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Embodiment of all-optical switching phenomena

on a GaAs waveguide

Sangjae Lee’

Abstract

Based on the transmission of coupled gap solitons in nonlinear periodic media, we present an
all-optical switching scheme which has a novel architecture and principle. The proposed switch with
an extremely small switching element can be realized on a semiconductor waveguide. We here
investigate the switching performance with .a GaAs waveguide in order to give criteria for the
experimental realization of the all-optical switching phenomena. We also suggest a-variation of an
index-matching scheme to solve the technical problem such as the input-energy coupling into a

periodic waveguide.

I . Introduction

Recent work™ has shown that a nonlinear

periodic dielectric medium ( NPDM ) with x®
nonlinearity can transmit an input laser beam
with a certain intensity although its frequency is
located within the stop gap. Such optical fields
transmitted in the NPDM is referred to as gap
solitons because their envelopes have hyperbolic
secant shapes with solitary-propagating properties.
The existence of stationary solitons in a NPDM
was first investigated by Chen and Mills? by
use of a computer simulation in layer-by-layer
Later, de Sterke et al®™ and
Christodoulides et al® showed that gap solitons
can propagate in a NPDM with a group velocity

calculation.

much slower than the usual group velocity
determined by the medium’s refractive-index

dispersion. In particular, de Sterke et al/®”
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derived a nonlinear Schrodinger equation ( NLSE )
for the gap solitons by using an envelope-function
approach. On the associated dipersion curve
obtained form Kronig-Penny model, a stationary
gap soliton will be positioned at the Brillouin
zone edge where the group velocity vanishes.
However, a moving gap soliton has somehow
higher peak intensity, leading to larger shift of
the stop gap than a stationary gap soliton does.
Consequently, the associated dispersion relation
will be governed by a nonzero-slope point out of
the Brillouin zone, thereby allowing the pulse to
attain wave-momentum, giving rise to a traveling
wave. Meanwhile, Christodoulides et al®™™¥ and
Wabnitz® have used a coupled-mode formalism
to analyze the electrodynamics in a NPDM. The
electric fields in a periodic structure are
decomposed into a forward-propagating mode and
a backward-propagating mode. The periodic index,
however, is modified by the inte_nsity—dependent
index due to the third-order nonlinearity. As a
result, a set of coupled-wave equations will

describe the propagation of the two contradirectional
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modes, which are coupled by a cross—phase
modulation as well as by a: distributed feedback
mechanism. It was found®® by means of the
massive Thirring model in a quantum field theory
that they have with
square-root hyperbolic-secant envelopes.

solitary-wave solutions

We are now interested in the propagation of
two orthogonally-polarized solitary modes in a

NPDM with x(s) nonlinearity. In the previous
paper[gl’m], all-optical
switch based on the transmission of coupled gap
solitons in a NPDM. Specifically, we showed that
two orthogonally polarized pulses can copropagate
as a coupled gap soliton through a NPDM, while
each pulse alone will * be strongly reflected
becauée its amplitude is less than that needed to
propagate a gap soliton in a single polarization.
Based on the results,
all-optical switching scheme.
paper, we investigate the switching performance
with a GaAs waveguide®as the NPDM in order
to give criteria for the experimental realization of
the all-optical switching ‘phenomena. We also
consider a technical problem in a specific periodic
waveguide. To be specific, it would be difficult to
into the periodic
waveguide because of the reflections at the

we have proposed the

we presented a new
In the present

couple the input energy
interfaces between the Bragg grating region and
the surrounding region. As a solution for such a
problem, we suggest a variation of an index-matching
originally proposed for

scheme, which was

out-of-gap operation in a linear periodic structure
by Haus™".

