## EXACT SEQUENCES OF pR-HOMOMORHPISMS

## SUNG MIN HONG AND YOUNG BAE JUN

Dept. of Mathematics and Research Institute of Natural Science, Gyeongsang National University, Chinju 660-701, Korea. E-mail: ybjun@nongae.gsnu.ac.kr.

Throughout the following, R will denote a ring with unit element 1 and R-mod will denote the category of all unitary left R-modules.

Following the definition in [4], we say that a fuzzy left R-module is a pair  $(M, \phi_M)$  consisting of a left R-module M and a function  $\phi_M$  from M to [0, 1] satisfying the following conditions:

- (1)  $\phi_M(0_M) = 1$ ,
- (2)  $\phi_M(m+m') \ge \min\{\phi_M(m), \phi_M(m')\}\$  for all  $m, m' \in M$ ,
- (3)  $\phi_M(am) \ge \phi_M(m)$  for all  $m \in M$  and all  $a \in R$ .

The notion of a fuzzy module is closely tied to the notion of a normed module studied by Fleischer in [1]. Changing his definition slightly, by a pseudonormed left R-module [2] with values in [0, 1] we mean a pair  $(M, \alpha)$  consisting of a left R-module M and a function  $\alpha: M \to [0, 1]$  satisfying the following conditions:

- $(4) \ \alpha(0_M)=0,$
- $(5) \ \alpha(m+m') \leq \max\{\alpha(m), \alpha(m')\},\$
- (6)  $\alpha(rm) \leq \alpha(m)$ ,

for all  $m, m' \in M$  and  $r \in R$ . We denote it by  $\alpha_M$ . Note from (6) that  $\alpha(-m) = \alpha(m)$  for all  $m \in M$ .

In what follows, a pseudonormed R-module (briefly, pR-module) will mean a pseudonormed left R-module.

Received February 5. 1996.

<sup>1991</sup> Mathematics Subject Classification. 16D10, 16E99, 94D05.

Keywords and phrases. pR-module, pR-homomorphism, (short) exact sequence of pR-homo-morphisms, pseudonormed weak isomorphism.

The present studies were supported by the Basic Science Research Institute Program, Ministry of Education, 1995, Project No. BSRI-95-1406.

DEFINITION 1. Let  $\alpha_M$  and  $\beta_N$  be pR-modules. A function  $\widetilde{f}: \alpha_M \to \beta_N$  is called a pseudonormed R-homomorphism (briefly, pR-homomorphism) if

- (7)  $f: M \to N$  is an R-homomorphism.
- (8)  $\alpha(m) \ge \beta(f(m))$  for all  $m \in M$ .

We call  $\beta_{\text{im}f}$  the *image* of  $\widetilde{f}$ , denoted by  $\text{im}\widetilde{f}$ , and  $\alpha_{M_0}$  the *kernel* of  $\widetilde{f}$ , denoted by  $\text{ker}\widetilde{f}$ , where  $M_0 = \{m \in M | \beta(f(m)) = 0\}$ .

We note that  $\ker f \subseteq \ker \widetilde{f}$ . For any  $m \in \ker f$ ,  $\beta(f(m)) = \beta(0_N) = 0$  and so  $m \in \ker \widetilde{f}$ . As  $\operatorname{im} f$  is a submodule of N,  $\operatorname{im} \widetilde{f}$  is a pseudonormed submodule of  $\beta_N$ . Let  $m, m' \in \ker \widetilde{f}$  and  $r, r' \in R$ . Then

$$\begin{split} \beta(f(rm+r'm')) &= \beta(f(rm)+f(r'm')) \\ &= \beta(rf(m)+r'f(m')) \\ &\leq \max\{\beta(rf(m)),\beta(r'f(m'))\} \\ &\leq \max\{\beta(f(m)),\beta(f(m'))\} \\ &= 0. \end{split}$$

Hence  $rm + r'm' \in \ker \widetilde{f}$  and so  $\ker \widetilde{f}$  is a pseudonormed submodule of  $\alpha_M$ .

DEFINITION 2. Let  $\widetilde{f}: \alpha_M \to \beta_N$  be a pR-homomorphism. We call  $\widetilde{f}$  epic (resp. monic) if f is epic (resp. monic). We say that  $\widetilde{f}$  is quasi-monic if  $\ker \widetilde{f} = \alpha_{M'}$ , where  $M' = \{m \in M | \alpha(m) = 0\}$ .

REMARK 3. It is clear that if  $\ker \widetilde{f} = \{0\}$ , then quasi-monic is just ordinary monic.

