A STUDY ON THE SUBMANIFOLDS OF A MANIFOLD GSX_n

KEUMSOOK SO* AND JUNGMI KO

1. Introduction.

On a generalized Riemannian manifold X_n , we may impose a particular geometric structure by the basic tensor field $g_{\lambda\mu}$ by means of a particular connection $\Gamma_{\lambda}{}^{\nu}{}_{\mu}$. For example, Einstein's manifold X_n is based on the Einstein's connection $\Gamma_{\lambda}{}^{\nu}{}_{\mu}$ defined by the Einstein's equations.

Many recurrent connections have been studied by many geometers, such as Datta and Singel([1]), M. Matsumoto, and E.M. Patterson.

The purpose of the present paper is to introduce the concept of the g-recurrent connection and to derive some generalized fundamental equations on the submanifolds of a generalized semisymmetric g-recurrent manifold GSX_n .

All considerations in this present paper deal with the general case $n \geq 2$ and all possible classes and indices of inertia.

2. Preliminaries.

Let X_n be a generalized *n*-dimensional Riemannian manifold referred to a real coordinate system y^{ν} , with coordinate transformation $y^{\nu} \to \bar{y}^{\nu}$, for which

(2.1)
$$Det\left(\frac{\partial y}{\partial \bar{y}}\right) \neq 0.$$

The manifold X_n is endowed with a general real nonsymmetric tensor $g_{\lambda\mu}$, which may be split into a symmetric part $h_{\lambda\mu}$ and a skew-symmetric part $k_{\lambda\mu}$:

$$(2.2) g_{\lambda\mu} = h_{\lambda\mu} + k_{\lambda\mu}$$

Received November 17, 1994.

^{*}This work was supported by Hallym Research Foundation, 1991–1992.

116

where

(2.3)
$$\mathcal{G} = Det(g_{\lambda\mu}) \neq 0, \qquad \mathcal{H} = Det(h_{\lambda\mu}) \neq 0.$$

Hence, we may define a unique tensor $h^{\lambda\nu}$ by

$$(2.4) h_{\lambda\mu}h^{\lambda\nu} = \delta^{\nu}_{\mu}$$

and X_n is assumed to be connected by a real nonsymmetric connection $\Gamma_{\lambda}^{\nu}{}_{\mu}$ with the following transformation rule:

(2.5)
$$\bar{\Gamma}_{\lambda \mu}^{\nu} = \frac{\partial \bar{y}^{\nu}}{\partial y^{\alpha}} (\frac{\partial y^{\beta}}{\partial \bar{y}^{\lambda}} \frac{\partial y^{\gamma}}{\partial \bar{y}^{\mu}} \Gamma_{\beta \gamma}^{\alpha} + \frac{\partial^{2} y^{\alpha}}{\partial \bar{y}^{\lambda} \partial \bar{y}^{\mu}}).$$

This connection may also be decomposed into its symmetric part $\Lambda_{\lambda^{\nu}_{\mu}}$ and its skew-symmetric part $S_{\lambda\mu^{\nu}}$, called the torsion tensor of $\Gamma_{\lambda^{\nu}_{\mu}}$:

$$\Gamma_{\lambda \mu}^{\nu} = \Lambda_{\lambda \mu}^{\nu} + S_{\lambda \mu}^{\nu}$$

where

(2.6)
$$\Lambda_{\lambda \mu}^{\nu} = \Gamma_{(\lambda \mu)}^{\nu}, \qquad S_{\lambda \mu}^{\nu} = \Gamma_{[\lambda \mu]}^{\nu}.$$

Now, we will define a manifold GSX_n .

It is well-known that a connection $\Gamma_{\lambda}{}^{\nu}{}_{\mu}$ is said to be semisymmetric if its torsion tensor is of the form

$$(2.7) S_{\lambda\mu}{}^{\nu} = 2\delta^{\nu}_{[\lambda} X_{\mu]}$$

for an arbitrary vector $X_{\mu} \neq 0$.

