Bimfynr 008 BNjkerg Zw Yimg) P
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where N' = {a € N|B(e) =0} and P' = {z € P|y(z) = 0}.

Proof. Define a map € : M — imf/N' by e(m) = F(m)+ N
For any m,, my € M and ry,r; € R,
g(rimy + ramg) = f(rlml +romg) + N’
= (r1f(my) + raf(ms)) + N’
= (r1f(m1) + N') + (r2f(ma) + N')
= rie(my) + rze(ma).
Thus ¢ is an R-homomorphism. Since imfzkerg, therefore € is an

epic and the derived map eq : M/kere — imf /N' is an isomor-
phism. Note that

kere = {m € Mle(m) € N'}
= {m € M|f(m)+ N' c N'}
= {m € M|f(m) € N'}
= {m € M|B(f(m)) = 0}
= kerf.
Hence M/kerJF sz/N’ Let m + kerf € M/kerf Ifme
kerf, then a(m + kerf) = 0. By the definition of kerf, we have
ﬂ(f(m)) = 0 and so f(m) € N'. Thus ﬂ(f(m) +N')=0. If
m € M — kerf, then ﬂ(f(m)) > 0 and f(m) ¢ N'. For every
a' € imf, there exists m' € M such that f(m'y=d'. Thus
B(F(m) + N') = sup{B(a’)la’ € f(m)+ N'}
= sup{B(f(m")If(m') € f(m) + N'}
= sup{A(f(m"))|f(m’ —m) € N'}
= sup{B(f(m")|m’ — m € ker f}
= sup{a(m')|m’' € m + ker f}
= a(m + ker f).
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Hence ﬂ(f(m) + N <a(m+ kerf) for any m + ker f € M/kerf.
Consequently, we have & M/kerf = ﬂm N By the same manner,

we get )BN/kery =w 7zmg/P' O

THEOREM 9. Consider the commutative diagram of two ezact
sequences of pR-homomorphisms

bo
N\
Q
. h
v
g
oo > QA —> fIN > TP > &
f i
v
91
T
N\
0

(a) @ is quasi-monic and P is epic.
(b) If @ is epic, then 3 is quasi-monic.

Proof. (a): Let m € ker$. Then 7(@(m)) = 0 and so g(m) €
Tq, where Q' = {q € Q|7(q) = 0}. Since B(f1(#(m))) < 7(4(m)) =
0, we have fi@(m) € B+, where N' = {n € N|B(n) = 0}. Using
the commutativity of the diagram, then f(m) = fig(m) € Bnr.
Thus m € kerf = app, where M’ = {m € M|a(m) = 0}. There-
fore kery = appe, ie., @ is quasi-monic. As §; is epic, @ is also
epic by commutativity of the diagram, and so 1 is epic.

(b): Assume that @ is epic. Let p € kers. Then 7(4(p)) = 0
and so ¢(p) € mp/, where T' = {t € T|r(t) = 0}. Since § is
epic, there exists n € N such that §(n) = p. It follows from the
commutativity of the diagram that §;(n) = zﬁg(n) = z,z(p) € mp.
Thus n € ker§, = imf; and so there is an element q € @ with
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fi(q) = n. Since ¢ is epic, we have ¢(m) = ¢ for some m € M. By
commutativity of the diagram we get f(m) = fig(m) = fi(q) =
n. It follows that n € imf = kerg, so that 'y(gf(m)) = v(§(n)) =
7(p) = 0. Thus p € yp:, where P' = {p € P|y(p) = 0}. We finally

obtain kery) = yps and v is quasi-monic. [
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