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A STUDY ON THE SUBMANIFOLDS
OF A MANIFOLD GSX,

KEUMSsook So* aND Junami Ko
1. Introduction.

On a generalized Riemannian manifold X,,, we may impose a par-
ticular geometric structure by the basic tensor field ¢ ap by means of
a particular connection I'\”,. For example, Einstein’s manifold X,
is based on the Einstein’s connection Iy, defined by the Einstein’s
equations.

Many recurrent connections have been studied by many geometers,
such as Datta and Singel([1]), M. Matsumoto, and E.M. Patterson.

The purpose of the present paper is to introduce the concept of the
g-recurrent connection and to derive some generalized fundamental
equations on the submanifolds of a generalized semisymmetric g-
recurrent manifold GSX,,.

All considerations in this present paper deal with the general case
n > 2 and all possible classes and indices of inertia.

2. Preliminaries.

Let X, be a generalized n-dimensional Riemannian manifold re-
ferred to a real coordinate system y”, with coordinate transformation
y¥ — ¥, for which

dy
(21) Det(a—g) £0.

The manifold X, is endowed with a general real nonsymmetric ten-
sor ¢, which may be split into a symmetric part h ap and a skew-
symmetric part ky, :

(22) I = h)\,u- + 'l‘:)\,u
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where

(2.3) G = Det(gau) # 0, H = Detflorny) # 0.
Hence, we may define a unique tensor A by

(2.4) b B = 6,

and X, is assumed to be connected by a real nonsymmetric connection
'y, with the following transformation rule:

oy”  AyP oy 9%y

9 R W e . L i

This connection may also be decomposed into its symmetric part

Ay¥, and its skew-symmetric part S,”, called the torsion tensor of
L'y
FAU,(L = AAU;,: + S/\,uu

where
(2.6) A" = T iy Sap’ = Iy

Now, we will define a manifold GSX,,.
It is well-known that a connection I'y", is said to be semisymmetric
if its torsion tensor is of the form

(2.7) San” = 265X,

for an arbitrary vector X, # 0.

A particular differential geometric structure may be imposed on X,
by the tensor field gy, by means of the connection I'y’, defined by the
following g-recurrent condition:

(28) Dw.(f/\;t = _4Xng;r-

Here, X, is a non-null vector and D, is the symbolic vector of the
covariant derivative with respect to the connection I')\¥,.
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DEFINITION 2.1. The connection I\, which satisfies (2.8) is called
a g-recurrent connection.

DEFINITION 2.2. A connection which is both semisymmetric and
g-recurrent is called a GS connection.

A generalized Riemannian manifold X, on which the differential
geometric structure is imposed by ga, through a GS connection is
called an n-dimensional G'S manifold and will be denoted by GSX,,.

The following theorem has heen proved([6]).

THEOREM 2.3. If the svstem (2.8) admits a solution I'y’, in GSX,,,
it must be of the form

(29) FA”JJ. = {Ay,u_} —+ 25;)(#.

3. The induced connection on X, of X,, (m < n).
This section is a brief collection of basic concepts, results, and no-

tations needed in the present paper. It is based on the results and
notations of Chung et So ([4]).

AGREEMENT 3.1. In our further considerations in the present pa-
per, we use the following types of indices:

(1) Lower Greek indices a, 3, v,..., running from 1 to n and used
for the holonomic components of tensors in X,,.

(2) Capital Latin indices A,B,C,..., running from 1 to n and used
for the C-nonholonomic components of tensors in X, at points
of X

(3) Lower Latin indices i, j, k,..., with the exception of x, y, and
z, running from 1 to m(< n). '

(4) Lower Latin indices x, y, z, running from m + 1 to n.

The summation convention is operative with respect to each set of
the above indices within their range, with exception of a, y, z.

Let X,, be a submanifold of X, defined by a system of sufficiently
differentiable equations

(3.1) v’ = y(2!,.....,z™)
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where the matrix of derivatives

a v
B! =L
Ox?
is of rank m. Hence at cach point of X,,, there exists the first set
{BY,N"} of n linearly independent nonnull vectors.
€T

The m vectors BY are tangential to X, and the n — m vectors N"
: £ m b

are normal to X,, and mutually orthogonal. That is
(3.2) haﬁBf"Nﬁ =0, hﬂﬁN“Nﬂ =0 for @ # y.
x T Y
The process of determining the set {N”} is not unique unless
T

m=n—1
However, we may choose their magnitudes such that

(33) IlaﬂNaN'@ =€y
where £, = +1 according as the left-hand side of (3.3) is positive or
negative.
Put
, BY, fA=1,..,m(=1)
(34) A NJ;, if A=m o 1’ .,TL(: ZI',').