A particular differential geometric structure may be imposed on X_n by the tensor field $g_{\lambda\mu}$ by means of the connection $\Gamma_{\lambda}^{\nu}{}_{\mu}$ defined by the following g-recurrent condition:

$$(2.8) D_{\omega}g_{\lambda\mu} = -4X_{\omega}g_{\lambda\mu}.$$

Here, X_{ω} is a non-null vector and D_{ω} is the symbolic vector of the covariant derivative with respect to the connection $\Gamma_{\lambda}{}^{\nu}{}_{\mu}$.

DEFINITION 2.1. The connection $\Gamma_{\lambda}^{\nu}{}_{\mu}$ which satisfies (2.8) is called a g-recurrent connection.

DEFINITION 2.2. A connection which is both semisymmetric and g-recurrent is called a GS connection.

A generalized Riemannian manifold X_n on which the differential geometric structure is imposed by $g_{\lambda\mu}$ through a GS connection is called an n-dimensional GS manifold and will be denoted by GSX_n .

The following theorem has been proved([6]).

THEOREM 2.3. If the system (2.8) admits a solution $\Gamma_{\lambda}^{\nu}{}_{\mu}$ in GSX_n , it must be of the form

(2.9)
$$\Gamma_{\lambda \mu}^{\nu} = \{\lambda_{\mu}^{\nu}\} + 2\delta_{\lambda}^{\nu} X_{\mu}.$$

3. The induced connection on X_m of X_n (m < n).

This section is a brief collection of basic concepts, results, and notations needed in the present paper. It is based on the results and notations of Chung et So ([4]).

AGREEMENT 3.1. In our further considerations in the present paper, we use the following types of indices:

- (1) Lower Greek indices α , β , γ ,..., running from 1 to n and used for the holonomic components of tensors in X_n .
- (2) Capital Latin indices A, B, C, ..., running from 1 to n and used for the C-nonholonomic components of tensors in X_n at points of X_m .
- (3) Lower Latin indices i, j, k,..., with the exception of x, y, and z, running from 1 to m(< n).
- (4) Lower Latin indices x, y, z, running from m + 1 to n.

The summation convention is operative with respect to each set of the above indices within their range, with exception of x, y, z.

Let X_m be a submanifold of X_n defined by a system of sufficiently differentiable equations

$$(3.1) y^{\nu} = y^{\nu}(x^1,, x^m)$$

where the matrix of derivatives

$$B_i^{\nu} = \frac{\partial y^{\nu}}{\partial x^i}$$

is of rank m. Hence at each point of X_m , there exists the first set $\{B_i^{\nu}, N_i^{\nu}\}$ of n linearly independent nonnull vectors.

The m vectors B_i^{ν} are tangential to X_m and the n-m vectors N_x^{ν} are normal to X_m and mutually orthogonal. That is

(3.2)
$$h_{\alpha\beta}B_i^{\alpha}N_x^{\beta} = 0, \quad h_{\alpha\beta}N_x^{\alpha}N_y^{\beta} = 0 \quad \text{for } x \neq y.$$

The process of determining the set $\{N_x^{\nu}\}$ is not unique unless m=n-1.

However, we may choose their magnitudes such that

$$h_{\alpha\beta}N_{x}^{\alpha}N_{x}^{\beta} = \varepsilon_{x}$$

where $\varepsilon_x = \pm 1$ according as the left-hand side of (3.3) is positive or negative.

