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The equation error formulation in the adaptive IR filtering provides convergence to a global minimum
regardless a local minimum with a large stability margin. However, the equation error formulation suffers from
the bias in the coefficient estimates. In this paper, a new algorithm, which does not require a prespecification
of the noise variance, is proposed for the equation error formutation. This algorithm is based on the equation
error smoothing and provides an unbiased parameter estmate in the presence of white noise. Through
simulations, it is demonstrated that the algorithm eliminates the bias in the parameter estimate while retaining
good properties of the equation error formulation such as fast convergence speed and the large stability

margin.
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[. INTRODUCTION

Over the past decade adaptive IR filtering
has been studied extensively” ™"
application areas have been considered.
Adaptive IIR filtering has a pole-zero structure
whereas adaptive FIR filtering has only an
all-zero structure. Inclusion of poles in adap-

and many
8,10,16)

tive filtering changes the filtering prodblera in
many ways and adaptive HR filtering has
many advantages over its adaptive FIR coun-
terpart. For example, in channel equalization
problems, communication channels are modeled
to have zeros. Thus it is necessary for an
adaptive filter to have poles to remove
distortion caused by the channel. In adaptive
FIR filtering, however, poles are approximated
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using zeros since FIR filters do not have
poles. Hence, the number of taps must be
large enough to get satisfactory results. On
the other hand, if we use adaptive IIR filtering,
the zeros in the channel model can be exactly
countered using poles in the adaptive filter.
Therefore, the number of taps in the adaptive
filter is significantly reduced and the com-
putational burden is greatly relieved.

Although adaptive IIR filtering provides better
performances in many applications, it has a
stability problem. In adaptive FIR filtering,
instability occurs when the coefficients get
larger without bound due to a large step size
beyond the upper bound. In adaptive IIR
filtering, however, instability can occur without
the coefficients blow-up since the poles outside
the unit circle produce unbounded output. Hence,
there are two sources of instability in adaptive
IIR filtering. Despite this stability problem,
adaptive IIR filtering would be an ultimate way
to adaptive filtering since it is promising in
many signal processing applications.

In general, there are two approaches to
adaptive IIR filtering that minimizes the mean
square error(MSE). One is the equation error
formulation and the other is the output error
formulation.

In the output error formulation, an adaptive
algotive algorithm updates the feedback coeffi-
cient directly. Hence it is considered as a na-
tural generalization of adaptive FIR filtering.
The output-error adaptive filter is in a
recursive form in that the filter output is fed
back to the input. Due to this feedback, the
filter output is a nonlinear function of the filter
coefficients and the MSE surface is not quad-
ratic. This nonlinearity makes the output error
formulaton complicated than the equation error
counterpart. Further, the MSE surface may
have local minima as well as a global
minimum in some cases. The MSE surface for
the output error formulation has been investi-
gated.""*'¥ The MSE surface has local minima
when the order of the adaptive filter is less
than that of the signal model. Moreover, even

in the exact case, the MSE surface may have
local minima when the input is colored."”
Some sufficient conditions for the error surface
not to have local minima has been
investigated.m The necessary and sufficient
conditions are, however, not known to date.
Convergence to a global minimum also
depends on the specific algorithm. No
algorithm is known to converge to the global
minimum for all cases. The nonquadratic
nature of the MSE surface also makes adap-
tive algorithms slower than their equation
error counterparts.

In the equation error formulation, an adaptive
algorithm updates the feedback coefficients in an
all-zero, nonrecursive form. The feedback coef-
ficients are then copied to a second filter
implemented in an all-pole form. Therefore, the
equation error formulation uses an adaptive FIR
filtering technique directly. Algorithms like RLS
and LMS can be employed to update (filter
coefficients. Adaptive algorithms based on the
equation error formulation have many properties
in common with the corresponding adaptive FIR
algorithm. The MSE surface is quadratic with
respect to the filter coefficients. Hence, it has a
global minimum without lacal minima. Conver-
gence speed is faster than that of the output
error counterpart. Adaptive algorithm is in a
simple form due to nonrecursive nature of the
adaptive filter. Moreover, it has the hyper-
stahility feature in that the adaptive filter can
remain stable even if poles are outside the unit
circle over a half of the time.” Unfortunately,
however, its filter coefficients are biased in the
presence of additive noise.” Thus the equation
error formulation has been limited to those
where the bias is not a significant problem.