The body of the paper is comprised of the
following sections. In Sec. I, we study the

spatio-temporal evolutions of two orthogonally

polarized modes in a NPDM with x(3) nonlinearity.
Employing a coupled-mode approach, we find the
four coupled differential equations describing the
propagation of the four orthogonally polarized
modes, and then we analyze the linear and the
nonlinear interactions between fhe four modes.
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By means of an envelope-function approach, we
derive the coupled NLSEs governing the nonlinear
dynamics of the electric fields in a NPDM, and
then we show that the coupled NLSEs have
coupled-gap solitary-wave solutions in a simple
case. In Sec. III, we present an all-optical
switching scheme based on the transmission of
coupled gap solitons. In particular, we investigate
the feasibility of the proposed switch when the
switching element is embodied by a corrugated
GaAs waveguide. The technical problem such as
the input-energy coupling into a periodic waveguide
is also treated. Finally we discuss the results of
the present paper in Sec. IV.

ll. Basic equations for optical waves with
two orthogonally polarized modes in a
nonlinear periodic dielectric medium

We here study the propagation of two pulses
with orthogonal polarizations in a NPDM with
2 nonlinearity. Before proceeding to the main
derivations, we take several assumptions given as
follow. First, the plane Wave approximation and
the slowly varying envelope approximation underpin
the entire theoretical development. The transverse
profiles of the electric fields is assumed to remain
constant during its propagation in a lossless
waveguide. Consequently, the general expression

for total electric field is

E (9,20 = _% (LE s (2, 1) ®ean
+E (2, t)e T OIF (x,5) £
+[Efy(2, t)el'(lz—mt)+Eby(z’ e —(lz+wl)]
Fy(z,5) y+C.C}
(1

where E,, is the envelope of x-polarized,

forward-propagating field, E, is the envelope of

y-polarized, backward-propagating field, and so
on. The influence of transverse variation of field
will be approximately included in the effective area
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and then in the nonlinear coefficients

7 = 3awox P/dncA 45 .Second, the off-diagonal

elements of linear dielectric tensor will be

neglected, and x-and y-axis in waveguide
coincide the ordinary and the extraordinary axis
of birefringent medium, respectively. Thus there
is no linear coupling between copropagating
Third, it is

perturbation  of

orthogonally-polarized components.
required that the
refractive index be small. Suppose that

periodic
n(2)
and n(z) are the linear periodic refractive
index along x-axis and y-axis respectively,'and

they have the same modulation depths. Then

they can be expressed as
nlz2) = mg+ nlcos(% 2)
nfz) = mny+ n,cos(—zfz) ,

(2)

where the modulation depth %, of refractive

index is assumed to be so small that

2r
nl x ndA2ngn 1COS(7 z)

and 7 = n%}.+2n0ynlcos(‘%~i£z) .

Using a coupled mode approach, we find a set of
coupled equations given as follows!

aEf, + 1 aEfx
9z Vg Ot
== iXXE € 2idkz + i}’(fE/le +2'E bx'z

+ 2142+ 21 ,|DE p+i% vE 1B B,

abe _ 1 abe
oz Vg O

=—ix,E ;e " + iy (IE 1, |* +21E 4|
BB 0+ £ VB WOE st if 7E 4 E W

- aEfy
Vg OF

=ix,E ye 4 1 iy(IE (2 +2AE 1
+ 1B+ 2 BBy +id yE 1B B,

IE,,
dz

dE by 1 oE by
0z Vg Ot
=—ix,E sy e Hiy(|E |2 42|E 4

+2 1B+ 2 |EWPE +i yE 4B B,

3

where

= L el - =L
Vo= T Ve ne ' Y XTI AL
Ak=k——z,anddl=l——ﬁ.

The first terms in the right side of Eq.(3) indicate
that there exist the linear couplings between the
two parallel polarized components due to the
feedback mechanism in the periodic structure. All
four components, on the hand, are
nonlinearly coupled with each other through the
combined actions of nonlinearity and birefringence,
giving rise to nonlinear phase shifts, degenerate
(DFWM), and energy
fluctuations. For example, the second terms in

other

four-wave  mixings
Eq.(3) are responsible for self-phase modulation
(SPM) while the third, the fourth, and the fifth
terms are all responsible for cross-phase modulation
(XPM) of which the coefficients 2 and 2/3
correspond to the interaction between the parallel
polarized components and to the interaction
between the polarized fields,
respectively. The last terms in Eq.(3) account for
the phase-matched DFWM. Fig. 1 shows how
each of four components interact nonlinearly each
in a NPDM. Note that all
fluctuations are neglected in Eq.(3).