Put

(3.4)
$$E_A^{\nu} = \begin{cases} B_i^{\nu}, & \text{if } A = 1, ..., m (= i) \\ N_i^{\nu}, & \text{if } A = m + 1, ..., n (= x). \end{cases}$$

Since $\{E_A^{\nu}\}$ is a set of n linearly independent vectors in X_n at points of X_m , there exists a unique second set $\{E_{\lambda}^A\}$ of n linearly independent vectors at points of X_m such that

$$(3.5) E_{\lambda}^{A} E_{A}^{\nu} = \delta_{\lambda}^{\nu}, E_{\alpha}^{A} E_{B}^{\alpha} = \delta_{B}^{A}.$$

Put

(3.6)
$$E_{\lambda}^{A} = \begin{cases} B_{\lambda}^{i}, & \text{if } A = 1, ..., m (= i) \\ x \\ N_{\lambda}, & \text{if } A = m + 1, ..., n (= x), \end{cases}$$

$$(3.7) B_{\lambda}^{\nu} = B_{\lambda}^{i} B_{i}^{\nu}.$$

Then, we can see that the following relations hold in virtue of (3.5):

$$(3.8) B_{\alpha}^{i}B_{j}^{\alpha} = \delta_{j}^{i}, N_{\alpha}^{x}N_{y}^{\alpha} = \delta_{y}^{x}, B_{\alpha}^{i}N_{x}^{\alpha} = N_{\alpha}^{x}B_{i}^{\alpha} = 0,$$

$$(3.9) B_{\lambda}^{\nu} = \delta_{\lambda}^{\nu} - \sum_{x} N_{\lambda}^{x} N^{\nu}, \quad B_{\lambda}^{\alpha} N_{\alpha}^{x} = B_{\alpha}^{\nu} N^{\alpha} = 0.$$

In virtue of (3.8), we note that the vectors B_{λ}^{i} form the second set of linearly independent vectors tangential to X_{m} . We also note that the set $\{N_{\lambda}\}$ is the second set of n-m nonnull vectors normal to X_{m} , which are linearly independent and mutually orthogonal. Now, we are ready to introduce the following concepts of C-nonholonomic frame of reference and induced tensors.

DEFINITION 3.2. The sets $\{E_A^{\nu}\}$ and $\{E_{\lambda}^{A}\}$ is referred to as the C-nonholonomic frame of reference in X_n at points of X_m . This frame gives rise to C-nonholonomic components of tensors in X_n .

If $T_{\lambda,...}^{\nu,...}$ are holonomic components of a tensor in X_n , then at points of X_m its C-nonholonomic components $T_{B,...}^{A,...}$ are defined by

$$(3.10) T_{B....}^{A....} = T_{\beta....}^{\alpha....} E_{\alpha}^{A}.... E_{B}^{\beta}....$$

In particular, the quantities

$$(3.11) T_{j....}^{i....} = T_{\beta....}^{\alpha....} B_{\alpha}^{i}.... B_{j}^{\beta}....$$

are components of a tensor in X_m and are called the components of the induced tensor of $T_{\lambda,\ldots}^{\nu,\ldots}$ on X_m of X_n .

Therefore, the induced metric tensor g_{ij} on X_m of $g_{\lambda\mu}$ in X_n may be given by

$$(3.12) g_{ij} = g_{\alpha\beta} B_i^{\alpha} B_j^{\beta}.$$

In virtue of (3.5), we know that

$$(3.13) T_{\lambda,\ldots}^{\nu,\ldots} = T_{B,\ldots}^{A,\ldots} E_{\lambda}^{\nu}, \ldots, E_{\lambda}^{B}, \ldots$$

As a consequence of (3.13), we have

(3.14)
$$h_{\lambda\mu} = h_{ij}B_{\lambda}^{i}B_{\mu}^{j} + \sum_{x} \varepsilon_{x} \overset{x}{N}_{\lambda} \overset{x}{N}_{\mu}$$
$$h^{\lambda\nu} = h^{ij}B_{i}^{\lambda}B_{j}^{\nu} + \sum_{x} \varepsilon_{x} \overset{x}{N}_{\lambda} \overset{x}{N}_{\nu}^{\nu}.$$