DEFINITION 4. A sequence of pR-homomorphisms

$$\alpha_M \xrightarrow{\widetilde{f}} \beta_N \xrightarrow{\widetilde{g}} \gamma_P$$

is exact at  $\beta_N$  if  $im\widetilde{f} = \ker \widetilde{g}$ .

A sequence of pR-homomorphisms

$$\dots \xrightarrow{\widetilde{f_{i-1}}} \alpha_{M_{i-1}}^{(i-1)} \xrightarrow{\widetilde{f_i}} \alpha_{M_i}^{(i)} \xrightarrow{\widetilde{f_{i+1}}} \alpha_{M_{i+1}}^{(i+1)} \xrightarrow{\widetilde{f_{i+2}}} \dots$$

is exact if each adjacent pair of pR-homomorphisms is exact.

The exact sequence of pR-homomorphisms

$$\delta_0 \xrightarrow{\tilde{i}} \alpha_M \xrightarrow{\tilde{f}} \beta_N \xrightarrow{\tilde{g}} \gamma_P \xrightarrow{\tilde{j}} \delta_0$$

is called the *short exact sequence* of pR-homomorphisms, where  $\delta_0$  is a singular pR-module, that is,  $\delta(m) = 0$  for all  $m \in M$ .

Let  $\alpha_A$  be any pseudonormed submodule of a pR-module  $\alpha_M$ . Then a map  $\bar{\alpha}: M/A \to [0,1]$  given by

$$\bar{\alpha}(m+A) = \left\{ egin{array}{ll} 0 & ext{if } m \in A \\ \sup \{ lpha(k) | k \in m+A \} & ext{if } m 
otin A \end{array} 
ight.$$

can determined the pseudonormed quotient R-module, denoted by  $\bar{\alpha}_{M/A}$ .

PROPOSITION 5. If  $\alpha_M$  is a pR-module and if m and m' are elements of M satisfying  $\alpha(m) \neq \alpha(m')$ , then  $\alpha(m+m') = \max\{\alpha(m), \alpha(m')\}$ .

*Proof.* Without loss of generality, we may assume that  $\alpha(m) > \alpha(m')$ . Then by (5),  $\alpha(m+m') \leq \alpha(m)$ . Now

$$\alpha(m) = \alpha(m + m' - m')$$

$$\leq \max\{\alpha(m + m'), \alpha(-m')\}$$

$$= \max\{\alpha(m + m'), \alpha(m')\}$$

$$= \alpha(m + m')$$

because  $\alpha(m) > \alpha(m')$ . Hence  $\alpha(m) = \alpha(m+m')$  and therefore  $\alpha(m+m') = \max\{\alpha(m), \alpha(m')\}$ .  $\square$ 

THEOREM 6. Let

$$\delta_0 \xrightarrow{\tilde{i}} \alpha_M \xrightarrow{\tilde{f}} \beta_N \xrightarrow{\tilde{g}} \gamma_P \xrightarrow{\tilde{j}} \delta_0$$

be a short exact sequence of pR-homomorphisms. Then

- (a)  $im\widetilde{i} = \ker\widetilde{f} = \alpha_{M'}$ ,
- (b)  $\operatorname{im} \widetilde{f} = \ker \widetilde{g} \supseteq \beta_{N'}$ ,
- (c)  $\widetilde{g}$  is epic,

where  $M' = \{m \in M | \alpha(m) = 0\}$  and  $N' = \{n \in N | \beta(n) = 0\}$ .

Proof. (a): Assume that  $\widetilde{\text{im}i} = \ker \widetilde{f} \neq \alpha_{M'}$ . If  $\ker \widetilde{f} \not\subseteq \alpha_{M'}$ , then there is some  $m \in \ker \widetilde{f}$  such that  $m \notin \alpha_{M'}$ . Hence  $m \in \widetilde{\text{im}i}$  and so  $\widetilde{i}(c) = m$  for some  $c \in \delta_0$ . Since  $\widetilde{i}$  is a pR-homomorphism, therefore  $\alpha(m) = \alpha(\widetilde{i}(c)) \leq \delta(c) = 0$ , which implies that  $\alpha(m) = 0$ . Hence  $m \in \alpha_{M'}$ , a contradiction.

If  $\ker \widetilde{f} \not\supseteq \alpha_{M'}$ , then there exists  $m \in \alpha_{M'}$  such that  $m \not\in \ker \widetilde{f}$ . Thus  $\alpha(m) = 0$ , and so  $\beta(\widetilde{f}(m)) \leq \alpha(m) = 0$  which implies that  $\beta(\widetilde{f}(m)) = 0$ . Hence  $m \in \ker \widetilde{f}$ . This is a contradiction. Consequently we have the result (a).

