Inhibitory Effects of Antisense RNA on Expression of Cholesteryl Ester Transfer Protein in Vaccinia Virus Expression System

  • Lee, Myung-Hoon (Department of Genetic Engineering, College of Natural Science, Kyungpook National University) ;
  • Jang, Moon-Kyoo (Department of Genetic Engineering, College of Natural Science, Kyungpook National University) ;
  • Park, Yong-Bok (Department of Genetic Engineering, College of Natural Science, Kyungpook National University)
  • Received : 1994.12.02
  • Published : 1995.05.31

Abstract

Cholesteryl ester transfer protein (CETP), a hydrophobic glycoprotein promoting transfer of cholesteryl esters (CE) from high-density lipoproteins (HDL) to lower-density lipoproteins in the plasma, has been recognized a potent atherogenic factor during the development of coronary artery diseases. This study demonstrated a possible utilization of antisense RNA to inhibit expression of the CETP gene using vaccinia virus as an expression system. The CETP cDNA was inserted into a transfer vector (pSC11) in sense and antisense orientations and used to generate recombinant viruses. Recombinants containing sense or antisense orientations of the CETP cDNA were isolated by $TK^-$ selection and X-gal test. The inserted CETP cDNAs in the recombinants were identified by Southern blot analysis and allowed to transcribe in host cells (CV-1). Expressions of the exogenous CETP mRNA, extracted from the CV-1 cells coinfected with viruses containing sense and antisense DNAs, were monitored by Northern blot analysis using the CETP cDNA probe, by Western blot analysis using monoclonal antibody against the C-terminal active region of the CETP and by the CETP assay. Decreased expressions of the exogenous CETP cDNA were clearly evident in the Northern and Western blot analyses as the dose of antisense expression increased. In the CETP assay, the CETP activities decreased compared to the activity obtained from the cell extracts infected with sense construct only.

Keywords

References

  1. Mol. Cell. Biol. v.5 Chakrabarti, S.;Brechling, K.;Moss, B. https://doi.org/10.1128/MCB.5.12.3403
  2. Anal. Biochem. v.162 Chomczynski, P.;Sacchi, N.
  3. J. Lipid Res. v.9 Glomset, J.A.
  4. Proc. Natl. Acad. Sci. USA v.78 Henrickson, T.;Mahoney, E.M.;Steinberg, D. https://doi.org/10.1073/pnas.78.10.6499
  5. J. Biol. Chem. v.262 Hesler, C.B.;Swenson, T.L.;Tall, A.R.
  6. Proc. Natl. Acad. Sci, USA v.80 Hurby, D.E.;Maki, R.A.;Miller, D.B.;Ball, L.A. https://doi.org/10.1073/pnas.80.11.3411
  7. J. Biochem. Molecular Biol. Jang, M.K.;Ahn, B.Y.;Huh, T.L.;Bok, S.H.;Park, Y.B.
  8. Science v.236 Knecht, D.;Loomis, W.F. https://doi.org/10.1126/science.3576221
  9. Biotechniques v.6 Krol, A.R.;Joseph, N.M. Mol;Antoine, R. Stuitje
  10. Nature v.364 Marotti, K.R.;Christine, K.C.;Timothy, P.B.;Alice, H.L.;Robert, W.M.;George, W.M. https://doi.org/10.1038/364073a0
  11. J. Lipid Res. v.34 Martin, L.;Connelly, P.;Nancoo, D.;Wood, N.;Zhang, Z.J.;Maguire, G.;Quinet, E.;Tall, A.;Marcel, Y.;McPherson, R.
  12. Science v.260 Moxham, C.M.;Taacov, H.;Craig, C.M. https://doi.org/10.1126/science.8493537
  13. Trends in Biochemical Science v.18 Nellen, W.;Lichtenstein, C. https://doi.org/10.1016/0968-0004(93)90137-C
  14. Korean Biochem, J. v.25 Park, Y.B.;Jeoung, N.H.;Kim, H.S.;Choi, M.S.
  15. J. Virol. v.62 Pensiero, M.N.;Jennings, G.B.;Schmaljohn, C.S.;Hay, J.
  16. Molecilar Cloning: A laboratory Manual Sambrook, J.P.;Fritsch, E.F.;Maniatis, T.
  17. J. Biol. Chem. v.264 Sparrow, C.P.;Parthasarathy, S.;Steinberg, D.
  18. Science v.241 Strickland, S.;Huarte, J.;Belin, D.;Vassaili, A.;Rickles, R.J.;Vassaili, J.D. https://doi.org/10.1126/science.2456615
  19. Proc. Natl. Acad. Sci. USA v.76 Towbin, H.;Staehelin, T.;Gordin, J. https://doi.org/10.1073/pnas.76.9.4350
  20. J. Clin. Invest. v.84 Whitlock, M.E.;Swenson, T.L.;Ramakrishnan, R.;Leonard, M.T.;Marcel, Y.L.;Milne, R.W.;Tall, A.R. https://doi.org/10.1172/JCI114132
  21. Proc. Natl. Acad. Sci. USA v.83 Wormington, W.M. https://doi.org/10.1073/pnas.83.22.8639