As another consequence of (3.13), we have

THEOREM 3.3. At each point of X_m any vector X_{λ} in X_n may be expressed as the sum of two vectors $X_i B_{\lambda}^i$ and $\sum_x X_x N_{\lambda}$, the former tangential to X_m and the latter normal to X_m . That is

$$(3.15a) X_{\lambda} = X_i B_{\lambda}^i + \sum_x X_x N_{\lambda}^x$$

or equivalently,

(3.15b)
$$X^{\nu} = X^{i}B_{i}^{\nu} + \sum_{x} X^{x}N_{x}^{\nu}$$

where

$$X_i = X_{\alpha} B_i^{\alpha}, \qquad X_x = X_{\alpha} N_x^{\alpha}, \qquad X_x = \varepsilon_x X^x$$

$$X^i = X^{\alpha} B_{\alpha}^i, \qquad X^x = X^{\alpha} N_{\alpha}^x.$$

Furthermore, $X_i(X^i)$ are components of a tangent vector relative to the transformations of X_m , while $X_x(X^x)$ is invariant relative to the transformations of X_m and X_n .

4. The induced connection on X_m of GSX_n (m < n).

DEFINITION 4.1. If $\Gamma_{\lambda}^{\nu}{}_{\mu}$ is a connection on X_n , the connection Γ_{ij}^{k} defined by

$$(4.1) \Gamma_{ij}^{k} = B_{\gamma}^{k} (B_{ij}^{\gamma} + \Gamma_{\alpha}{}^{\gamma}{}_{\beta} B_{i}^{\alpha} B_{j}^{\beta}), B_{ij}^{\gamma} = \frac{\partial B_{i}^{\gamma}}{\partial x^{i}} = \frac{\partial^{2} y^{\gamma}}{\partial x^{i} \partial x^{j}}$$

is called the induced connection of $\Gamma_{\lambda^{\nu}_{\mu}}$ on X_m of X_n .

The following statements have been already proved([3]):

(a) The torsion tensor $S_{ij}{}^k$ of the induced connection $\Gamma_{ij}{}^k{}_j$ is the induced tensor of the torsion tensor $S_{\lambda\mu}{}^{\nu}$ of the connection $\Gamma_{\lambda}{}^{\nu}{}_{\mu}$. That is

$$(4.2) S_{ij}{}^{k} = S_{\alpha\beta}{}^{\gamma} B_{i}^{\alpha} B_{j}^{\beta} B_{\gamma}^{k}.$$

(b) The induced connection $\{i_j^k\}$ of $\{\lambda^{\nu}_{\mu}\}$ is the Christoffel symbol defined by h_{ij} . That is

(4.3)
$$\{i_j^k\} = \frac{1}{2} h^{kp} (\partial_i h_{jp} + \partial_j h_{ip} - \partial_p h_{ij}).$$

THEOREM 4.2. On an X_m of GSX_n , the induced connection Γ_{ij}^k is of the form

(4.4)
$$\Gamma_{ij}^k = \{i_j^k\} + 2\delta_i^k X_j.$$

Here $\{i_j^k\}$ are the induced Christoffel symbols defined by (4.3) and X_j is the induced vector on X_m of a vector $X_{\mu} \neq 0$ determining $\Gamma_{\lambda_{\mu}}^{\nu}$. That is

$$(4.5) X_i = X_{\alpha} B_i^{\alpha}.$$

Proof. In virtue of (4.1), (4.3), (2.10), and (3.5), we have (4.4).

Let D_j^o be the symbolic vector of the generalized covariant derivative with respect to the x's. That is

$$(4.6) \qquad \qquad \stackrel{o}{D}_{j}B_{i}^{\alpha} = B_{ij}^{\alpha} + \Gamma_{\beta}{}^{\alpha}{}_{\gamma}B_{i}^{\beta}B_{j}^{\gamma} - \Gamma_{ij}^{k}{}_{j}B_{k}^{\alpha}.$$

Then the vector $\overset{o}{D}_{j}B_{i}^{\alpha}$ in X_{n} is normal to X_{m} and is given by Chung et al ([3]).

