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Analysis of Priority Systems with a Mixed
Service Discipline

Sung Jo Hong and Tetsuji Hirayama*

Abstract

We investigate o multiclass priority system with ¢ mixed service discipline, and
propose & new approach to the analysis of performance measures [mean waiting times)
of the system.

Customers are preferentfially served in the order of priority. The service discipline at

each station is either gated or exhaustive discipline.

We formulate mean waiting times as functions on the state of the system, We first

consider the system at an arbitrary system state to obtain explicit formulae for the
mean waiting times, and then derive their steady state volues by using the property

of Poisson arrivals to see time averages and the generalized Little’s fermula.

1. Introduction

Priority queueing systems have been investigated enormously; Jaiswal [4] and Kleinrock
[5] have treated them extensively. Wolff [10] summarized standard methods for analyzing
priority queues. Various scheduling algorithms of pricrity queues are investigated by Takagi
[7]- These researches have been carried out by assuming that the service discipline is the
same for all stations in the system. Takagi [8] considered a multiple-stations polling system
with a mix of exhaustive and gated service discipline, and derived the mean waiting times.

The service discipline of his model is ¢yclic order. Harrison [1] has formulated some system
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performance measures as functions on the state space of the system. This method is used

for an optimization problem in [2]. In this paper, we investigate a multiclass priority system
with a mixture of gated and exhaustive service disciplines, and propose a new approach
to the analysis of performance measures of the system. We first define an appropriate
system state and a stochastic process which represents an evolution of the system, and then
formulate system performance measures (cost functions) such as the mean waiting time as.
functions of the system state. Next, we obtain explicit formulae for the cost functions at
an arbitrary state. Finally we derive their steady state values. This comes from PASTA
(Poisson arrivals see time averages) and the generalized Little’s formula. Since these values
are expressed in matrix forms, we can easily construct an algorithm for yielding these values.
As preliminaries, we analyze busy periods of the system, the expected value of works (service
times) of customers who complete their service at a station during a busy period, and the
number of waiting customers at each station at the completion epoch of a service period

defined as the time interval that the server continuously serves a station.

2. Model and Notation

We consider a multiclass priority queueing system. There are J stations, indexedas 1,2,..., J.
We assume that each station has an infinite capacity. Customers arrive at station j accord-

ing to a Poisson process with rate A; (j =1,...,J}). Let A = E;;l

;. Customers are served
by a single server in the order of priority according to a predetermined scheduling discipline
for which station ¢ has priority over station j if 1 < j. Each customer in station j, who is
called a class  customer, requires an independent random service S;. The service discipline
at each station is either gated or exhaustive discipline. If the server selected a station with
gated discipline, he continues to serve only customers who are waiting at the station when
it is selected in arrival order. If the server selected a station with exhaustive discipline, he
will continue to serve the station in arrival order until the station is emptied. We consider
a nonpreemptive discipline, that is, a customer once beginning its service is not interrupted

until his current service is completed, even if customers with higher priority arrive. We often

use superscripts G and E to distinguish gated discipline and exhaustive discipline, respec-
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tively. The server utilization p; of customers of class j and the aggregate server utilization

pj’ of customers of classes 1 through j are given by
p; = NE[S;),

7
,0:-' 2 Pi-

i=1

I

Throughout the paper we assume that p = ¥/_, i < 1. The time interval which the server
continuously serves station 7 is called a service period of station j. Specifically, if we would
like to specify that a specific customer is scheduled to serve during a period, we call the
period his service period. Let II = {1,...,J} be a set of service periods (or stations}. Il
denotes a sef of stations with gated discipline, and Il a set of stations with exhaustive
discipline. Let x denote the station being served by the server {current service period). It
is assumed that « = 0 when the system is empty. Let r be a remaining service fime of
the customer being served. Since all cusiomers in a station with gated discipline who arrive
during a current period are set aside to be served at next selecting, we specify the nuplber g of
customers scheduled to be served during the current service period, who are called customers
within the gate. g does not count the customer being served. The customers who are not
currently served nor scheduled to serve during the current service period are called waiting
custorners. Let R, R4, T, be respectively a set of real numbers, a set of nonnegative real
numbers, and a set of nonnegative integers. The number of waiting customers at station j is
denoted by n; and their vector is denoted by n = (ny,...,n;) € Z]. Let s(t) € Ry denotes
a station being served at time ¢, and r(¢) € R4+ a remaining service time of the customer
being served at time . The number of customers within the gate at time ¢ is denoted by
g{t) € T, and the number of waiting customers in station i at time ¢ is denoted by n(t}.
Let a vector n{t) = (ny(t),...,ns{t)) € T{. The processes {«(t) : ¢ > 0}, {r(f} : ¢ > 0}
and {g(t) : ¢ > 0} are right continuous with left-hand limits, except for customer’s arrival
epochs at which these processes are left continuous with right-hand limits. The process
{n(t) : ¢ > 0} is left continuous with right-hand limits. Let us assume that customers