In order to study the dynamic behavior of the
coupled gap solitons, we use an envelope—function
approach to derive the coupled NLSEs in a
NPDM. Following de Sterke et al'™" the coupled
NLSEs are derived by expressing the electric
field E(z, 8 in terms of different length scales,

orthogonally

other energy

~-87~
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Fig. 1. Tllustrative diagram of nonlinear interactions
between the four modes in a nonlinear

periodic medium.

2,=p"z and time scales, {,=p" ¢

E(z,)=p(e x+ey) +r¥eyx+eyy)+- .
Let a, and a, be the slowly varying envelopes
of two pulses with orthogonal polarizations.
Substituting E (z, 9 into* the Maxwell equations
and then calculating order by order for »”", one
can obtain the coupled nonlinear differéntial
equations by combining each results for =1, 2,
and 3. The coupled nonlinear differential equations
governing temporal evolutions of two envelopes
are given as follows:

. da, .. 9%,
T +—%a),m.r 727 + (@ pdad?

+ pla)) 2)a,+a,,.,,a,2,a;e2i(°'"_""’)' =0

da,, 1 . 9% 2
92y 1 y
=57 + 7 Om o2 +(a pmla

« Wom—0mit _

+a mla)Da,+a galaie

4)

where
L
@ =6 mu,,,,,LfO % D2l mel2 )l dzy,

L
@y =470 L [ 2P (20)10 mel20)] Y0 mlz0)l a2

L
@ = 470w L [ 2 P(20)l0 mlz20)l 0 mlz0)l “dzo .

= [27(0 s =20 ) 2/ © s

L
Lfo 1P(z0)eilz0)02(20)dz, ,

@ e is the curvature of the photonic band, and

@m and ¢, are the fast varying Bloch functions

along x- and y-axis, respectively. The cross—coupling

coefficients x‘sg‘,, are related to the self-coupling

. 1
coefficient xf,i)m by x%=xi§3¢y=x§&=§x& .

In the present paper we deal mainly with the
in which the (called the
analogous four-wave-mixing term) in Eq. (4)
can be neglected. It is valid if x and y-polarized

case last terms

fields are in an anisotropic medium. For such
cases, isolated x- and y-polarized solitons will
The

coupled x- and y-polarized solitons, however,

propagate with different group velocities.

will exhibit dragging phenomena. For the both
cases, Eq.(4) will be reduced to the coupled
NLSEs. As discussed below, in the case where the
terms of concem is not negligible, simple solutions can
be found if @ = @ »y .Suppose that the medium and
pulse characteristics are identical for TE and TM
mode with a slightly different frequency, then

, ,

P Py s O=Wps =Wy , Gy =Wy , and

thus @ ,=@ g™ = % @ my .In this case the

envelope functions of gap solitons can be further

simplified, giving

a=a,=a,~ Y 3/5A sech(B z)e '* ,

where A=y —28/e,, B=y 28w, .

In the general case of moving solitons, the solutions

give

a=a,=a.~\V 3/5Ae %7 gech B (z2—v,d) ,
(5)

and

where
A={=20an, B,=\—2lon".
B,=V2dlw,", v,=\2dw,’
and the center frequency of soliton is w .= w,+8+4.
The factor 8+4 corresponds to the frequency

detuning of the pulse center frequency from the
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edge frequency of the stop band. We note that
our solution can be straight-forwardly extended
to the case where the analogous four-wave-mixing
(AFWM) negligible  provided
@ = W,. In this case there is also a coupled

ferm is not

soliton solution where a, is proportional to a,.
In fact, with @, proportional to a,, the AFWM
term would simply give rise to an effective change
of coefficients of the bracketed terms in Eq.(4). For
example, the case where a,> a, discussed above,
would have a solution of

a= a,= a,= (1/V2) A sech( Bz)e “instead.
. All-optical switching phenomena in

GaAs waveguides

We now present a new all-optical switching
The
scheme and principle are different from the
studied in the
. In our proposed switching scheme,

scheme based on the previous results.