- (b): Since  $\widetilde{g}$  is a pR-homomorphism, we have that for any  $n \in \beta_{N'}$ ,  $\gamma(\widetilde{g}(n)) \leq \beta(n) = 0$ , and that  $\gamma(\widetilde{g}(n)) = 0$ . This implies that  $n \in \ker \widetilde{g}$ .
- (c): For any  $x \in \gamma_P$ , we have that  $\delta(\widetilde{j}(x)) = 0$ . Thus  $x \in \ker \widetilde{j}$ , and so  $\ker \widetilde{j} = \gamma_P = \operatorname{im} \widetilde{g}$ . Therefore  $\widetilde{g}$  is epic.  $\square$

DEFINITION 7. Let  $\widetilde{f}: \alpha_M \to \beta_N$  be a pR-homomorphism. Then  $\widetilde{f}$  is called a *pseudonormed weak isomorphism*, denoted  $\alpha_M \cong_w \beta_N$ , if  $f: M \to N$  is an R-isomorphism.

THEOREM 8. Let

$$\delta_0 \xrightarrow{\tilde{i}} \alpha_M \xrightarrow{\tilde{f}} \beta_N \xrightarrow{\tilde{g}} \gamma_P \xrightarrow{\tilde{j}} \delta_0$$

be a short exact sequence of pR-homomorphisms. Then we have

$$\bar{\alpha}_{M/\ker \tilde{f}} \cong_w \bar{\beta}_{im\tilde{f}/N'}$$
 and  $\bar{\beta}_{N/\ker \tilde{g}} \cong_w \bar{\gamma}_{im\tilde{g}/P'}$ 

where  $N' = \{a \in N | \beta(a) = 0\}$  and  $P' = \{x \in P | \gamma(x) = 0\}$ .

*Proof.* Define a map  $\varepsilon: M \to imf/N'$  by  $\varepsilon(m) = \widetilde{f}(m) + N'$ . For any  $m_1, m_2 \in M$  and  $r_1, r_2 \in R$ ,

$$\begin{split} \varepsilon(r_1 m_1 + r_2 m_2) &= \widetilde{f}(r_1 m_1 + r_2 m_2) + N' \\ &= (r_1 \widetilde{f}(m_1) + r_2 \widetilde{f}(m_2)) + N' \\ &= (r_1 \widetilde{f}(m_1) + N') + (r_2 \widetilde{f}(m_2) + N') \\ &= r_1 \varepsilon(m_1) + r_2 \varepsilon(m_2). \end{split}$$

Thus  $\varepsilon$  is an R-homomorphism. Since  $\inf \widetilde{f} = \ker \widetilde{g}$ , therefore  $\varepsilon$  is an epic and the derived map  $\varepsilon_0 : M/\ker \varepsilon \to \inf \widetilde{f}/N'$  is an isomorphism. Note that

$$ker\varepsilon = \{m \in M | \varepsilon(m) \in N'\}$$

$$= \{m \in M | \widetilde{f}(m) + N' \subset N'\}$$

$$= \{m \in M | \widetilde{f}(m) \in N'\}$$

$$= \{m \in M | \beta(\widetilde{f}(m)) = 0\}$$

$$= ker \widetilde{f}.$$

Hence  $M/\ker \widetilde{f} \cong im\widetilde{f}/N'$ . Let  $m + \ker \widetilde{f} \in M/\ker \widetilde{f}$ . If  $m \in \ker \widetilde{f}$ , then  $\bar{a}(m + \ker \widetilde{f}) = 0$ . By the definition of  $\ker \widetilde{f}$ , we have  $\beta(\widetilde{f}(m)) = 0$  and so  $\widetilde{f}(m) \in N'$ . Thus  $\bar{\beta}(\widetilde{f}(m) + N') = 0$ . If  $m \in M - \ker \widetilde{f}$ , then  $\beta(\widetilde{f}(m)) > 0$  and  $\widetilde{f}(m) \notin N'$ . For every  $a' \in im\widetilde{f}$ , there exists  $m' \in M$  such that  $\widetilde{f}(m') = a'$ . Thus

$$\begin{split} \bar{\beta}(\widetilde{f}(m)+N') &= \sup\{\beta(a')|a'\in\widetilde{f}(m)+N'\} \\ &= \sup\{\beta(f(m'))|\widetilde{f}(m')\in\widetilde{f}(m)+N'\} \\ &= \sup\{\beta(f(m'))|\widetilde{f}(m'-m)\in N'\} \\ &= \sup\{\beta(f(m'))|m'-m\in \ker\widetilde{f}\} \\ &= \sup\{\alpha(m')|m'\in m+\ker\widetilde{f}\} \\ &= \bar{\alpha}(m+\ker\widetilde{f}). \end{split}$$