are numbered in the order of their arrivals. We consider an e** customer arrives at one of

the stations at epoch 0. We will specify informations of the system in order to operate it
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according to a predetermined scheduling discipline. Let J,,(¢) € Ry U{co} be an information

of a customer in m* position of the queue of station 7 at time ¢. If the ¢ customer is in
m®* position of the queue of station i at time ¢, i.({) = ¢°. If there is not a class
customer in m™ position of its queve at time ¢, let L, (f} = oo. The cusiomer listis a
set of these informations such that L{(t) = ({im(t} : i=1,...,Jand m = 1,2,...). Let us
consider transition epochs of these processes such as customer’s arrival epochs and service
completion epochs. Let X(t) denote a station where the last transition before ¢ occurs
{t > 0). X(¢) is right continuous with left-hand limits. Then we define a stochastic process
Q = {Y([) = (X{@),«(2),r(2), g(¢},n(¢}, L(£})}) : £ > O} that represents an evolution of
the system. For any scheduling discipline defined above, Q embeds a Markov process with a
stationary transition probability whose transition epochs consist of customer’s arrival epochs
and service completion epochs. Possible values of Y(1) (¢ > 0) are called system states {or
sates). The state space of Q is denoted by £. We focus on the ¢ arrival customer at epoch

o where the system state is Y = (k,x,r,g,n, L) € £. Let

1, if the e* arriving customer stays at station j
Cw;(t) = ¢ as a waiting customer at time ¢, (2.1}
{ ¢, otherwise,
r 1, if the e* arriving customer stays within the gate
5t = < at station j at time ¢, (2.2)
0, otherwise,

fort>0,5=1,...,.Jande=1,2,....

We would like to derive three types of cost functions defined as follows:
W, (Y,e) = E[ [ S o Y (o) = Y], (2.3)

Then W;(Y, ¢} denotes a mean waiting time of an e class j customer spent at station j as
a waiting customer given that the system is in state Y at his arrival epoch. W;(Y,¢) =0

for Y = (k,5,7,9,n, L) € £ such that £ # j.

H(Y.e,i) = E[LTCij(t)l{x(t)=z'}dt|Y(or°)=Y Coi=1...,0 (24
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where, for any event X, 1{K} equals 1 if event K occurs, and equals 0 otherwise. Then
H{Y e, 1) denotes a mean waiting time of an e class j customer spent as a waiting customer
during the system is in the service period of station i given that the system is in state Y at

his arrival epoch. H,(Y,e,7) = 0for Y = (k,x,7,9,n, L) € £ such that k £ ;.
G,(Y,e) = E‘U Cs, ()Y (0°) = Y], (2.5)

Then G;(Y,e) denotes a mean waiting time of an e class j customer spent within the
gate given that the system is in state Y at his arrival epoch. G,(Y,¢}) = 0 for ¥ =
(k,x,7,9.0,L) € £ such that &k # ;.

3. Busy period and Work

The cost functions defined in the last section will be shown to be closely related to busy
periods. So we define quantities related to busy periods. We select any set of customers
initially in the system and compose a set C = C(Y) of these customers. For example, if a
class i customer in the m*™ position of its queue is in £, then (4,m) € C. His service time
is often denoted by S™, which has the same distribution as S;. A set of customers who are
initially in the system and are not in the set C is denoted by €* = C<(Y;C).