intensity-dependent  switch

literature'™?

we makes use of the fact from Eq.(5) that two
orthogonal \f %A sech pulses can copropagate as
coupled gap solitons due to cross-coupling x©

nonlinearity although one \/% A sech pulse will

be strongly reflected. A single \/g Asech pulse

will not propagate through the medium because in
the formalism here, the condition required to
propagate a gap-soliton pulse in a single

polarization is given by a pulse with amplitude A,
ie. a Asech pulse. Thus a “[ % Asech pulse with

an amplitude smaller than A will be strongly
reflected. This proposed light-by-light switch is
shown in Fig.2. The main part of the device
consists simply of a very small switching element
—GaAs waveguide, and two polarization beam
splitters (PBS’s). In the pulse generation part, a

\/—g Asech pulse is divided by a PBS into two

E Asech pulses which are orthogonally polarized

with respect to each other. The two synchronized
pulses—the signal S and control C are then
combined at another PBS, and coupled into the
GaAs waveguide. S will be transmitted through
the waveguide only with the presence of C due
to the characteristic of coupled gap solitons. S
then is separated from the coupled state by
another PBS at the waveguide output. Compared
with the other optical switch, the proposed switch
has some potential advantages. For example, the
control pulse in the proposed switch will switch
directly the signal pulse, which means it can be
exploited as a true logic gate. Moreover, it is
very stable for the external conditions such as
sound and heat waves, etc. Remind that in a
Mach~ Zehnder
" m-phase shift” is required for a good switching
performance. Furthermore, the proposed switch

interferometer the accurate

with an extremely small switching element can
be realized on a semiconductor waveguide, and
thus integrated
circuits.

it can be easily into optical

Pulse Generation

Fig. 2. Schematic of lght-by-light switching
based on the transmission of coupled
gap solitons. A.O, acousto-optical.

Several kinds of pulse and structure parameters

_89_
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will control a switching operation in.the proposed
scheme. A key relation that connects the pulse
parameters and the structure parameters is
We=wp+8+d. First of all, we need . (center
frequency of pulse) to be located around w,
{band-edge frequency) inside the stop gap. Since
@, {midgap frequency) and 4w (bandwidth of
stop gap) are determined by A (spatial period of
structure} and Jdn (index-modulation depth),
respectively, one can adjust @, =w,+4dw/2 to a
tuning range of the source laser by an appropriate
design of A and 4dn. Let us define a total detuning
by D= [8+d=lwo,~w.], which indicates a
separation of @, from the band-edge. D will be, of
course, controlled by tuning of . in a tunable
laser. As D decreases with the fixed peak
intensity, r, (temporal width) should be shortened
and the gap solitons will propagate in NPDM
with a higher group velocity. For good switching
performance, we require that w. be far enough
from the edge so that the entire pulse spectrum
is within the stop band. Let us call this
requirement the detuning condition. From the
above relations, we find the detuning condition
given as follows:

D = |8+422n( pulse~ spectrum)/2

= 2n/ A D+9)

= D >-0.9766.
()

As will be seen later, such a detuning

condition will restrict significantly the allowed
range of parameters. Meanwhile, {%_ A {peak
amplitude) influences r, (temporal width) and
also o, (spatial width). First,
proportional to A 6,=V w, [a./A from the

relations of the soliton parameters given in the

0, is inversely

previous section), Basically, L (the length of
NPDM) should be designed such that it exceeds

- %.

at least ¢,. In addition, for a good "off-condition”
in the switch, we require enough length of

NPDM for a sole E A sech puise to decay out

sufficiently at the output end of NPDM. The
waveguide length needed for a coverage of the
spatial width, however,
off-state. Second, the

K=|A1>) described by r,=1/z,/%1(% 1-D)

is very strong especially around the stationary
soliton condition. Note that the spectrum of the
gap soliton will be restricted by Jdw and

will provide a good
dependence of 1, on

furthermore the detuning condition. Peculiarly,
temporal width as well as the spatial width will
with (peak intensity)
because of a dependence of v, (group velocity)

on I. The wv, is governed by the relation

v,=\/‘w",,,(a,,, I-2D) and will mainly influence a
switching latency. The v, will be usually far

below the nondispersive group velocity where the

contract increasing [

soliton characteristics vanish. Nevertheless, the
increase of the switching latency due to the slow
group velocity is not crucial in an extremely
short waveguide used in the proposed scheme.

