Identification of Phospholipase C Activated by $GTP{\gamma}S$ in Plasma Membrane of Oat Cell

  • Kim, Hyae-Kyeong (Department of Biochemistry, Chungbuk National University) ;
  • Park, Moon-Hwan (Department of Biochemistry, Chungbuk National University) ;
  • Chae, Quae (Department of Biochemistry, Chungbuk National University)
  • Received : 1995.02.20
  • Published : 1995.09.30

Abstract

In order to investigate whether phospholipase C (PLC) activity in oat celIs is regulated by Gprotein, we have characterized PLC in plasma membranes of oat tissues. To identify the purified plasma membrane, $K^+$-stimulated, $Mg^{2+}$-dependent ATPase activity was measured. The activity of ATPase was shown to be proportional to the concentration of membrane protein. To examine the PLC activity regulated by G-protein, we used the inside-out and outside-out plasma membrane mixture isolated from the oat cells. The plasma membrane mixture showed higher PLC activity than the one of the outside-out plasma membrane. This suggests that PLC activity is located at the cytoplasmic surface of plasma membrane. PLC activity in plasma membrane mixture was dependent on $Ca^{2+}$ with maximum activity at 100 ${\mu}m$ $Ca^{2+}$ and it was inhibited by 1 mM EGTA. Using Sep-pak $Accell^{TM}$ Plus QMA chromatography, we found that inositol 1,4,5-trisphosphate ($IP_3$) was produced in the presence of 10 ${\mu}m$ $Ca^{2+}$. The PLC activity in the membrane was enhanced by an activator of G-protein ($GTP{\gamma}S$) and not by an inhibitor ($GDP{\beta}S$). This indicates that a G-protein is involved in the activation of PLC in the plasma membrane of oat cells.

Keywords

References

  1. Annu. Rev. Biochem. v.56 Berridge, M.J. https://doi.org/10.1146/annurev.bi.56.070187.001111
  2. Kor. Biochem. J. v.25 Chae, Q.;Pyo, T.Y.;Park, M.H.;Cho, T.J.
  3. Biochem. Biophys. Res. Commun. v.130 Drobak, B.K.;Ferguson, I.B. https://doi.org/10.1016/0006-291X(85)91747-4
  4. Plant Physiol. v.67 Dupont, F.;Burke, L.L.;Spanswick, R.M. https://doi.org/10.1104/pp.67.1.59
  5. Photochem. Photobiol. v.50 Hasunuma, K.;Takimoto, A. https://doi.org/10.1111/j.1751-1097.1989.tb02911.x
  6. Plant Physiol. v.93 Kregg, J.E.;Thompson, G.A. Jr. https://doi.org/10.1104/pp.93.2.361
  7. Plant Physiol. v.63 Lurie, S.;Hendric, D.L. https://doi.org/10.1104/pp.63.5.936
  8. Anal. Biochem. v.87 Markwell, Mak;Haas, S.M.;Bieber, L.L.;Tolbert, N.E. https://doi.org/10.1016/0003-2697(78)90586-9
  9. Biochem. J. v.249 McMurray, W.C.;Irvine, R.F. https://doi.org/10.1042/bj2490877
  10. Biochim. Biophys. Acta. v.1123 Melin, P.M.;Pical, C.;Jergil, B.;Sommarin, M. https://doi.org/10.1016/0005-2760(92)90107-7
  11. FEBS Lett. v.223 Melin, P.M.;Sommarin, M.;Sandelius, A.S.;Jergil, B. https://doi.org/10.1016/0014-5793(87)80515-X
  12. FEBS Lett. v.1 Miler, P.A.
  13. Science v.258 Nishizuka, Y. https://doi.org/10.1126/science.1411571
  14. Plant Physiol. v.92 Palmgren, M.G.;Askerlund, P.;Fredrickson, K.;Widell, S.;Sommarin, M.;Larsson, C. https://doi.org/10.1104/pp.92.4.871
  15. Plant Physiol. v.68 Perlin, D.S.;Spanswick, R.M. https://doi.org/10.1104/pp.68.3.521
  16. Plant Physiol. v.85 Pfaffmann, H.;Hartmann, E.;Brightman, A.Q.;Morre, D.J. https://doi.org/10.1104/pp.85.4.1151
  17. Plant Physiol. v.100 Pical, C.;Sandelius, A.S.;Melir, P.M.;Sommarin, M. https://doi.org/10.1104/pp.100.3.1296
  18. Proc. Natl. Acad. Sci. USA v.90 Romero, L.C.;Lam, E. https://doi.org/10.1073/pnas.90.4.1465
  19. FEBS Lett. v.282 Romero, L.C.;Sommers, D.;Gotor, C.;Song, P.S. https://doi.org/10.1016/0014-5793(91)80509-2
  20. Science v.251 Smrcka, A.V.;Hepler, J.R.;Brown, K.O.;Sternweis, P.C. https://doi.org/10.1126/science.1846707
  21. Plant Physiol. v.91 Tate, B.F.;Schaller, G.E.;Sussman, M.R.;Crain, R.C. https://doi.org/10.1104/pp.91.4.1275
  22. Plant Physiol. v.70 Widell, S.;Lundbord, T.;Lasson, C. https://doi.org/10.1104/pp.70.5.1429