Since { E%} is a set of n linearly independent vectors in X, at points
of X, there exists a unique second set {E{'} of n linearly independent
vectors at points of X, such that

(3.5) ELE% =88, E2ES =464
Put
i, fA=1,..,m(=1i)
(3.6) Ef = { £
Ny ifA=m+1,..,n(=z),

(3.7) BY = BB,
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Then, we can sec that the following relations hold in virtue of (3.5):

5 i £ = £
(38)  BLBJ =8, NN“=6;, BiN"=NoBf =0,

i € €
(3.9) BY = 6% — Z N\N", B§{N,=B'N®=0.
- ¥ H €
In virtue of (3.8), we note that the vectors B} form the second set
of hnearly independent vectors tangential to X,,. We also note that

the set {N,\} is the second set of n —m nonnull veetors normal to X,
which are linearly independent and mutually orthogonal. Now, we are
ready to introduce the fn[lr)winp; concepts of  C-nonholonomic frame
of reference and induced tensors.

DEFINITION 3.2. The sets {E%} and {E!} is referred to as the C-
nonholonomic frame of reference in X, at points of X,,. This frame
gives rise to C-nonholonomic components of tensors in X,,.

IfTY - are holonomic components of a tensor in X ,, then at points
of X, its C'-nonholonomic components T are defined by
(3.10) Th = ToES 2.
In particular, the quantities
b _ o : 8
(3.11) 1 = I Bl coune

are components of a tensor in X,, and are called the components of
the induced tensor of TY{ " on X,, of X,

Therefore, the induced metric tensor gi; on X,; of ¢ga, in X,, may
be given by

(3.12) 9ij = gapB{'BY.
In virtue of (3.5), we know that
(3.13) TL = T Bl BE v

As a consequence of (3.13), we have

hap = hi;BABi + Y e:NaN,
(3.14) B g
PY = hUB}BY + > e, N*N”.

As another consequence of (3.13), we have
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THEOREM 3.3. At each point of X, any vector _XA in X,, may be

expressed as the sum of two vectors X; B} and E.X N,\, the former

tangential to X, and the latter normal to X,,. That is

(3.15a) 5= KBS Xl
or equivalently,

(3.15b) X'=X'Bl+Y X*NV
where

X:T = -X'G'B.iav *Y.r = ‘YQNQ'. -Y.r = EITXI

Xi=X*Bi,  X*=X°N,.

Furthermore, X;(X ") are components of a tangent vector relative to
the transformations of X,,, while X,(X?) is invariant reclative to the
transformations of X,, and X,,.

4. The induced connection on X,, of GSX, (m < n).

DEFINITION 4.1. If I'y*, is a connection on X,,, the connection e
defined by

0B 0%y
Qzri  Oxidxi

is called the induced connection of I'\Y, on X,,, of X,,.

(41) ¥ =BYBYL+IsBfBY), Bl=

The following statements have been already proved([3]):

(a) The torsion tensor S;;* of the induced connection rk; is the
induced tensor of the torsion tensor S»,” of the connection I'\",. That
is

(4.2) Si;* = S.5"BfBY BL.

(b) The induced connection {F;} of {x*,} is the Christoffel symbol
defined by h;;.  That is

S
(4.3) {#i} = Sh*(Bihjp + Ojhip — Ophiz).
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THEOREM 4.2. On an X,, of GSX,,, the induced connection I".,-kj is
of the form

(4.4) rfy = {4} + 26! ;.

Here {;} are the induced Christoffel symbols defined hy (4.3) and
Xj 1s the induced vector on X,, of avector X, #0 determining
Iy That is
(4.5) a5 =X B,

Proof. In virtue of (4.1), (4.3), (2.10), and (3.5), we have (4.4).

[
Let D; be the symbolic vector of the generalized covariant derivative
with respect to the 2's.  That is

(4.6) D;B§ = BS + I, BPB) — I}, B¢.

