Inactivation of Brain Succinic Semialdehyde Reductase by o-Phthalaldehyde

  • Choi, Soo-Young (Department of Genetic Engineering, College of Natural Sciences, Hallym University) ;
  • Song, Min-Sun (Department of Genetic Engineering, College of Natural Sciences, Hallym University) ;
  • Lee, Byung-Ryong (Department of Genetic Engineering, College of Natural Sciences, Hallym University) ;
  • Jang, Sang-Ho (Department of Genetic Engineering, College of Natural Sciences, Hallym University) ;
  • Lee, Su-Jin (Department of Biochemistry, College of Medicine, Yonsei University) ;
  • Park, Jin-Seu (Department of Genetic Engineering, College of Natural Sciences, Hallym University) ;
  • Choe, Joon-Ho (Department of Life Science, Korea Advanced Institute of Sience and Technology) ;
  • Cho, Sung-Woo (Department of Biochemistry, College of Medicine, University of Ulsan)
  • Received : 1994.09.29
  • Published : 1995.03.31

Abstract

Succinic semialdehyde reductase was inactivated by o-phthalaldehyde. The inactivation followed pseudo-first order kinetics, and the second-order rate constant for the inactivation process was 28 $M^{-1}s^{-1}$ at pH 7.4 and $25^{\circ}C$. The absorption spectrum ($\lambda_{max}$ 337 nm) and fluorescence excitation ($\lambda_{max}$ 340 nm) and fluorescence emission spectra ($\lambda_{max}$ 409 nm) were consistent with the formation of an isoindole derivative in the catalytic site between a cysteine and a lysine residue approximately about 3 $\AA$ apart. The substrate, succinic semialdehyde, did not protect enzymatic activity against inactivation, whereas the coenzyme NADPH protected against o-phthaladehyde induced inactivation of the enzyme. About 1 isoindole group per mol of the enzyme was formed following complete loss of enzymatic activity. These results suggest that the amino acid residues of the enzyme participating in a reaction with o-phthalaldehyde are cysteinyl and lysyl residues at or near the NADPH binding site.

Keywords

References

  1. Life Sci. v.30 Benavides, J.;Rumigny, J.F.;Bourguignon, J.J.;Cash, C.;Wermuth, C.G.;Mandel, P.;Vincendon, G.;Maitre, M. https://doi.org/10.1016/0024-3205(82)90624-5
  2. Proc. Natl. Acad. Sci. USA v.72 Benson, J.R.;Hare, P.E. https://doi.org/10.1073/pnas.72.2.619
  3. J. Biol. Chem. v.254 Blaner, W.S.;Churchich, J.E.
  4. J. Neurochem. v.33 Cash, C.D.;Maitre, M.;Manndel, P. https://doi.org/10.1111/j.1471-4159.1979.tb05261.x
  5. Eur. J. Biochem. v.211 Cho, S.W.;Song, M.S.;Kim, G.Y.;Kang, W.D.;Choi, E.Y.;Choi, S.Y. https://doi.org/10.1111/j.1432-1033.1993.tb17606.x
  6. J. Neurochem. v.64 Choi, E.Y.;Park, S.Y.;Jang, S.H.;Song, M.S.;Cho, S.W.;Choi, S.Y.
  7. Chemical Modification of Enzymes Churchich, J.E.;Eyzaguirre, J.(ed.)
  8. J. Biol. Chem. v.239 Fishbein, W.;Bessman, P.
  9. Life Sci. v.5 Gessa, G.L.;Vargui, L.;Crabai, F.;Boero, C.;Caboni, F.;Camba, R. https://doi.org/10.1016/0024-3205(66)90261-X
  10. Eur. J. Pharmacol. v.44 Godschalk, M.;Dzoljic, M.R.;Bonta, I.L. https://doi.org/10.1016/0014-2999(77)90096-6
  11. J. Biol. Chem. v.239 Hearl, W.G.;Churchich, J.E.
  12. J. Biol. Chem. v.265 Huynh, Q.K.
  13. Biochem. Biophys. Res. Commun. v.99 Kim, D.S.;Churchich, J.E. https://doi.org/10.1016/0006-291X(81)90765-8
  14. Korean Biochem. J. v.27 Lee, K.P.;Kim, D.S.
  15. J. Biol. Chem. v.238 Levy, H.M.;Leber, P.D.;Ryan, E.M.
  16. Brain Res. v.127 Lloyd, K.G.;Sherman, L.;Homykiewicz, O. https://doi.org/10.1016/0006-8993(77)90540-6
  17. Jikeika; Med. J. v.24 Matsuda, M.;Hoshino, M.
  18. Eur. J. Biochem. v.137 Palczewski, K.;Hargrave, P.A.;Kochman, M. https://doi.org/10.1111/j.1432-1033.1983.tb07846.x
  19. New Engl. J. Med. v.288 Perry, T.L.;Hansen, S.;Kloster, M. https://doi.org/10.1056/NEJM197302152880703
  20. Biochemistry v.24 Puri, R.N.;Bhatnagar, D.;Roskoski, R. Jr. https://doi.org/10.1021/bi00344a029
  21. Biochim. Biophys. Acta v.937 Puri, R.N.;Bhatnagar, D.;Roskoski, R. Jr.
  22. Biochem. J. v.262 Rider, M.H.;Hue, L. https://doi.org/10.1042/bj2620097
  23. Biochem. J. v.197 Rivett, A.J.;Smith, I.L.;Tipton, K.F. https://doi.org/10.1042/bj1970473
  24. Biochem. Pharmacol. v.19 Roth, R.H. https://doi.org/10.1016/0006-2952(70)90087-0
  25. Biochem. Pharmacol. v.19 Roth, R.H.;Giarman, N.L. https://doi.org/10.1016/0006-2952(70)90202-9
  26. J. Org. Chem. v.43 Simons, S.S. Jr.;Johnson, D.F. https://doi.org/10.1021/jo00408a030
  27. Biochemistry v.18 Simons, S.S. Jr.;Thompson, E.E.;Johnson, D.F. https://doi.org/10.1021/bi00589a020
  28. Biochem. Biophys. Res. Commun. v.63 Tabakoff, B.;Von Wartburg, J.P.
  29. GABA in Nervous System Function Tower, D.B.;Roverts, E.(ed.);Share, T.N.(ed.);Tower, D.B.(ed.)
  30. Biochem. J. v.209 Turner, A.J.;Whittle, S.R. https://doi.org/10.1042/bj2090029
  31. J. Phys. Chem. v.77 Ware, W.R.;Doemeny, L.J.;Nemzek, T.L. https://doi.org/10.1021/j100636a003