Mode of Action and Chemical Modification of an Alkaline Xylanase (CX-III) from Alkalophilic Cephalosporium sp. RYM-202

호알카리성 Cephalosporium sp. RYM-202로부터 분리된 alkaline xylanase (CX-III)의 작용 양상 및 화학적 변환

  • Kang, Myoung-Kyu (Department of Environmental Technology, Tonghae Junior College) ;
  • Maeng, Pil-Jae (Department of Microbiology, Chungnam National University) ;
  • Rhee, Young-Ha (Department of Microbiology, Chungnam National University)
  • 강명규 (동해전문대학 환경공업과) ;
  • 맹필재 (충남대학교 자연과학대학 미생물학과) ;
  • 이영하 (충남대학교 자연과학대학 미생물학과)
  • Published : 1996.12.30

Abstract

The hydrolysis products formed from birchwood xylan by the action of an alkaline xylanase (CX-III) from alkalophilic Cephaloxporium sp. RYM-202 were xylobiose and xylooligosaccharides polymerized with more than 4 sugar molecules. This enzyme was not active on xylobiose but readily attacked xylotriose accumulating xylobiose as a major product. The predominant end-products from xylotetraose by CX-III were xylobiose and xylotriose. These results indicate that the enzyme is typically endo-type xylanase possessing transglycosidase activity. Chemical modification of CX-III with N-bromosuccinimide revealed that two tryptophan residues per molecule of CX-III were essential for its catalytic activity on xylan. On the other hand, iodoacetamide and diethylpyrocarbonate did not influence the activity of the enzyme, suggesting that cysteine and histidine residues are not involved in the active site of this alkaline xylanase.

호알카리성 진균 Cephalosporium sp. RYM-202가 생산하는 alkaline xylanase (CX-III)의 작용에 의해 xylan 기질로부터 생성되는 주요 가수분해 산물은 xylobiose와 중합도가 4이상인 xylooligosaccharides이었다. 이 효소는 xylobiose에 대한 분해능을 가지고 있지 않지만 xylotriose로부터는 xylobiose를, xlyotetraose로부터 xylobiose와 xylotriose를 주산물로 형성하였다. 이러한 결과들은 CX-III가 transglycosidase 활성을 소유하는 전형적인 endo-type xylanase임을 보여준다. N-bromosuccinimide에 의한 CX-III의 화학적 변환 실험결과 효소 1분자 당 2개의 tryptophan 잔기가 활성에 관여하는 것으로 나타났다. 그러나 iodoacetamide 및 diethylpyrocarbonate에 의한 효소활성의 저해효과는 나타나지 않음으로써 이 효소의 활성부위에 cysteine과 histidine 잔기가 필수적이지 않음이 확인되었다.