$$(4.7) \qquad \qquad \stackrel{o}{D}_{j}B_{i}^{\alpha} = -\sum_{x} \stackrel{x}{\Omega}_{ij} N_{x}^{\alpha}$$

where

(4.8)
$$\Omega_{ij} = -(\overset{\circ}{D}_{j}B_{i}^{\alpha})\overset{x}{N_{\alpha}}.$$

And we know that the tensors $\overset{x}{\Omega}_{ij}$ are the induced tensors on X_m of the tensor $D_{\beta}\overset{x}{N}_{\alpha}$ in X_n . That is

(4.9)
$$\mathring{\Omega}_{ij} = (D_{\beta} \mathring{N}_{\alpha}) B_i^{\alpha} B_j^{\beta}.$$

The tensor Ω_{ij}^{x} will be called the generalized coefficients of the second fundamental form of X_m .

THEOREM 4.3. The coefficients Ω_{ij} of the submanifold X_m of GSX_n are given by

(4.10)
$$\mathring{\Omega}_{ij} = (\nabla_{\beta} \mathring{N}_{\alpha}) B_i^{\alpha} B_j^{\beta}$$

where ∇_{β} denotes the symbolic vector of the covariant derivative with respect to $\{\lambda^{\nu}_{\mu}\}$.

Proof. In virtue of (2.10), (4.9), and (3.8), the relation (4.10) follows:

$$\begin{split} \overset{x}{\Omega}_{ij} &= (D_{\beta}\overset{x}{N}_{\alpha})B_{i}^{\alpha}B_{j}^{\beta} \\ &= (\partial_{\beta}\overset{x}{N}_{\alpha} - \Gamma_{\alpha}{}^{\gamma}{}_{\beta}\overset{x}{N}_{\gamma})B_{i}^{\alpha}B_{j}^{\beta} \\ &= [\partial_{\beta}\overset{x}{N}_{\alpha} - (\{{}_{\alpha}{}^{\gamma}{}_{\beta}\} + 2\delta_{\alpha}^{\gamma}X_{\beta})\overset{x}{N}_{\gamma}]B_{i}^{\alpha}B_{j}^{\beta} \\ &= (\partial_{\beta}\overset{x}{N}_{\alpha} - \{{}_{\alpha}{}^{\gamma}{}_{\beta}\}\partial_{\beta}\overset{x}{N}_{\gamma})B_{i}^{\alpha}B_{j}^{\beta} - 2X_{\beta}\overset{x}{N}_{\alpha}B_{i}^{\alpha}B_{j}^{\beta} \\ &= (\nabla_{\beta}\overset{x}{N}_{\alpha})B_{i}^{\alpha}B_{j}^{\beta}. \end{split}$$

REMARK 4.4. The following identity

$$(4.11) \quad \stackrel{o}{D}_{j}B_{i}^{\alpha} = -\sum_{x} \stackrel{x}{\Lambda}_{ij} \stackrel{N}{N}^{\alpha} \quad \text{where} \quad \stackrel{x}{\Lambda}_{ij} = (\bigtriangledown_{\beta} \stackrel{x}{N}_{\alpha}) B_{i}^{\alpha} B_{j}^{\beta}$$

(Generalized Gauss formulas for an X_m of GSX_n)

is a direct consequence of (4.10).

In our subsequent considerations, we frequently use the following C-nonholonomic components:

$$(4.12) k_{ix} = -k_{xi} = k_{\alpha\beta} B_i^{\alpha} N^{\beta} = g_{\alpha\beta} B_i^{\alpha} N^{\beta}.$$

THEOREM 4.5. On an X_m of GSX_n , the induced tensor of $D_{\omega}g_{\lambda\mu}$ may be given by

(4.13)
$$D_{\omega}g_{\lambda\mu}B_{i}^{\lambda}B_{j}^{\mu}B_{k}^{\mu} = D_{k}g_{ij} + 2\sum_{x}k_{x[j}\stackrel{x}{A}_{i]k},$$

where D_k is the symbolic vector of the covariant derivative with respect to Γ_{ij}^k .