Let B’(v) be a busy period starting with an initial service time (exceptional service
time) v until the first epoch when the system is cleared of the customer with service v and
all customers from classes 1 through j. Let B7(Y;() be a busy period starting with state Y
until the first epoch when the system is cleared of the customer being served, the customers
in €, and the customers from classes 1 through j except for customers in ¢ . We will call
BI(Y;C) aclass j busy period initiated with {Y;C}. It can be shown that these busy periods
are composed of sub-busy periods initiated with each customer in C. Its expected value is
easily obtained by the usual method [10]. Then we have

r+ T Tgmyec BIST)
1—pf '

E(B(Y;()] = (3.1)

Now we define 1’?(5,‘) (,1 = 1,...,7) be the total amount of works (service times} of cus-

tomers who complete their services at station ! during a busy period B?(S;). Then it can be
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easily shown that

v MEIS]EV (S, i=1,...,7andi# 1

, . (3.2)
E{S)] + Thoy ME[SIEV (Si)], =1,

EV/(S)] = {

for [ = 1,...,j [3). Further we define Vi(w) (I = 1,...,J} be the total amount {except for
exceptional service v) of works of customers who complete their services at station [ during

a busy period B?(v). Then we have
| ; | |
EVf ()] = X AeE (S, I=1,....5 (3.3)
k=1

By defining constants:

(3.4)

€0,
Il

i:l AkE[VlJ(Sk)] = P:/(l - pj)? [= 1,... :js
0, l=741,...,J

we have

B (v)] =, l=1,..,J (3.5)

Finally let V/(Y;C) (I =1,...,J) be the total amount of works of customers who complete

their services at station [ during a busy period B?(Y;(). Then we have

- { EWY ()] + 7 + T Tamee I (S + Samec ST, 1=,
EV/ (1) + £ Tmec EVZ (S + Samec EISTL 145,
_ { r+§ {r+ T Simec EISTI} + Domec BISTL 1= 0
g {r+ T Timec EISPI} + Tomec BISTL, 1# 5,
for{=1,...,J. It can be easily shown that
E[B/(Y;C)} = i E[V? (Y;0)). (3.8)
=1

These values are used to obtain explicit formulae of the cost functions.
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0

4. System at arbitrary system states

In this section, we derive formulae of the cost functions W;(Y,e), H;(Y,e,4) and G;(Y,¢).
Since these cost functions are equal to 0 for £ # j, we consider them for the case k = j-
Let R(Y) be a time to complete the current service period which has being executed at
the arrival epoch o°. Let s = o° + R(Y} be the completion epoch of the current service
period. Then »;(s) denotes the number of waiting customers at station i (i = 1L...,J) at

the completion epoch of the current service period. Then we have

BR(Y)] = { r+ gE[S,], k€ llg, (41)
{?‘ + gE[Sﬂ]}/(l - PN)s k € g,

and we have

Ef(s)] = { ni + 1, + ME[R(Y))], % € g, )

{ni +1; + LE[R(Y)}1 - 1), &€llg,

fori=1,...,J, where 1, equals 1if &£ = ¢, and equals 0 if £ # i. Note that these expected
values are linear functions of components r,g and n of state Y. Let ;_; = C;_;(Y) denote
a set of customers composed of all waiting customers from classes 1 through 7 — 1 at the
epoch s (Cy = @).
Gated disciplines. _

We derive expressions of the cost functions for station J with gated discipline (j € IIg).
The waiting time WE(Y, e) is composed of the mean values of R(Y) and a class j — 1 busy
period imitiated with {Y(s);C;—1}, regardless of the service disciplines adopted by the other

stations. Hence we have

WP(Y,e) = E[R(Y)+ B"“(Y(s)' ,-_1)}

1- ,0_1-1
{BIROO)+ i mBSI} /(1 - pky), ke,
= § {EIRYI - pu 012} 1) + S} mBLS] (4.3)

_n‘E{SR] f;il 15!} /(1 - pj-l)s K e HB-
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000
His waiting time H _;3 (Y,e, 1) is equal to the total amount of mean service times completed
at station ¢ during the class j — 1 busy period initiated with {Y{s};C;—1} if « # ¢, and the

amount plus mean length of the remaining service period « if x = i. Hence we have

HE(Y,e.i) = E[R(Y)lu+EV/T(Y(s)iCm)), i=1,...,J (4.4)
From (3.7}, we have
B[V (Y (s); G-
~ {ﬁl{JthNHﬂ5”+EMSHﬂ5]1<L
0, 121
Hence we have
[ ER(Y)) {1+ &7}
+ I E[SE T + m B[S, i< jand x € llg,
E{R(Y)] {]-m' +&7 - pe (ff_l Tis la+ 1.“')}
+ T2 mES)E T + ni (S]]
~n B[S (67 0I5 1a + 1la), i< jand & € I,
| E[R(Y)]Lx, i

