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Estimations of Moisture Profiles during Wood Drying
Using an Unsteady-State Diffusion Model ()"
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1. INTRODUCTION

The drying of wood is a complex process
involving simultaneous transfer of heat and
mass in a multi-phase system. In coupled heat
and mass transfer, the flux of moistureisrelat-
ed to both the gradient of moisture concentra-
tion and temperature which is called the "Soret
effect” (Briggs. 1967). Under isothermal condi-
tions. Fick s second law of diffusion has been
widely applied to characterize the drying behav-
ior of wood during unsteady state moisture
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transfer. The application of this model is. how-
ever, limited to certain concentration ranges.
such as the hygroscopic range of wood moisture
content. Therefore the application of the model
to wood drying over the entire range of mois-
ture content needs several theoretical assump-
tions as reference levels such as the continuity
of moisture gradients throughout the drying
process, and the similarities of temperature
dependent diffusion coefficients between the
well above and below the Fiber Saturation
Point(FSP) as discussed by Stamm(1964).
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A closed form solution of Fick' s diffusion
equation, as a governing equation with bound-
ary conditions, gives a form of infinite series
which causes tedious work in manipulating the
moisture distribution for a given geometry. An
attractive alternative would use numerical
approximations, and a comprehensive method is
thus introduced in this research. Derivative
type boundary condition at the surfaces of wood
is employed with the governing equation.
Numerical solution is employed with a new
algorithm using the finite difference method
and the so called “Crank-Nicolson Scheme.”

2. MATHEMATICAL BACKGROUND

2.1 Diffusion Equations

For a system of coupled heat and mass trans-
fer under pressure differential. the differential
equation for mass transfer will be of the form:

g—l:— = K21 V2T+K22VQU+K23VZP I (1)
whereu, T. P aremass content. temperature
and total pressure of a body, and Ky; are ther-
modynamics coefficients(Luikov, 1966). If dur-
ing mass transfer the body temperature and
pressure are constant, T. P=constant(3T/2r =0
VT=0. V2P=(0:9T/9r=0: VP=0: v2P=0), the
classical Fick' s diffusion equation is obtained:

s o (D e ) e ()

where C is a concentration, ¢ is time(sec.}, X
is a space of the geometry(cm), and D is a dif-
fusion coefficient(cm®sec.). The governing
equation states that the rate of moisture move-
mernt is proportional to the product of the dif-
fusion coefficient and the moisture gradient.
The ground work of mathematical modeling for
the drying of solids using Equation(2) has been
performed since Newman(1931).

2.2 Closed Form Solution of Diffusion Equation

The analytical solution of Equation(2) can be
obtained by either separation of variables or
Laplace transformation(Crank, 1975) for the
constant diffusion coefficient case with bound-
ary conditions. If the region —a<X<+a,k where
a is the half thickness of a board. is initially at
a uniform concentration Cy. and surfaces are
kept at a constant concentrationC;, the solution
of Equation(2) becomes:

C—-Cy 4 -D@2n+1¥rd  (2n+DaX
el El Z exp CoS
C‘i —C() T pn=0 4a? a?

(3)

By integrating both sides of Equation(3) over
the half thickness of the slab in terms of aver-
age moisture content, M, Equation(3) becomes:

M-M, 8 » 1 ~D(2n+1r%
— o e Z - exp
M;—M, #%.3 (2n+1)? 4a®

- (4)

where M, and M; are equilibrium and initial
moisture content. Another analytical solution of
Equation(2) from Boltzmann' s transformation,
which is useful for small time periods, is :

C—Cy i Zn+la—x
= Y (-1erfe ———
C1 “‘CO n=0 ZJD—t
= @2n+lla+x
+L(-Drerfe — —
n=0 2 ‘Dt

- (5)

and the corresponding expression in terms of
average moisture content is:

M-M Dt 1 -

me 9 F =k 2 1 Pierfe )

M;—M, @ F a3 JDt
- (6)

where erfc(z) is defined as I-erf(z). anderf(2)
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is the error function as a standard mathemati-
cal function. and ferfe(2) is the integration of
erf(z) function.

Due to the assumptions in the solution of
Equation(2) for the case of constant diffusion
coefficients, Equations(3)~(6) do not accurate-
1y represent practical drying behavior. Howev-
er. these equations are still useful since they
allow the easy estimation of diffusion coeffi-
cients from experimental results by minimizing
the surface resistance.