Bias in the equation error formulation was
investigated by Mendel.” The bias is a
function of the signal to noise(SNR) ratio.
That is, the smaller the SNR the larger the
bias. He devised an unbiased algorithm
assuming that the variance of noise is
available. Similar approach was used by
Treichler for frequency estimation of a noisy
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sinusoid corrupted by additive white noise”

However, these approaches require a priori
knowledge on the variance of additive noise,
which is not available in many real situations.
This paper explores the bias problem in detail
and proposes an algorithm the provides
unbiased coefficient estimates.

II. ADAPTIVE IIR FILTERING

1. Output Error Formulation

Assume that the unknown system in Fig.l
is described by the difference equation

W= F K=+ 2 balk=p) (1)

where a’s and b/’s are coefficients to be
estimated. Throughout the paper, the subscript
a in Fig. 1 will be replaced by others for
convience. For example. e, denotes the output
error and e, the equation error.

Additive
noise v(k)
Output Desired
Input z(k) Unknown (k) - : signal d(k)
System g
< +
Adaptive . Yalk) + A
e |- wlh vty
Filter

Error signal e, (k)

Fig. 1 System Identification Configuration.
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1-A(g)
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Output error

+

Desired signal d(k)

Fig. 2 Adaptive 1IR Filter Based on the Output
Error Formulation.

The output-error adaptive filter is described in
Fig. 2. The output-error adaptive filter that
approximates the unknown system is governed
by the difference equation

'z

(B = 2 adk)y, (ki)
+ ;MO b(Rxk—p) @

and the output error is given by

e (k) =d(k) — y,(k) 3

where the desired signal d(k) is given by

d(k) = Y( k) +U(k) 4)
Z ay(k—i)+ Z bix(k—j) +v(k)(5)

where v(k) is additive noise.
A coefficient adaptation rule that minimizes
the mean square output error (MSOE)

Tk =E (k)
=E{dR—-y,(K)}? ®)

is obtained by differentiating the MSOE with
respect to O(k). Define

k= [ a\(k) - axk
bo(k) - by(B] T D

as the filter coefficient vector. Then the adap-
tation rule has a form

mmn=m@+%u[—ﬂ@] ®)

where V (k) is the instantaneous estimate of

0J.(k) 0y k)
V(B =305 = 2E|e D Sry ) ©

where



8 J. Natural Science, Pai Chai Univ, vol 8, 1995

0y(R) [ _0v(k) 3y, (k)

36 (&) “[ 9a,(B) oank)
(k) (R 1T
0b,(k)  0by k)

(10)

Note that the difference equation (2) has a
recursive form in that the output y,(£) is fed

back to the input. Hence v,(%) is a nonlinear

function of the filter coefficient vector O(k)
and each component in (10) should be
determined recursively. From (2), we have

anh ~ Yo 0y (k—1)
T p = Yt DA
o an
and
; N —
75&((%2 x<k~M>+§1“i(k)%’
o<m<M. 12

That is, post-filtering by the feedback
coefficients @ ,(k)'s is required to obtain the

gradient in(10). Equations (8), (9), (10), (11),
and (12) constitute the adaptation rule of
White's algorithm.ﬁ’

Feintuch’'s LMS algorithmx does not have
the second terms in the right hand sides of
(11) and (12). Hence, the algorithm does not
minimize the MSOE at all.

White's algorithm is quite complicated. This

)

is due to the nonlinearity of the output y,(%)
with respect to the filter coefficient vector

O(k). Hence adaptation rules for output-error

algorithms are generally complicated than their
equation error counterparts. The use of a
simplified gradient reduces the computational
burden considerab1y.4> This simplification is
achieved by assuming that

A= k—1)=~ - =8(k—N) (13)

for p sufficiently small and

v k=1) = y(k—3), for 2 < i< N
x(B) = x,(k—j), for 1 < j < M.

However, it is still complicated than its equa-
tion error counterpart.

The MSOE surface is not quadratic in 8(k)

due to the nonlinearity of y,(k). Since a

trajectory of &(4) is perpendicular to contours
of constant MSOE, the rate of convergence is
not monotonic decreasing in trajectory. Hence
for a given step size z, the rate may vary in
a wide range according to an initial values

#(0) and the shape of the contour which
depends on the autocorrelation matrix of the
input data. The rate is very large if the slope
of the MSOE is very steep and instability can
occur. Thus if x 1is chosen to be small
enough not to cause instability, then the rate
would be very slow where the MSOE surface
is not steep. This makes output-error
algorithms converge slowly.