Hence  $\bar{\beta}(\tilde{f}(m)+N') \leq \bar{\alpha}(m+\ker\tilde{f})$  for any  $m+\ker\tilde{f} \in M/\ker\tilde{f}$ . Consequently, we have  $\bar{\alpha}_{M/\ker\tilde{f}} \cong_w \bar{\beta}_{im\tilde{f}/N'}$ . By the same manner, we get  $\bar{\beta}_{N/\ker\tilde{g}} \cong_w \bar{\gamma}_{im\tilde{g}/P'}$ .  $\square$ 

THEOREM 9. Consider the commutative diagram of two exact sequences of pR-homomorphisms



- (a)  $\tilde{\varphi}$  is quasi-monic and  $\tilde{\psi}$  is epic.
- (b) If  $\tilde{\varphi}$  is epic, then  $\tilde{\psi}$  is quasi-monic.

Proof. (a): Let  $m \in \ker \tilde{\varphi}$ . Then  $\tau(\tilde{\varphi}(m)) = 0$  and so  $\tilde{\varphi}(m) \in \tau_{Q'}$ , where  $Q' = \{q \in Q | \tau(q) = 0\}$ . Since  $\beta(\tilde{f}_1(\tilde{\varphi}(m))) \leq \tau(\tilde{\varphi}(m)) = 0$ , we have  $\tilde{f}_1\tilde{\varphi}(m) \in \beta_{N'}$ , where  $N' = \{n \in N | \beta(n) = 0\}$ . Using the commutativity of the diagram, then  $\tilde{f}(m) = \tilde{f}_1\tilde{\varphi}(m) \in \beta_{N'}$ . Thus  $m \in \ker \tilde{f} = \alpha_{M'}$ , where  $M' = \{m \in M | \alpha(m) = 0\}$ . Therefore  $\ker \tilde{\varphi} = \alpha_{M'}$ , i.e.,  $\tilde{\varphi}$  is quasi-monic. As  $\tilde{g}_1$  is epic,  $\psi$  is also epic by commutativity of the diagram, and so  $\tilde{\psi}$  is epic.

(b): Assume that  $\tilde{\varphi}$  is epic. Let  $p \in \ker \tilde{\psi}$ . Then  $\pi(\tilde{\psi}(p)) = 0$  and so  $\tilde{\psi}(p) \in \pi_{T'}$ , where  $T' = \{t \in T | \pi(t) = 0\}$ . Since  $\tilde{g}$  is epic, there exists  $n \in N$  such that  $\tilde{g}(n) = p$ . It follows from the commutativity of the diagram that  $\tilde{g}_1(n) = \tilde{\psi}\tilde{g}(n) = \tilde{\psi}(p) \in \pi_{T'}$ . Thus  $n \in \ker \tilde{g}_1 = \operatorname{im} \tilde{f}_1$  and so there is an element  $q \in Q$  with

 $\tilde{f}_1(q)=n$ . Since  $\tilde{\varphi}$  is epic, we have  $\tilde{\varphi}(m)=q$  for some  $m\in M$ . By commutativity of the diagram we get  $\tilde{f}(m)=\tilde{f}_1\tilde{\varphi}(m)=\tilde{f}_1(q)=n$ . It follows that  $n\in im\tilde{f}=ker\tilde{g}$ , so that  $\gamma(\tilde{g}\tilde{f}(m))=\gamma(\tilde{g}(n))=\gamma(p)=0$ . Thus  $p\in\gamma_{P'}$ , where  $P'=\{p\in P|\gamma(p)=0\}$ . We finally obtain  $ker\tilde{\psi}=\gamma_{P'}$  and  $\tilde{\psi}$  is quasi-monic.  $\square$ 

## References

- 1. I. Fleischer, Maximality and Ultracompleteness in Normed Modules, Proc. Amer. Math. Soc. 9 (1958), 151-158.
- 2. J. S. Golan, Making modules fuzzy, Fuzzy Sets and Systems 32 (1989), 91-94.
- 3. N. Jacobson, Basic algebras II, W. H. Freeman and Company (1989).
- 4. C. V. Negoita and D. A. Ralescu, Applications of fuzzy sets to system analysis, Birkhauser, Basel (1975).
- 5. F. Pan, Fuzzy finitely generated modules, Fuzzy Sets and Systems 21 (1987), 105 113.
- 6. F. Pan, Fuzzy quotient modules, Fuzzy Sets and Systems 28 (1988), 85 90.
- 7. F. Pan, Finitely fuzzy value distribution of fuzzy vector spaces and fuzzy modules, Fuzzy Sets and Systems 55 (1993), 319 322.