Purification and Characterization of Farnesyl Protein Transferase from Bovine Testis

  • Ryo, Kwon-Yul (Department of Chemistry, College of Natural Sciences, Seoul National University) ;
  • Baik, Young-Jin (Department of Chemistry, College of Natural Sciences, Seoul National University) ;
  • Yang, Chul-Hak (Department of Chemistry, College of Natural Sciences, Seoul National University)
  • Received : 1994.08.20
  • Published : 1995.05.31

Abstract

Famesyl protein transferase involved in the first step of post-translational modification of $p21^{ras}$ proteins transfers the famesyl moiety from famesyl pyrophosphate to a cysteine residue in $p21^{ras}$ proteins. The enzyme was first purified 30,000-fold from bovine testis by use of 30~50% ammonium sulfate fractionation, DEAE-Sephacel ion exchange chromatography, Sephacryl S-300 gel filtration chromatography, Sephacryl S-200 gel filtration chromatography, and hexapeptide (Lys-Lys-Cys-Val-Ile-Met) affinity chromatography. The molecular weight of the purified enzyme was estimated to be ~100 kDa by gel filtration and SDS-polyacrylamide gels showed two closely spaced bands of ~50 kDa protein. These indicate that the enzyme consists of two nonidentical subunits, a and 13, which have slightly different molecular weights. The enzyme was inhibited by hexapeptide (Lys-Lys-Cys-Val-Ile-Met), which acted as an alternative substrate that competed for famesylation. Kinetic analysis by measuring initial velocities showed that famesyl protein transferase is a very slow enzyme. EDTA-treated famesyl protein transferase showed little activity with $Mg^{2+}$ or $Zn^{2+}$ alone, but required both $Mg^{2+}$ and $Zn^{2+}$ for the catalytic activity.

Keywords

References

  1. Baik, Y.J.
  2. J. Lipid Res. v.33 Casey, P.J.
  3. Cell v.66 Chen, W.J.;Andres, D.A.;Goldstein, J.L.;Ressell, D.W.;Brown, M.S. https://doi.org/10.1016/0092-8674(91)90622-6
  4. Annu. Rev. Biochem. v.61 Clarke, S. https://doi.org/10.1146/annurev.bi.61.070192.002035
  5. CPMB (Current Protocols in Molecular Biology)
  6. Cell v.65 Gibbs, J.B. https://doi.org/10.1016/0092-8674(91)90352-Y
  7. Proc. Natl. Acad. Sci. USA v.88 He, B.;Chen, P.;Chen, S.Y.;Vancura, K.L.;Michaelis, S.;Powers, S. https://doi.org/10.1073/pnas.88.24.11373
  8. J. Biol. Chem. v.266 Kinsella, B.T.;Maltese, W.A.
  9. Nature v.227 Laemmli, U.K. https://doi.org/10.1038/227680a0
  10. Proc. Natl. Acad. Sci. USA v.87 Manne, V.;Roberts, D.;Tobin, A.;O'Rourke, E.;Virgilio, M.D.;Meyers, C.;Ahmed, N.;Kurz, B.;Resh, M.;Kung, H.F.Barbacid, M. https://doi.org/10.1073/pnas.87.19.7541
  11. J. Biol. Chem. v.267 Moomaw, J.F.;Casey, P.J.
  12. J. Biol. Chem. v.266 Moores, S.L.;Schaber, M.D.;Mosser, S.D.;Rands, E.;O'Hara, M.B.;Garsky, V.M.;Marshall, M.S.;Pompliano, D.L.;Gibbs, J.B.
  13. Biochemistry v.31 Pompliano, D.L.;Rands, E.;Schaber, M.D.;Mosser, S.D.;Anthony, N.J.;Gibbs, J.B. https://doi.org/10.1021/bi00130a010
  14. Cell v.62 Reiss, Y.;Goldstein, J.L.;Seabra, M.C.;Casey, P.J.;Brown, M.S. https://doi.org/10.1016/0092-8674(90)90242-7
  15. Proc. Natl. Acad. Sci. USA v.88 Reiss, Y.;Stradley, S.J.;Gierasch, L.M.;Brown, M.S.;Goldstein, J.L. https://doi.org/10.1073/pnas.88.3.732
  16. J. Biol. Chem. v.266 Reiss, Y.;Seabra, M.C.;Armstrong, S.A.;Slaughter, C.A.;Goldstein, J.L.;Brown, M.S.
  17. J. Biol. Chem. v.267 Reiss, Y.;Brown, M.S.;Goldstein, J.L.
  18. J. Biol. Chem. v.265 Schaber, M.D.;O'Hara, M.B.;Garsky, V.M.;Mosser, S.D.;Bergstrom, J.D.;Moores, S.L.;Marshall, M.S.;Friedman, P.A.;Dixon, R.A..F.;Gibbs, J.B.
  19. Cell v.65 Seabra, M.C.;Reiss, Y.;Casey, P.J.;Brown, M.S.;Goldstein, J.L. https://doi.org/10.1016/0092-8674(91)90460-G