The MSOE surface may have local minima
besides a global minimum in some cases. If
the order of poles and zeros in the adaptive
filter are larger than or equal to those of the
unknown system(overparameterized or exact
cases), the global minimum corresponds to an
ayvmptotically unbiased estimate of a true
coefficient vector. If the order of poles and
zeros are smaller than those of the unknown
system(a reduced order case), the filter
coefficient at the global minimum will be the
best approximate of the true coefficient vector
¢ . To date necessary and sufficient conditions
for the MSOE surface to have global minimum
without local minima are not fully unders-
te )Od.M)

2. Equation Error Formulation

Fig. 3 shows the adaptive IIR filter based on
the equation error formulation. It is also called
a pole-zero adaptive filter since it consists of
two adaptive FIR filters, one for poles and the
other for zeros. The equation-error adaptive
filter is governed by the difference equation
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Fig. 3 Adaptive IIR Filter Based on the Eguation
Error Formulation.

which is nonrecursive. By defining

o (=] dk—1) - dk—N)
x(B) - x(k—M)] T, (15)

the output y,(A) in (14) can be rewritten in a

linear regression form as

(B =0Tk o k). (16)

The equation error is then given by

ee(k) = d(k) _ye(k)

—dB- 0T Rom 17

and the mean square equation error (MSEE) to
be minimized is given by

Jk) =E { &k}
—E (dBp-yr?2. 1®

Note that the output y,(&) is a linear function

of the filter coefficients since d(k) and x(k)
are independent of the filter coefficients. Hence
the equation error is also linear in the filter
coefficients and the MSEE is quadratic in the

filter coefficients. The MSEE surface has a
global minimum without local minima.

As in the previous subsection, the coefficient
adaptation rule can be found to be

Hk+1)=0(k +ure, (B (B. 19

Equations (17) and (19) constitute the LMS
algorithm for the IIR case. Throughout this
paper, this algorithm will be referred to as the
LMS with equation error(LMS-EE) algorithm.
The LMS-EE algorithm is in fact al direct
extension of the LMS algorithm. Thus many
properties are common to both algorithms. The
LMS-EE algorithm converges faster than its
output-error counterpart due to the quadratic
nature of the MSEE surface. Further, it has
the hyper-stability feature in that the adaptive
filter dan remain stable even though poles lie
outside of the unit circle over a part of the
time. Following example explains the hyper-
stahility feature of the LMS-EE algorithm.
Consider a first-order recursive filter

vl B) = a,(B)y,(k—1) +x(k). (20)

Note that (20) describes the adaptive filter in
the steady state condition with b&,(&) =1.

Suppose that @(#) changes perodically with

Ao [ay, if k= 21
‘““f)‘{az, if k= 2041 @D

If xtk) =0, for kK = 0, and x(0) = 1, then

B = atat, if k= 21
Yo atakt i k= 20+1 (22

The stability condition of the flter is then
|43 | < 1 instead of |&a | < 1 and |4 <
1. Therefore, if & = 1.1 and & = 0.9, then the
filter is stable even though the pole is outside
the unit circle over the half of the time.
Therefore, an algorithm can remain stable even
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though instantaneous poles lie outside the unit
circle only if the algorithm can pull them back
inside the unit circle effectively. The main
reason for this self-stabilizing feature is the
nonrecursive nature of the equation-error
adaptive filter.

Despite these advantages advantages of the
equation error formulation, it has a major

drawback. The filter coefficient vector 8(k) is

biased in general in the presence of additive
noise,

II. BIAS IN THE EQUATION
ERROR FORMULATION

The bias in the equation error formulation is
analyzed by Mendel assuming that the
algorithm converges.“ Actually,  Mendel
considered a special FIR case using the decor-
relation delay to meet independency between
@ (k) and @ J(k—1). Due to this delay, the

analysis cannot be applied to the IIR LMS
algorithm. In the following, the bias analysis
by Mendel is extended to the LMS algorithm
by eliminating the need of the decorrelaion
delay.