We have done some numerical calculations to
look at the feasibility of the proposed switch. A
good candidate for the NPDM is a GaAs
waveguide, which was demonstrated by Ho et. al. to
have a strong 7 nonlinearity at 1565-166 gm ™
data, we take the
nonlinear refractive index of GaAs at 15um to
be n®=3.6x10 “em¥/ W .

Consider

From their experimental

an asymmetric corrugated GaAs
waveguide with a channel index of n,=3.26291
and a substrate index of 72,=3.14391 as shown
in Fig.3. According to computer calculation,
4r=0.11pm (the depth of corrugations) will
provide a modulation depth of dn/%n=0.1% in the
above waveguide with the channel height of
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§an

Al,,Ga, ,As 0, =32639]

AL,SGa,,.AS ny =314391
Fig. 3. Asymmetric ridge corrugated GaAs

waveguide for the switching element.

h=1.5um. For such a case, the average index #
becomes 3.23632 so that a period of d=0.23um
gives a Bragg wavelength of Ap=1.5um. The stop
gap bandwidth Jw is determined by the Bragg
structure’s refractive-index modulation depth { dn).
For dn/n=0.1%, we have dw=1.25664x10'%/ sec.
In this case, the pulse width is restricted to be
larger than 5Spsec if the entire pulse spectrum is
to be within the stop-gap bandwidth. Using the
above parameters, we investigate the pulse width
(t,) of the coupled gap soliton as a function of
() for the waveguide of
dn/n=0.1%. The I is defined as the pulse
The
dependence of r, on I would be different for
different frequency detuning from the edge of the stop
band. Let us define a normalized frequency detuning
Dy by Dy=(8+4 D/do= (lo.~w,b)/do.

The numerical results for the dependence of t,

its peak intensity

intensity inside the Bragg structure.

factor

on I is shown in Fig4 where a family of curves
are generated with different Dy values.

The region where the detuning condition is
satisfied is the unshaded region in the upper
right-hand dashed
discussed the above, the detuning condition is

comer of the line. As

satisfied when the pulse spectrum 6w, is within

o,

e
S, ~ —_——,
7 .
w DA B i ]
o ]
w D,
20 //\/\ { 1 ___,g

16 /K /\? \/‘L I [ S

1.

HGWiem)

«—— A ——

Fig. 4. Dependence of a temporal width on the
intensity for each fixed normalized
detuning at the waveguide of

dnfn=0.1%; the dashed line indicates

a limitation of pulse bandwidth in

conjunction with the center frequency

and intensity as illustrated

in the
miniature figures.

the stop band Jdw as illustrated in the insert at
the upper right corner of Fig.4. We can observe a
drastic variation of the temporal width 7, around
the condition of the stationary coupled-gap
solitons in contrast to a slow variation of 7, in
the other region. In addition to the dependence of
pulse width with pulse intensity and pulse
frequency detuning, it turmns out that the group
velocity v, of the pulse is also a strong function
of the pulse parameters. The dependence of v,
on Dy for various pulse widths is plotted as a
family of curves in Fig5. We assume that the
medium is nondispersive with the usual group
velocity given by ¢/n. The value of v, is

normalized by ¢/ ». Again, the unshaded region
in the figure indicates the region where the
detuning condition is satisfied.
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Fig. 5.Dependence of a normalized velocity
(vg/—%) on the normalized detuning for

each temporal width at the waveguide
of dn/n=0.1%; the dashed line indicates
a limitation of pulse bandwidth in
conjunction with the center frequency
and intensity as illustrated in the

miniature figures.