7

o
Then the vector D;B in X, is normal to X,, and is given by Chung

et al ([3]).

(4.7) DBy = -3 02i;N*
where
(4.8) 2. = ~(D;Bf)N,.

&
And we know that the tensors §2;; are the induced tensors on X, of

the tensor Dﬂlffa in X,,. That is
(4.9) $2i; = (DgNa)BfBY.

T
The tensor §2;; will be called the generalized coefficients of the second
fundamental form of X,,.
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€T
THEOREM 4.3. The coefficients £2;; of the submanifold X, of GSX,,
are given by

€& i

(4.10) 2 = (VsNa)BBY

where ¥/ g denotes the symbolic vector of the covariant derivative with
respect to {\",}.

Proof. In virtue of (2.10). (4.9),and (3.8), the relation (4.10) follows:
02 = (DyN,)BP B
= (93N — [s'3N.) B BE
— [05Na — ({75} + 262X )N | B B
= (8N — {a"5}03N,)BEB? — 2X 5N, B B
= (VsN.)BSBE.

REMARK 4.4. The following identity

(411) D;By=-Y A;N®  where A =(vsNo)BEB!

(Generalized Gauss formulas for an X, of GSX,)
is a direct consequence of (4.10).

In our subsequent considerations, we frequently use the following
C-nonholonomic components:

(412) kiw = —kpi = knBB?Nﬁ = gnﬂB?Nﬁ~

THEOREM 4.5. On an X,, of GSX,, the induced tensor of D g,
may be given by

(413) DugrsB}BYBY = Digi; +2 ) kupiAips,
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where Dy, is the symbolic vector of the covariant derivative with respect
to I} 2'_L1

Proof. In virtue of (3.12), (3.9), (4.11), it follows from (3.11) that

Dygi; = Dyigij
= Dy(gaB}BY)
0 [+] o
= (Drgru) B BY + gau[(DiB})BY + BN D BY)]
= (Dugru)B}BYBE — g2 ?iikf}’AB_ﬁ' +)° Ajkl’}”‘Bf\)

= (Dugrn)B}BYBY — ka, S (A BIN" + A;uBIN")
= (Duwgrn)B?BYBY = Y (= Aickja + Ajikiz)

= (_Dwgm)B,f‘B}‘B,\‘t’ -2 z ki Aqg.

The following theorem is an immediate consequence of (4.13).

THEOREM 4.6. On an X, of GSX,,, a necessary and sufficient con-
dition for the induced connection Fikj to be g-recurrent is

Z kx[iij]k = 1.

Now we are going to derive the generalized Weingarten equations
for an X,, of GSX,,. '
Let

(4.14) 1}/;’“ = Djl’y“’.
Then the relations (3.15) give

4.15 M® = M'B® MYN©
( ) jz jr ¢ +; jx ¥
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where

M= M*B: = (D,N*)B.B]

Jx FEN 2 k
(4.16) r y
MY = M°N, = (D,N*)N.B].

VR S

THEOREM 4.7. On an X,, of GSX,, the induced vector M* of M“
jr i
is given by

(4.17) M = eoh"™ A,
jx
Proof. In virtue of (2.14), (3.2), (3.3), (4.11) and (4.16), we have
M= (0,Nf + P,N)B,B]
jx x T
= (vaﬁ)BgB;
= . h"™(V4N B, B]

. T
= €, h™ Ay ;.

THEOREM 4.8. On an X,, of GSX,,, the C-nonholonomic compo-

nents MY of M* are given by
iz iz

y Yy

(4.18) ﬂ\/a{y = syfg',,,B_? +26YX; where {:c[” = Sy(v-;]}f_m)Na-
Proof. In virtue of (2.10), (3.8), (4.16), we can obtain (4.18).
MY = (DN, 5]
= (0,7 + ({5} + 280X, )N°| N3]
= (v, N ’3).71\",;3}‘ + 2X71gf’ﬁrﬁ3;
= (v, N*)NsB] +2X 618}

Y
= ¢, H,B] +283X;.
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Tineorem 4.9. On an X, of GSX,, we have generalized Wein-
garten equations on an X, of GSX,:

o Y
(419) DN = (eh™. Aums) B“+Z ey Hy B + 260X ,)N°.

Proof. Substituting (4.17), (4.18) into (4.15), we have (4.19).
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