Begin with the LMS-EE algorithm given in
(19) as

Wk+1)= (R +pe (B0 (B (23

where

ek =d(k)—y (k)
=dkR-0T ko, (24)

The desired signal in (5) can be rewritten as

d(k) =0 (k) 6+v(k) (25)

where

0
? (k)

o

[ ay - ay b, - bM] T(26)
[ W(k—1) - Wk—N)
x(k) -~ x(k—=M) T. (@D

Define

B =[ v(k—1)-v(k—N)0---0] T.(28)

Then using(27), (15) can be decomposed into

2 (=0 ,(k+2,(k. (29)

Substituting(24) and (29) into (23) yields

Ak+1)= 8k
+u o, (B+0, (Bl oT(k6
+ul @,(R)+o,(R] v(k)
—ul 2,(A+2,(A]
[ 2,(H+2,(BD] TR (30

In order to make the analysis as simple as
possible, the followings are assumed:”
(1) x(k) and v(k) are statistically independent.
(i1) v(k) has a zero mean with finite variance.

(ii) @,k and B8(k) are independent and
E{o BoI(k| 8k ) is finite and posi-

tive definite.
Note that assumption (iii) above requires
statistical independencd of @ (k) and 8(k)."

This requires that @ (k) and &(k) do not

contain any common element, which is clearly
not valid. In,l) Mendel used the decorrelation
delay to meet this assumption. However, it
should be noticed that assumption (i) is
invalid despite the use of decorrelation delay
since y(k—1) is a function of 8(k—1) and
wW(£—2), and y(k—2) is in tum a function of
6(k—2) and »(k—3) and so on. Assumption
(iii), however, works quite well for the unit
decorrelation delay, which is the case of the
LMS-EE algorithm under investigation. In the
analysis of adaptive FIR filtering algorithms,
assumption (iii) is accepted as a consequence
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of socalled “fundamental assumption” **

Taking expectation of both sides of (30) and
using assumption (iii) gives

El 8k+1)]1 = E %A)]
+uE ([ 2,(A+02,(R]
OB
+eE{[ 2,(A+0,(A]
v(k) )
—uE{[ o,(B+o,H]
[ 2,(h+02,(A] T)
E(dRY. (3D

Simplify (31) using assumptions (i) and (ii)
to obtain

El 8(k+1)] = El 8(k)]

+uE{[ o,(Hol(p] )6

+uE{ @ (Bu(k)} 6
—u{ E @,(bo (k]
+E o,(hol(p] }
El 4R . (32)

Assume that the algorithm converges. Then,
at steady state,

ImE[ 8(k+D)] =lim E[ %A .(33)

Therefore, taking limit of both sides of (32)
and using (33) gives

lim £ A= {H o (kol(h]

+E o, (Holp] } !

{El o (hof(R] 0
+E o, (hu(R)] }. (34)

Equation (34) shows the bias in the coefficient
estimate in the presence, of additive noise
v( k). The bias expression is very complicated.

However, if v( &) is white

E {¢(Bv(R} =0 (35)

and (34) is simplified to

ImEL §(R) = {EL ¢,(R4;(H]

+E ¢ (RoI(R)] )7
El ¢(RoI(R] 6.6

The bias increases as noise power increases.
Further, the bias is a function of the true
coefficient 6. Note that only first N
components of ¢,(&) are nonzero. Hence the

bias appears in the feedback coefficients

a{k)'s. This propagates to the feedforward

coefficients ~ 6(k)’s since afk)’s and

b {(k)'s are coupled through correlation

between y(k—17)) and x(k—j) where i<j.

IV. BIAS ELIMINATION FOR THE
EQUATION ERROR FORMULATION

From (36), it is clear that the bias can be
removed if the term E{¢ (k) oI(k)} is

cancelled somehow. There has been several
afforts to cancel this term”. In,” Mendel
devised the wunbiased algorithm with the
adaptation rule

Gk+D)=[ 1 +uR,] (&
+ e k) ¢ k) 37

where R,=E{¢,(B¢l(k}. A varant of

this algorithm called the 7-LMS algorithm
was suggested by Frost, and it has been used
by Treichler to estimate the frequency of a
noisy sinusoid corrupted by white noise.”
These efforts, however, resort to a priori
knowledge of the noise variance, which is not
available in real situations. Further, if an
estimate of R, is used, then the accuracy of
the filter coefficient would depend strongly on
the accuracy of the estimate of R,.