As an example, we see from Figd that if we
have a laser with 20 psec pulses, then a coupled
gap soliton of 20 psec width can be generated
with an intensity of larger than 1.2 GW/cm® and
a normalized frequency detuning of larger 20%
from the edge of the stop band. From Fig5, we
then see that the group velocity of the coupled
gap soliton can range from 0.088 to 0.072 of c/#n
by adjusting the normalized frequency detuning
from 20% to 30%. We also
characteristics  for  another
dnfn=1% as shown in Fig6 and Fig7. As a
modulation depth (4n) is increased, the allowed
r, and . become substantially

investigate the
waveguide  of

ranges fpr
enlarged with the stop gap. However, there is a
limitation for increasing a modulation depth

since it is technically difficult to make a deep

ol 4

.
§ 50 <[¥
& Al
&

B

& 40

D=3%

_\\\
\}
\N\ \ [1% [15% [25 |25%

4] Py e —Sepir

0 04 08 12 16 2 24
I(GW/em?)

Fig. 6. Dependence of a temporal width on the
intensity for each fixed normalized

detuning at the waveguide of dn/%=1%.

D (%)

0 002 004 006 008 01 012
V (vg/wm)

Fig. 7. Dependence of a normalized velocity
(y,/—%) on the normalized detuning for

each temporal width at the waveguide
of dn/n=1%.

corrugation on a GaAs waveguide with a finite
channel thickness.

An important factor governing the switch is
contrast defined as
Q= (Power (o5 sutey| PoWer (). When  the

the switching ratio

control pulse is off, the single \[g A sech pulse

will decay exponentially in NPDM with a decay
length given approximately by 1/B,. Using this, we
can obtain an estimate for the value of @. For
example, if the medium length is lmm, then @ can
be as small as Q < 107" for I=0.8~1.5GW /cm?

-92-
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in the waveguide with a modulation depth of
dnfn=1%. This Imm length corresponds to
4348 periods of waveguide corrugations in the
above waveguide. This is more than enough
periods for the formation of gap solitons. In
addition

inflexible parameters such as x® and @ . In

to the above parameters, there are

particular, high x® material is preferred as
NPDM since

smaller intensity of laser beam can give rise to

in a higher nonlinear material,

the same nonlinear effect. Conclusively, what kind
of pulse will be used as coupled gap solitons
depends on the laser intensity and the type of
waveguide material, '
Much higher input power than I would be
normally required for the generation of gap
soliton because of the reflections at the interfaces
between the
surrounding region. However, this power loss due

Bragg grating region and the

to reflections can be greatly reduced using the
index-matching methods suggested recently by de
Sterke™ and Haus". In particular, Haus showed
that a launched pulse can penetrate
distributed-feedback (DFB)
significant power loss provided that appropriate

into a
structure  without
matching sections are symmetrically placed before
and behind the DFB structure. Such matching
sections can be constructed by using the Smith
chart, which have been devised to calculate a
reflection coefficient in the transmission line with
a distributed impedance. Even if the matching
scheme is based on a linear coupled-mode theory,
one can make an ingenious link between our
result and the matching method. On account of
nonlinear shift of the dispersion curve, a moving
gap soliton would operate as if its center
frequency is within the allowed band. There are
two kinds of mechanisms that can make a
nonlinear shift of the photonic band. First, the
stop gap will shrink if a nonlinear refractive-index

3

change due to a positive x nonlinearity

modifies those of only alternative layers (or

grating) in the periodic structure. In this case, the
size of the stop gap will change due to a change
in index-modulation depth while the mid-gap
frequency {(or the Bragg frequency) is fixed. One,
however, can generally expect a nonlinear shift of
the stop gap based on another mechanism—the
identical nonlinear in the both
layers {or gratings). In this case, the stop gap
will shift without a change in the gap size.

index change

Consider only the latter case in the present paper.

We now

transform Haus’ scheme into an

index-matching scheme in a nonlinear periodic

structure. Let d&gy= % {(w.—wy), which is the

separation of the center frequency of the input
frequency from the mid-gap frequency. After the
nonlinear shift of the associated dispersion curve down

by & ,0dq will become Bm_w=—?—(wc—wo+6).