2.3 Diffusion Coefficients

Equation{4) and Equation(6) are useful for
determination of diffusion coefficients. Siau
(1984) shows that Equation(4) iseffective when
Dt/a? is equal to or greater than 0.2, and the
infinite series solution can be represented by the
first term only. By solving the resulting equa-
tion in terms of D. Equation(4) becomes:

4a? 8 (M—-M,)
e [1n_. _m] e ()
T2 7 (M;~M,)

In Equation(6). the function ierfc(z) vanish-
es to zero when the value of z becomes large(z
=2. Crank. 1975). Then the diffusion coeffi-
cient. D, can be calculated as follows:

nq? (M—‘Me)
D = [ ]2 (8)
4t (M;—M,)

Equation(7) and Equation(8) have been used
to calculate the diffusion coefficient from dry-
ing experiments by many researchers.

As mentioned earlier, the solutions of Equa-
tion(2) are valid for the case of constant diffu-
sion coefficient. Equation(7) and Equation(8).
however. clearly show the dependence of the
diffusion coefficient on the moisture concentra-
tion. This is true because the driving force for
moisture diffusion was fundamentally assumed
to be the moisture concentration gradient.

Dependence of the diffusion coefficient on

moisture concentration can also be postulated
by mathematical relationships for steady state
and unsteady state conditions(Crank. 1975).
For steady state conditions, the concentraticn
dependent diffusion coefficient D¢ can be
deduced from a measurement of the flux. and
represents a mean value over the range of con-
centration involved. By integrating the flux of
steady flow over two concentrations. namely Dy
and D;. diffusion coefficient D¢ is given:

1 G
De=——— [DdC i (9)
Ci—Cy C:>

Comstock(1963) and Choong(1965) measured
the moisture dependence of diffusion coeffi-
cients D¢ by a steady state method. Equation(9)
was also extensively applied to unsteady state
systems by Simpson(1974). and Simpson and
Liu(1991).

Egner' s method was applied by Skaar(1954).
Stevens et al(1984). and Rice(1988) to measure
the dependence of the diffusion coefficient on
moistiire concentration from unsteady state dif-
fusion. This method requires two successive
unsteady state moisture content gradients from
which D, canbe determined by the relationship:

x 1 aM
Dp= (4 [MdX )(—)/(
‘0 4t

) ........ . (10)
dx

The problem with this method is the tedious
work required to determine the term(dM/4x).
A diffusion coefficient D calculated from this
methed is influenced by the localized variations
of sorption properties of wood.

2.4 Boundary Conditions

The complication of using unsteady state dif-
fusion in mathematical modeling arises from
the continuously changing conditionsat the sur-
face of wood. In some cases, the surface bound-
ary condition relates to the rate of transfer of
the diffusing substance across the surface of the
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medium. The psychrometric consideration of
mass transfer leads to the conclusion that the
mass transfer of liquid from a solid by evapo-
ration at the surface is exactly balanced by the
heat supply from the ambient air. This may
happen at the surface of wood during drying.
and Is considered as a surface boundary condi-
tion of Equation(2) as follows:

aC
D(——)=8(C,—-Cs) atX=0 - AL
X

where S is a constant of proportionality or so
called surface transfer coefficient, Cs and C.
are the actual concentration at the surface of
wood at any time. and equilibrium concentra-
tion with the vapor pressure in the atmosphere
remote from the surface. respectively.

Two more auxiliary conditions can be formu-
lated from the symmetrical distribution of con-
centration along the center line of the width of
a board and the uniform distribution of initial
concentration through the thickness of a board
as follows:

ac

(— =0 at X=0 C=C; att=0 (12)
X

3. NUMERICAL SOLUTION OF

DIFFUSION EQUATION

A numerical approximation of Equation(2)
can be computed by a finite difference method.
An explicit forward method is computationally
simple and widely used. One serious drawback
of this method is that the process is valid only
for 0<r<0.5, where r=4t/(4X)? in which 4¢
and 4X is an increment of time and distance,
respectively: therefore the time step 4¢ should
necessarily be small. The Crank-Nicolson
implicit method is a method that reduces the
total volume of computation, and is valid. ie.
numerically stable and convergent. for all finite
values of r.