Although previous research efforts have not
ruled out the requirement of the prespecifi~
cation of the noise variance, those suggest one
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clear path to bias elimination for the equation
error formulation. What we need now is to
cancel the noise term R, in an adaptive
fashion without the prespecification of the
noise variance. This goal can be achieved by
comparing both equation error and output error
formulations discussed in the previous section
noting that the output error formulation
provides an unbiased coefficient estimate.

1. Bias Elimination Technique

Define

1-A(g) =1— a;q ' —ayg *—

—aNg™V (38)
1-A(q) =1—a(kg ' —a (kg *—
—a (39)
B(g) =b,+bq " +byg P -
+byug ™V (40)
Blg) = b,(D+6,(Bag ' +by(Bg™?
+ ot bu(Rg ™ (41)

where cf1 is a delay operator for a time
varying process. Then the output error es &)
in (3) is given by

e k) =d(k)—y,(k) (42)
=d(k)— A(q) y,(k)
- B(g)x(k) (43)

and the equation error in (17) by

e k) =d(k)—y. k) (44)
= d(k)— A(q)d(k)
— B(g)x(k). (45)

Thus

el B —e (k) =—AlQl d(k) =y, (k)]
=—Alg) e (k) (46)

or

ek =[ 1— A(g)] e,(k) (47
=[ 1= A1 [ dB—y,(B] (43

This is the well-known relationship between
the equation error and the output error.

In adaptive filtering, the ultimate goal is to
minimize the MSOE. However, the equation
error formulation takes a round-about appro-
ach. As a result, in the equation error formu-
lation, the adaptive filter should minimize the
MSEE, which is a function of both the output
error and the feedback coefficients. In other
word, the equation-error adaptive filter should
minimize the filtered version of the MSOE.
This filtering of the noisy process d( &) by the
feedback polynomial [1 — A(g)] produces bias.
This facts suggests one bias elimination tech-
nique: counterbalancing of the polyncmial
(1 —Alg)l.

Counterbalancing may be achieved by AR
filtering of the output error e,( k) using a
proper polynomial. Clearly, the ideal case is to
use [1 —A(g)). The resulting algorithm will
be very similar to the output-error algorithm
by Feintuch [3], which may not converge to
either a gloval minimum or a local minimum.'®
Hence, MA filtering (or smoothing) is
desirable.

Define

e(k)=[ 1+C(q)] e.(k (49)

where the polynomial 1+(Xq) is chosen as

1 (50)
=4 ()
=1+c(Bg ' +Cy(Rg™?
+ - +e(Bg™™ 1)

for some L. Note that, for a second order

Alg),

1
T 1—a,(Bz  —a(kz?
=1+a,(Rz""
+[ ay(B+ai(B] 275+
(52)

1
1-A(z™
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and we can take

1+C(q) =1+a(Bg”!
+[ 2 (B+aXR] ¢ B3

using a second order approximation. Similarly,

for a third order [ A(g)], we may have

1+C(g)= 1+a (kg™
+[ @B +aiR] ¢
+[ as(B+2a,(k) a,(k
+a¥R] ¢° (54)

using a third order approximation.
From the above idea, the LMS-EE algorithm
is modified to have the adaptation rule

GE+D)=6(h+puelk)p k). G5

The algorithm with the modified adaptation
rule (55) will be referred to as the LMS with
smoothed equation error (LMS-SEE) algorithm.
Fig. 4 describes the adaptive filter based on
the smoothed equation error formulation.

yd Output
Input z(k) N 1 Yol k)
Bla) I 1 - Aq)
'/ J
E 4
. + v +
A(q) + + )
|
e(k) eelk) |
Desired : 1+Clq) @ )
signal Smoothed Equation '
d(k) error T error |
J

Fig. 4 Adaptive IIR Filter Based on the Smoothed
Equation Error Formulation.

V. SIMULATIONS

Refer back to the system identification
configuration in Fig. 1. The additive noise

v(k) is assumed to be white and is
uncorrelated with the input x( &). Both colored

or white noise are used as an the input x( &).

As mentioned in previous sections, a stability
monitoring and projection scheme is required
to guarantee stability. However, if the step
size is taken small enough, the adaptive filter
would be stable without the scheme. All
simulations in this section are performed
without a stability monitoring and projection
scheme.

The problem is to identify the unknown
system

0.8—1.6¢""
(1—-1.5¢71+0.8125¢ %)

Hfq)= (56)

using the adaptive filter

b(R) + b, (Bg ™!
(1—a, (Bg ™' —ay(Bg™?)