HE(Y,ed) = {4.6)

On the other hand, once station j is selected, all customers in station 4 in front of the e¢*

customer are continuously served in the arrival order. Hence we have

G{(Y, e} = n; E[S]. (4.7)

" Exhaustive disciplines.
We derive expressions of the cost functions for station j with exhaustive discipline (5 €

Ng). If & # j, the waiting time WE(Y,e¢) is composed of the mean values of R(Y) and

a class j — 1 busy period initiated with {Y(s);C;_.}, regardless of the service disciplines

adopted by the other stations. If « = 7, his waiting time is equal to 0, because the customer

immediately enters within the gate. Then

K= 0

(4.8)

W%Y)—{U
E[R(Y) + B (Y{(s);C;-1)), = # 4.



Analysis of Priority Systems with a Mixed Service Discipline 275

Hence we have

0, K=
{EIR(Y))+ D5 nE[S)} /(1 - pfy),  s#jand e,
{EIR(Y)](1 — oo T} 1) + TS mE(S)]

—n E[SJTIZ La} /(1 - p}a), k# 7 and x € IIz.

If x # j and ¢ # j, his waiting time HJE(Y, e, 1) is equal to the total amount of mean service
times completed at station ¢ before his service period begins, otherwise it equals to 0. Thus

we have

HJE(Y,S, 1) = 0, K ?!-. jand i=j, (4.10)
E[R(Y) e + E[Vi7H(Y(s)Cion)l, x#jandi#

0, k=jandi=1,...,J,

From (3.7), we have

E[V7 7Y (s); €j-1)]

&7 {2 Elr(o)E[S0} + Elu(s) ELS, i <, (410
0, i
Hence we have
HE(Y,e,i) = 0, i=1,...,J, (4.12)
for s = 7, and we have
[ BlR(Y)] {1+ 67}
+YiT nE[SJE Y + B[S, i<jand x €Il
BIROY)) {1 + &7 - o (67 DiZ 10 + 1)}
Hi(Y,e,i) = { +xii mES)E™ +nE[S) (4.13)
—R‘E[S‘] (E;?--l Zf;'ll 1&! + lni) ' 1< _? and k.€ HE:
g, i=7,
| E[R(Y)}1a i> 3,
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for k # 7. Similarly in the case of the gated discipline, once station j is selected, all customers
at station § in front of the ¢®* customer are continuously served in the arrival order. Hence

we have

‘."‘-I-gE[S_,‘], = J

(4.14)
nE[S;],  k#35.

E =
G‘,'l (Y, 6) = {
We generalize these results to obtain steady state values of the cost functions. The cost
functions W;(-), H;(-, 1} and G,(-) are shown to be linear functions of r, g and n of state Y
for any given service period x because the functions E[R(Y)] and Ein;(s)] are also linear
functions of r, g and n of state Y for any given service period k. Then by appropriately

choosing coefficients, we can express as follows. For j € Iig,

WAY,e) = roi() + g¥;(x) + E:.zl i, x € Ilg, (4.15)
roi(8) + g¥; (%) + Tioy mdy; + nedw;(x), x € g,
Hi(Y,ei) = r;(x, 1) + g (k. 2) + 2:_:1 i (4), x € g, (4.16)
rei(k,1) + g (k, 1) + Tioy mdy (i) + neda;(x, 1), « € g,
G;(Y,e) = n(. (4.17)
For j € Il g,
' TSOJ‘(K') + g‘d’:(”) + Z{:] nféi'js K % j} K€ HG!
W(Y,e) = | rp;(x) + g5 (%) + Lizy midyy (4.18)
+nN¢Wj(K)! K % j: K€ HE:
| 0, K =7
[ i, i) + 985k, 0) + Doy mdis (), k# j,x € Lo,
H_f(Y, e, 1) = ”P_f("c: 3) + g‘ﬁbj("c: E) + E§=1 nlélj(i) (419)
+ﬂn¢Hj(Ei 3)1 K %j,-‘i = HE:
| 0, £=13,
G(Y,) = | " 3 (4.20)
r+ ggj! K= .;"
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M