Accordingly, an eigen-mode propagation constant
B should be redefined as Bum=\ O pm-cu—*’
where x=nrdn/A, is a coupling constant. Note,

however, that in a strict sense, 8 is not equal to
k in the previous section. The k in coupled-mode
approach indicates an eigen-propagation constant
while B is involved in the propagation of an whole
envelope. An envelope of a gap soliton is made up of
an infinite set of partial waves, which bring about
another partial waves in a opposite-direction
mode due to reflection at the each grating.
Substituting the above &,,-cy and B, into the
Haus' results, one can find the condition for the

length of the matching section,

1= fi? $i "L Buon ( Sron—cat— Buon)]

JTxY 22— (S nom—cat— Brom 1)

{7
and the condition for the phase shift in the gap
section, 6= % —tan '[P tan(g, 0], (g)

Fig.8 shows the index-matching scheme where

the matching sections are symmetrically placed

_93_
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Fig. 8 Index-matching scheme for input-energy
coupling into Bragg structure.

before and behind the Bragg structure. If we
choose a soliton of Dy=3% and I=1.89GW [cm’

as an exaniple, we know that 7, =5psec from

Fig6 (dn/n=1%). From the above relations,
we can also easily find that x= 6.87x10* 1/m,
8 son-cu=6.88x10* 1/m, and B ,on=3.71 X10° 1/m.
From Eq.(7) and Eq.(8), we know that the length of
the matching section /; should be 43.3zm and
the phase shift of 0.32 Rad is required in the
gap section. The gap Ie;gth of 15=0.205 mm
will provide the above phasé shift for the peak
intensity. Note that the nonlinear phase shift due
to a peak intensity is given by . ¢o=2xlln?/A.
For a given temporal width, 48/x=0.1, which
guarantees a reflectivity of less than 0.02 over
the entire pulse spectrum. As an another example,
we choose coupled-gap solitons of r,=60psec

and Dy=5% for the waveguide with a

modulation depth of dn/7n=0.1% from Fig4.
The condition corresponds to I=0.287 GW/cm?,
6=6.302x10" 1/sec  and  thus
S pon-cr=6.78 x10® 1/sec. For such a case, we
find Bom=162.2 1/m with x=6.718x10° 1/m.

Therefore, for an

yielding

input-energy coupling of
coupled-gap solitons, the length of matching
sections /4 should be 0.668mm, and the length
of gaps [ should be 3mm, providing a nonlinear
phase shift of 0.216Rad.

V. Conclusion and discussion

In this paper we have provided the basic
theory governing the operation of the all-optical
switch.  Specifically, we studied the

propagation of two pulses with two orthogonal
3)

have
polarizations in a NPDM with z® nonlinearity.
First, we investigated the dynamics of the
nonlinear pulses in a microscopic viewpoint.
Using a coupledmode approach, we see how each
of four components in the orthogonally polarized
and counterpropagating modes interact nonlinearly
each other. Secondly, we found the coupled
NLSE's goveming the temporal and spatial
evolutions of the two orthogonally polarized modes,
and then their solitary-wave solutions, referred to
as coupled gap solitons. In that procedure, we have
used an envelope—function approach, which can
provide the overview regarding the behavior of the
slowly-varying envelopes in each modes. In fact,
the coupled-gap solitary~wave solutions are in
good agreement with the nonlinear shifts of
parabolic dispersion curves. One can explain the
wave-momentum Jk and the slow group velocity

vy=V 240", in accordance with the nonlinear

shift of dispersion relation. Such an important
concept underlies the whole analysis throughout
this paper.

In conclusion, we have proposed a compact
all-optical switch and also investigated its
feasibility. Its implementation is simple because
the main part is consisted simply of two PBSs
and a switching element—GaAs waveguide, which
is compact in size, Moreover the proposed device
can  potentially exhibit good  switching
performances, including good switching speed
with reasonable pulse width, and good on-off
intensity  contrast
viewpoint, however, one
technical difficulties
switch. A problem

From a practical
should

to realize the proposed

ratio.

solve some

is a large power loss
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occurring at the input and output ends of NPDM
but it can be compensated by higher power laser.
Although we have suggested the specific design
for an efficient coupling of input beam, we need
to confirm experimentally such an index-matching
method.
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