For one-dimensional flow of moisture during
drying into the radial direction from the tan-
gential surface. Equation(2) can be partly non-
dimensionalized by introducing new variablesx
=X/a andu=M/p. where pis wood density. Now,
x is a non-dimensional distance from 1 to-1 for
the thickness of a board, and « is non-dimen-
sional concentration. The resulting equation
becomes,

du D 9%u

_57, = -az axz E PPN (13)

with boundary conditions at the surface of a
board and initial condition as:

du L
=~ (ue—us) at x=+1 - (l4a)
Ix 14

where L is defined as Dt/a® Equation(13)
with the initial condition and boundary condi-
tions in Equation(14a) and(14b) can be approx-
imated by the finite difference method. The
Crank-Nicolson method replaces 9%:/9x? by the
mean of its finite difference representation on
the(+I)th and j th time row by:

Wijey — UL
a -
D wierjor—2u i 01 Y1541
P e
Uiy —20 45 Y-,

AxZ

where 4t and 4x are time and distance incre-
ments, respectively. By substituting D 4t/a® &?
asr and rearranging in terms of (j+1)th andjth
row, Equation(15) can be written as:

U, (22000 e T8

= Q=20 i e (16)
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In general, the left side of Equation(16) con-
tains three unknown and the right side three
known, pivotal valuesof u. Central difference rep-
resentation of the boundary condition at the sur-
face in Equation(14) for any time t at x=+1, by
imagination of the sheet extended one layer, is:

Uyj —U-1j )
Zm:____ = uo’] ._.ue ......................... (17)
from which it follows that
.y = uy; —2h e —ue ) (18a)
U je1 = Uy~ 2h (U ja1—Ue) o (18b)

where h=(L/p )dx. By substituting Equa-
tion{18a)and(18b) into Equation(16) by insert-
ing i=0 to eliminate u-1; and u-1 ;1. Equation
{16} becomes:

= ruy e+ (1Hr Frh g i
= ruy;+(1—r —rh)u;+2rhue - (19)

Using a similar method to determine the
boundary condition to make use of the sym-
metrical moisture gradient at the center of the
board. Equation(16) becomes another central
difference equation as follows:

- ruyj-1+{(1+r Yun-1,j+1

=run;+H{1—riun-y,;

The explicit nature of the difference method
in Equation(16) through(19) and(20) implies
that this system can be written in the tridiag-
onal matrix form of equation as follows:

1+r +h —r 0 0 Uy j+1
- 1+r -r 0 U2j+1
2
0 —-r 1+r 0
0 14—
2
. 0 -r 1+r UN-1.j+1

l=-r~-h r 0 - 0 uy,j rhis,
52— 1= =—r = 0 uzj 0
0 ro1-r 0
== < M N +
0 ro1r =
2
L0 e e uney 0
(21}

With N internal mesh points along each time
row then for j=0 and i=1, 2,..., N. Equation(21)
gives N simultaneous equations for N unknown
pivotal values along the first time row in terms
of known initial and boundary values. Similar-
ly, j=1 express N unknown values of u along the
second time row in terms of the calculated val-
ues along the first. etc. A method such as this
where the calculation of an unknown pivotal
value necessitates the solution of a set of simul-
taneous equations is described asan implicit one.

The tensorial form of Equation{(21) is Au; ;.
=Bu; ;+ C. and the tridiagonal linear system of
the equation can then be solved by LU decom-~
position method(Burden & Faires, 1993) where
L and U arelower and upper diagonal matrixes of
the matrix A and B. Verification of uncondition-
ally stable convergent criteria using the Crank-
Nicolson scheme on the order of O (4#2+ dx?) can
be found in Isaacson and Keller(1966).

4. CONCLUSIONS

Under isothermal conditions of moisture trans-
fer. drying behavior for the entire range of
moisture content can be characterized by Fick's
diffusion equation with convenient assumptions
such as continuity of moisture profile and mois-
ture dependent diffusion coefficient. Due to the
complexity of exact solution of the governing
equation, numerical analysis was preferred.
Finite difference method was then employed to
compute moisture profiles during drying of wood
with suitable boundary conditions. Manipula-
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tion of mathematical works were accomplished
with a FORTRAN program using a new algo-
rithm of the Crank-Nicolson Scheme.
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