Of course, each scheduling algorithm has its own coefficients. For simplicity, we define the

following vectors:

W, = (¢1,...,8;5,0,...,0) € RI*Y, (4.21)
hi(7) = (¢1;(8),-..,9;(9),0,...,0) € RV*1, (4.22)
g = (0,...,0, ¢ ,0,...,0f e RIY, (4.23)
——
i™ column
[(0,...,0, $wilr),0,...,0), x+jand eIz
WJ(K) = 9 1 column (424)
—-W;, k=7 and « € IIg,
[(0,...,0,8,(,0),0,...,0f, x#jandxelg,
hj(!ﬁ, 3) = 4 xtcolumn (425)
—h,(4), k=jand &« € lIg,
0, & # 7 and k € I g,
gi{x) = _ (4.26)
—g,, k=7jand x € [Ig,
U) K#jr 0Ia‘€=j€HG,
mi(e) = _ (4.27)
1, K=1€ HE:
0, K#3 oox=jellg,
0,(x) = *3 755 (4.28)
93', = _}'. & HE,
for i = 1,...,J, where / denotes a transposition of a vector or a matrix. Then the cost

functions defined by (2.3), (2.4) and (2.5) of the system operated under a given scheduling

algorithm are given by

W(Ye) = { )T InE b, wele (4.29)
ro;j(x) + gi(x) + nw; + nw;(k), x € Ilg,
Hi(Yei) = § "oledronledah (), “elo

ro;(x,§) + g (x, i) + nh,(¢) + nh,(x, i), « € g,

B 8 y H ,
G(Y,e) = r0;(x} + g6,(x) + ng, k€lle (4.31)
rni(x) + 90;(x} + ng; + ng;(x), &€ U,
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fork=jandi=1,...,J. Fork # j,

W,(Y,e) = 0, {4.32)
H(Y,ei) = 0, (4.33)
G;(Y,e) = 0. (4.34)

The important thing to consider about the above expressions is that the component (k,k,r,g,0)
of state Y is sufficient to derive the expected values of these quantities. Further each function

is linear with respect to (r,g,n).

5. System at the steady state

In this section, we evaluate steady state values of the cost functions W;, H; and G;.

Now we define waiting times of the ¢ customer at station j(j = 1,..., J) as follows:
W = f:’ Cv (), (5.1)
Hi(i) = jﬂ " Co (1) = Y, (5.2)
G = fo " Cs(t)dt, (5.3)
fore =1,2,.... W is the waiting time of the e customer spent at station j from his arrival

to the beginning of his service period, and H{f) is his waiting time at station 7 spent during
the system is in service periods of station 7 until his service period begins. Gj is his waiting
time at station j spent from when the server select station j to serve him until his service is
started. Now we define
7 = lim f;l(ﬁff + ) )
7T Wee B HX(ef) =4}

Since W = 0 and G} = 0 for X(0%) # 7, @7 denotes a steady state value of the mean

(5.4)

waiting time that a class j customer spends in the system from his arrival to the beginning

of his service. To obtain these values, we define:

N
Wy(x) = J%%Z;W:Hn(a*) = x}, (5.5)
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Hi(x,3) = 11_1'.1'1&0 N2 ZHC 1{x(c®} = &}, {(5.6)
Gi(x) = Jim F E Gi1{x(0®) = }, (5.7)
e=1
for k& € 1. Further we define
_ J 1 ¥
W, = L W)= lim =W 5.3)
k=0 e=1
i N
H{@) = EH-’(K’”:J&EH ﬁzﬂj(z), (5.9)
n=0 o e=1
~ J o 1 X
G = XG0 = fim =36 (5.10)

x
Il
=)

™
I

—

We are willing to assume that
[A-1 ] the process Q is regenerative [6].

Let Ng be the number of customers served during a regenerative cycle. Further we assume

that
[A-2 ] the system is initially empty, and
[A-S'l E[.NB] < 0.