Keywords

References

  1. Biotechnol. Lett. v.15 Xylanase active at high pH from an alkalotolerant Cephalosporium species Bansod, S.M.;Dutta-Choudhary, M.;Srinivasan, M.C.;Rele, M.V.
  2. Biotechnol. Bioeng. v.31 Specific and nonspecific glucanases from Trichoderma viride Beldman, G.;Voragen, A.G.J.;Rombouts, F.M.;Searle-Van Leeuwen, M.F.;Pilnik, W.
  3. Trends Biotechnol. v.3 Microbial xylanolytic systems Biely, P.
  4. Eur. J. Biochem. v.119 Mechanisms of substrate digestion by endo1,4-$\beta$-xylanase of Cryptococcus albidus. Lysozyme-type pattern of action Biely, P.;Vrsanska, M.;Kratky, Z.
  5. Biotechnol. Lett. v.17 A cellulase-free xylanase from alkali-tolerant Aspergillus fischeri Fxn1 Chandra Raj, K.;Chandra, T.S.
  6. Biochim. Biophys. Acta. v.912 Essential tryptophan residues in the function of cellulase from Schizophyllum commune Clarke, A.J.
  7. Biochim. Biophys. Acta. v.1041 Chemical modification of xylanases: evidence for essential tryptophan and cysteine residues at the active site Deshpande, V.;Hinge, J.;Rao, M.
  8. Microbiol. Rev. v.55 Domains in microbial $\beta$-1,4-glycanases: sequence conservation, function, and enzyme families Gilkes, N.R.;Henrissat, B.;Kilburn, D.G.;Miller, R.C. Jr.;Warren, R.A.J.
  9. Can. J. Microbiol. v.31 Two types of xylanases of alkalophilic Bacillus sp. No. C-125 Honda, H.;Kudo, T.;Ikura, Y.;Horikoshi, K.
  10. FEMS Microbiol. Rev. v.18 Alkaliphiles-from an industrial point of view Horikoshi, K.
  11. Biochem. J. v.167 Chemical modification of a cellulase from Aspergillus niger Hurst, P.L.;Sullivan, P.A.;Shepherd, M.G.
  12. Jour. Microbiol. v.33 Purification and characterization of a xylanase from alkalophilic Cephalosporium sp. RYM-202 Kang, M.K.;Kwon, T.I.;Yang, Y.K.;Rhee, Y.H.
  13. Appl. Environ. Microbiol. v.62 Purification and characterization of two xylanases from alkalophilic Cephalosporium sp. strain RYM-202 Kang, M.K.;Maeng, P.J.;Rhee, Y.H.
  14. Kor. J. Mycol. v.21 Partial purification and some properties of carboxymethyl cellulases from alkalophilic Cephalosporium sp. RYM-202 Kang, M.K.;Park, H.M.;Rhee, Y.H.;Kim, Y.S.;Kim, Y.K.
  15. Biotechnol. Lett. v.17 Carboxymethyl cellulases active and stable at alkaline pH from alkalophilic Cephalosporium sp. RYM-202 Kang, M.K.;Rhee, Y.H.
  16. Biochem. J. v.261 Chemical modification of a xylanase from a thermotolerant Streptomyces Keskar, S.S.;Srivasan, M.C.;Deshpande, V.V.
  17. Kor. J. Microbiol. v.32 Mode of action and active site of xylanase II from Trichoderma koningii ATCC 26113 Kim, H.J.;Kang, S.O.;Hah, Y.C.
  18. Crit. Rev. Biotechnol. v.13 Lignocellulose biotechnology: current and future prospects Kuhad, R.C.;Singh, A.
  19. J. Biol. Chem. v.238 Inactivation of myosin by 2,4-dinitrophenol and protection by adenosine triphosphate and other phophate compounds Levy, H.M.;Leber, P.D.;Ryan, E.M.
  20. Appl. Environ. Microbiol. v.59 Purification and characterization of a new xylanase (APX-II) from the fungus Aureobasidium pullulans Y-2311-1 Li, X.L.;Zhang, Z.Q.;Dean, J.F.D.;Eriksson, K.E.L.;Ljungdahl, L.G.
  21. Chemical reagents for protein modification Vol. I Lundblad, R.L.;Noyes, C.M.
  22. FEMS Microbial. Rev. v.13 TCF Mill Trial on softwood pulp with Korsnas thermostable and alkaline stable xylanase T6 Lundgren, K.R.;Bergkvist, L.;Hogman, S.;Joves, H.;Eriksson, G.;Bartfai, T.;van der Laan, J.;Rosenberg, E.;Shoham, Y.
  23. Anal. Chem. v.31 Use of dinitrosalicylic acid reagent for determination of reducing sugar Miller, G.L.
  24. Arch. Biochem. Biophys. v.91 A study of methods for preparing oligosaccharides from cellulose Miller, G.L.;Dean, J.;Blum, R.
  25. Agric. Biol. Chem. v.49 Purification and properties of three types of xylanases induced by methyl $\beta$-xyloside from Streptomyces sp Murai, M.;Nakanishi, K.;Yasui, T.
  26. Appl. Environ. Microbiol. v.59 Purification and some properties of an alkaline xylanase from alkalophilic Bacillus sp. strain 41M-1 Nakamura, S.;Wakabayashi, K.;Nakai, R.;Aono, R.;Horikoshi, K.
  27. Agric. Biol. Chem. v.49 Purification and characterization of xylanases from alkalophilic thermophilic Bacillus spp Okazaki, W.;Akiba, T.;Horikoshi, K.;Akahoshi, R.
  28. Enzyme Microb. Technol. v.14 Mechanism of hemicellulose-directed prebleaching of kraft pulps Paice, M.G.;Gurnagul, N.;Page, D.H.;Jurasek, L.
  29. Kor. J. Microbiol. v.31 Purification and characterization of xylanases from alkalophilic Streptomyces sp. S-510 Rhyum, S.B.;Kang, M.K.;Maeng, P.J.;Park, H.M.;Rhee, Y.H.
  30. Biotechnol. Bioeng. v.37 The interaction of xylanases with commercial pulps Senior, D.J.;Mayers, P.R.;Saddler, J.N.
  31. Enzyme Microb. Technol. v.7 Purification and characterization of two D-xylanases from Trichoderma harzianum Tan, L.U.L.;Wong, K.K.Y.;Yu, E.K.C.;Saddler, J.N.
  32. Enzyme Microb. Technol. v.14 Two major xylanases of Trichoderma reesei Tenkanen, M.;Puls, J.;Poutanen, K.
  33. Appl. Environ. Microbiol. v.58 Purification, properties, and partial amino acid sequence of thermostable xylanases from Streptomyces thermoviolaceus OPC-520 Tsujibo, H.;Miyamoto, K.;Kuda, T.;Minami, K.;Sakamoto, T.;Hasegawa, T.;Inamori, Y.
  34. Appl. Environ. Microbiol. v.57 Lowmolecular-weight xylanase from Trichoderma viride Ujiie, M.;Roy, C.;Yaguchi, M.
  35. FEMS Microbiol. Rev. v.13 Xylanases in bleaching: From an idea to the industry Viikari, L.;Kantelinen, A.;Sundquist, J.;Linko, M.
  36. Biochim. Biophys. Acta. v.704 Reaction pathways of substrate degradation by an acidic endo-l,4-$\beta$-xylanase of Aspergillus niger Vrsanska, M.;Gorvacheva, I.V.;Kratky, A.;Biely, P.
  37. Oligosaccharides;Carbohydrate analysis: a practical approach White, C.A.;Kennedy, J.F.;Chaplin, M.K.(ed.);Kennedy, J.F.(ed.)
  38. Crit. Rev. Biotechnol. v.12 Trichoderma xylanases; their properties and application Wong, K.K.;Saddler, J.N.
  39. Microbiol. Rev. v.52 Multiplicity of $\beta$-1,4-xylanase in microorganisms: function and applications Wong, K.K.Y.;Tan, L.U.L.;Saddler, J.N.