Proof. In virtue of (3.12), (3.9), (4.11), it follows from (3.11) that

$$\begin{split} D_k g_{ij} &= \overset{\circ}{D}_k g_{ij} \\ &= \overset{\circ}{D}_k (g_{\lambda\mu} B_i^{\lambda} B_j^{\mu}) \\ &= (\overset{\circ}{D}_k g_{\lambda\mu}) B_i^{\lambda} B_j^{\mu} + g_{\lambda\mu} [(\overset{\circ}{D}_k B_i^{\lambda}) B_j^{\mu} + B_i^{\lambda} (\overset{\circ}{D}_k B_j^{\mu})] \\ &= (D_{\omega} g_{\lambda\mu}) B_i^{\lambda} B_j^{\mu} B_k^{\omega} - g_{\lambda\mu} (\sum_x \overset{x}{A}_{ik} \overset{N}{N}^{\lambda} B_j^{\mu} + \sum_x \overset{x}{A}_{jk} \overset{N}{N}^{\mu} B_i^{\lambda}) \\ &= (D_{\omega} g_{\lambda\mu}) B_i^{\lambda} B_j^{\mu} B_k^{\omega} - k_{\lambda\mu} \sum_x (-\overset{x}{A}_{ik} B_j^{\lambda} \overset{N}{N}^{\mu} + \overset{x}{A}_{jk} B_i^{\lambda} \overset{N}{N}^{\mu}) \\ &= (D_{\omega} g_{\lambda\mu}) B_i^{\lambda} B_j^{\mu} B_k^{\omega} - \sum_x (-\overset{x}{A}_{ik} k_{jx} + \overset{x}{A}_{jk} k_{ix}) \\ &= (D_{\omega} g_{\lambda\mu}) B_i^{\lambda} B_j^{\mu} B_k^{\omega} - 2 \sum_x k_x [j\overset{x}{A}_{i]k}. \end{split}$$

The following theorem is an immediate consequence of (4.13).

THEOREM 4.6. On an X_m of GSX_n , a necessary and sufficient condition for the induced connection Γ_{ij}^k to be g-recurrent is

$$\sum_{x} k_{x[i} \overset{x}{\Lambda}_{j]k} = 0.$$

Now we are going to derive the generalized Weingarten equations for an X_m of GSX_n .

Let

$$(4.14) M_{jx}^{\alpha} = \overset{o}{D}_{j} \overset{N}{\underset{x}{N}}^{\alpha}.$$

Then the relations (3.15) give

$$(4.15) M_{jx}^{\alpha} = M_{i}^{i} B_{i}^{\alpha} + \sum_{y} M_{jx}^{y} N_{y}^{\alpha}$$

where

(4.16)
$$M_{jx}^{i} = M_{\alpha}^{\alpha} B_{\alpha}^{i} = (D_{\gamma} N_{\alpha}^{\alpha}) B_{\alpha}^{i} B_{j}^{\gamma}$$

$$M_{jx}^{y} = M_{jx}^{\alpha} N_{\alpha} = (D_{\gamma} N_{x}^{\alpha}) N_{\alpha} B_{j}^{\gamma}.$$

THEOREM 4.7. On an X_m of GSX_n , the induced vector M^i_{jx} of M^{α}_{jx} is given by

$$(4.17) M_{ix}^{i} = \varepsilon_{x} h^{im} \mathring{\Lambda}_{mj}.$$

Proof. In virtue of (2.14), (3.2), (3.3), (4.11) and (4.16), we have

$$\begin{split} & \underset{jx}{M^{i}} = (\partial_{\gamma}N_{x}^{\beta} + \Gamma_{\epsilon}^{\beta}{}_{\gamma}N_{x}^{\epsilon})B_{\beta}^{i}B_{j}^{\gamma} \\ & = (\nabla_{\gamma}N_{x}^{\beta})B_{\beta}^{i}B_{j}^{\gamma} \\ & = \varepsilon_{x}h^{im}(\nabla_{\gamma}N_{\epsilon}^{x})B_{m}^{\epsilon}B_{j}^{\gamma} \\ & = \varepsilon_{x}h^{im}\Lambda_{mj}. \end{split}$$