H/(q) = . (67)
2.0
15 F
1.0 f
05 f
0.0
05k
1.0 F
-1.5:
_20 PN NPV SET SN BEPE B SR PR R ST Y

012 3 456 7 8 9 10x1000

Number of lterations, n

Coefficient Estimates

Fig. 5 Coefficient Convergence of the LMS-EE
(dashed) and LMS-SEE(Solid) Algorithms
for SNR=0 dB.

with the white noise input x( &) at SNR = 0
dB. Both the LMS-EE and LMS-SEE algori-
thms are simulated. Step size parameters used
are pur = 0002 for feedforward coef- ficients
b's and #p = 0.0002 for feedback coefficients
a’s for all algorithms. It is interesting to note
that g r is chosen much larger than g5 This
is because convergence of the feedfoward
coefficients tends to stabilize the convegence
process of the feedback coefficents. Fig 5
shows convergence of coefficients for the
LMS-EE and LMS-SEE algorithms averaging
10 independent runs. Clearly, all coefficient
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estimates are biased except b,. The bias is
caused by filtering of noisy process d{ k)
which is applied to the feedback section of the
adaptive filter. Hence, the bias in the feedback
coefficents is directly caused by the noise
process. This bias in turn affects feedforward

coefficients via coupling between y( £—1) and
x( k—j) for i < j. The coefficient estimate for
b, is unbiased since x( k) is uncorrelated with
y(k—12) for i=1. The LMS-SEE algorithem,

provides unbiased coefficient
estimates for all coefficients as expected.

however,

10 ¢
o L
€ 05F
R -
g i ¢
2 00¢
O - \
_5 b
8 -05F
S o
b L
® C
W gt v ey
2 -1 0 1 2

Feedback Coefficient, a1

Fig. 6 Convergence of the Feedback Coefficients
(a) without Error Smoothing (the LMS-EE
algorithm), (b) with Time Varying 1+C(q),
and (c) with Constant 1+Clg) for SNR=0
dB.

In Section I, convergence of the LMS-SEE
algorithm is conjected in the case of the
constant error smoothing polynomial 1 + ({(g).
The effect of 1 + (@) can be seen in Fig. 6.
Trajectory (a) is for the LMS-EE algorithm,
(b) for the LMS-SEE algorithm with the time
varving 1 + ((g), and (c) with the constant
1 + do. Note that trajectory (b) lies
between trajectories (a) and (c).  Loosely
speaking, using the constant 1 + ({(g) has and
effect of using larger step sizes especially in
the transient period. Therefore, trajectory (c)
is pushed outside the stability region. On the
other hand, if 1 + ({g@) is time varying, the

effect of 1 + ({q@) may be negligible initially
since (\g) is small in magnitude. Thus
trajectory (b) follows (a) closely in the early
part of the trajectory. As coefficients are
updated, the magnitude of (\q) grows and the
effect of 1 + ((g) becomes evident. Thus
trajectory (b) approaches trajectory (c) as filter
coefficients approaches true values. Therefore,
the trajectory with time varying 1 + ((q) lies
between those without and with the constant
1 + ((q). This is valid for step size small
enough. Further, it is noted that the part of
the trajectory (c) is outside the stability region
and the algorithm still converges. This is the
hyper-stability feature of the equation error
formulation. However, if the trajectory is far
outside the stability region, the algorithm will
not be stable any ionger. The trajectory of
the LMS-SEE algorithm moves inside the
stability region as smaller step size parameters
are used.

Simulations in this section shows that the
LMS-SEE algorithm eliminated the bias in the
coefficient estimates if aditive noise is white.
Furthermore, it is confirmed that the LMS
-SEE algorithm retains advantages of the
equation error formulation such as faster
convergence speed, and a self stability featu—
res. Hence, the LMS-SEE algorithm makes
the equation error formulation viable even in
the presence of the additive white noise.

VI. CONCLUSIONS

This paper studied the bias problem in the
IIR LMS algorithm. The IIR LMS algorithm
produces biased estimates for all coefficients
except the zeroth order MA coefficient if there
is additive noise in the input. An algorithm is
devised to get unbiased coefficient estimates
when the additive noise is white. Simulations
are performed to demonstrated the performance
of the new algorithm. The new algorithm
retaines properties such as the hyper-stability
feature, global convergence, and fast conver-
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gence speed while provides unbiased coefficient
estimates.
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