THEOREM 4.8. On an X_m of GSX_n , the C-nonholonomic components M^y of M^α are given by

$$(4.18) M_{jx}^{y} = \varepsilon_{y} H_{x\gamma}^{y} B_{j}^{\gamma} + 2\delta_{x}^{y} X_{j} \text{where} H_{x\gamma}^{y} = \varepsilon_{y} (\nabla_{\gamma} N_{x}^{\alpha})^{y} N_{\alpha}.$$

Proof. In virtue of (2.10), (3.8), (4.16), we can obtain (4.18).

$$\begin{split} M_{jx}^{y} &= (D_{\gamma}N_{x}^{\beta})N_{\beta}B_{j}^{\gamma} \\ &= [\partial_{\gamma}N_{x}^{\beta} + (\{\alpha^{\beta}_{\gamma}\} + 2\delta^{\beta}_{\alpha}X_{\gamma})N_{x}^{\alpha}]N_{\beta}B_{j}^{\gamma} \\ &= (\nabla_{\gamma}N_{x}^{\beta})N_{\beta}B_{j}^{\gamma} + 2X_{\gamma}N_{x}^{\beta}N_{\beta}B_{j}^{\gamma} \\ &= (\nabla_{\gamma}N_{x}^{\beta})N_{\beta}B_{j}^{\gamma} + 2X_{\gamma}\delta^{y}_{x}B_{j}^{\gamma} \\ &= (\nabla_{\gamma}N_{x}^{\beta})N_{\beta}B_{j}^{\gamma} + 2X_{\gamma}\delta^{y}_{x}B_{j}^{\gamma} \\ &= \varepsilon_{y}H_{x}^{y}\beta_{j}^{\gamma} + 2\delta^{y}_{x}X_{j}. \end{split}$$

THEOREM 4.9. On an X_m of GSX_n , we have generalized Weingarten equations on an X_m of GSX_n :

$$(4.19) \qquad \overset{o}{D}_{j}\overset{N}{\overset{\alpha}{\overset{}}}_{x} = (\varepsilon_{x}h^{im}\overset{x}{\Lambda}_{mj})B_{i}^{\alpha} + \sum_{y}(\varepsilon_{y}\overset{y}{\overset{y}{\overset{}}_{x}}_{x}B_{j}^{\gamma} + 2\delta_{x}^{y}X_{j})\overset{N}{\overset{\alpha}{\overset{}}_{y}}.$$

Proof. Substituting (4.17), (4.18) into (4.15), we have (4.19).

References

- Datta, D.K., Some Theorems on symmetric recurrent tensors of the second order, Tensors 15 (1964), 61-65.
- [2] Chung, K.T. and Lee, J.W., International Journal of Theoretical Physics 28 (1989), 867-873.
- [3] Chung, K.T., So, K.S. and Lee, J.W., International Journal of Theoretical Physics 28 (1989), 851-866.
- [4] Chung, K.T. and So, K.S., International Journal of Theoretical Physics 30 (1991), 1381-1401.
- [5] Hlavaty, V., Geometry of Einstein's Unified Field Theory, Noordhoop Ltd, 1957.
- [6] Han, K.H., So, K.S. and Chung, K.T., A Study on Some Identities in the g-Recurrent Manifold Xn, Journal of NSRI 26 (1992), 41-50.

Keumsook So Department of Mathematics Hallym University Chuncheon, 200–702, Korea

Jungmi Ko Department of Mathematics Kangneung National University Kangneung, 210-702, Korea