These assumptions are necessary to represent the above customer average values of the cost
functions as follows:

- E[xYs L Wi{k(a®) = s}]

W;(k) = FIN] , (5.11)
By - FEBEONEI =) .
o EEMGE{s(e") = )

GJ'(K) = E[NB] 1 (513)

if we may assume that the numerators in the right-hand side of the above expressions are
finite {x € II). The customer average values Y* = (X%, &g, ™, g=, 0", L") of the state at

customer’s arrival epochs where i* = (#f,...,7}) are defined by:

N
Y: = dim. %;Y(o‘)l{n(a‘}zm} (5.14)
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T

where 7" is a fraction of arrivals who find a class « customer being served. Then we assume

that the customer average values exist and that
E[Ze—lf “)1{x(o") = k}] < o0,
A { BTN (o) 1{x(o) = k)] < oo,
E[ZXE n(o%)1{x(c®) = x}] < oo,
Then we have

. E[EY re91{x(0%) = x}]

= E[Ns] < oo, (5.15)
E =1 (o) 1{x(o®) = &
as = PlEe n(o) (o) = £}] _
n* = == 5.17
E[Npg] (517)
Further the customer average values Y = (X, &, 7, 7,1, L) of the state are defined by
) I 1 X
Y = Y ¥ = lim =5 Y(c¢9), ' (5.18)
x=0 Nvoo ¥ e=1

The time average values Y~ = (X* «¢*, 7, 5%, 4%, [*), and ¥ = (X, %, 7, 4,1 , L) of the state
are defined by:

- t

¥ = tlirgtl Y(5)1{x(s) = k}ds, x=0,1,...,J, (5.19)
~ £

Y = EY = tlirg Y(s)a’s, {5.20)

where §” is a fraction of time that a class x customer is being served.

Now we get the following representations concerned with the steady state values of the
cost functions. By (4.29), (4.30), (4.31), (5.15), (5.16) and (5.17), the numerators of the
right-hand side of equations (5.11), (5.12) and (5.13) are shown to be finite. Hence, from
(4.29), (4.30) and (4.31), and from (5.11) through (5.17), we can show that

W) = { s/ NP e5() + 7°95(%) + 5w}, x € I 62)
A/ pi(x) + §9i(x) + 0*W, + 2"w;(x)}, « €Il
Bj(ni) = (/2 {7, (%, 1) + 3°95(r, 4) + 8°h;(i)} K € HG’(s.zz)
(/2 {0, (k,4) + §%;(x, i) + 0°h, (1) + 8~h,(x, )}, = €1lg,
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T Re——

- (A /1) {75n;(k) + §°0,(x) + g x € g,
Gy = | O (x) + g, 529
(A/ 1) {7 n;(x) + 3°9;(x) + fi"g, + 8°g;(x)}, = € L.
The steady state value ¥ of a remaining service time is given by
. A 2
= “Ez[s"], k=1,...,J (5.24)

It is obvious that 7 = 0. For the Poisson arrival, the fraction of time that the system is
in any state is equal to the fraction of the arrivals when the system is in the state. This is
the PASTA property [11]. Thus #* is equivalent to 7. We also use the generalized Little’s
formula (H = AG) {9] that equates the time average values of the costs with the (.:ustomer

average values of the costs to obtain

Ry = Aﬁ/}: (5.25)
o= AH(1), (5.26)
F = MG, (5.27)
Obviously, we have A} = 0 (j = 1,...,J) and §° = 0. As a matter of convenience, we only

consider the case of « € IIg. Then from (5.8), (5.18), (5.21) and (5.25), we have
, ; o
A {Z Foi(k) + 3 3 (k) + iw; + Y 0tw,(x) (5.28)
r=0 x=0 wElg
From (5.9}, (5.18), (5.22) and (5.26), we have
7 {E ik, i)+ Eg"wj(.‘c i) +dh;({) + D ih, (x i) } (5.29)
k€l g
From (5.10), (5.18}, (5.23) and (5.27}, we have
_ J J
g = AJ" {Z FK’?J'("‘) + Z ?ng(ﬁ) + Ag; + E ﬁﬁgj(n)} (5-30)
x=0 #=0 x€llg

From the PASTA property, we have

w=] "Ellg

J J
%{Ef"w(ng‘wj( ) +iw; 4+ Y 8wk )}, (5.31)
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T
it = {Z}: (5,7) + Zg‘tb_,{x i) +1h, (i) + > A%h{«, z)} (5.32)

7
x=1 w€l g
J
¥ o= {Er ni{x) + 29‘9 (k) +iig; + Y. @i"g; E}} (5.33)
k=1 x€llg

For the simplicity of the expression of above equations, we define the following vectors and

matrices.
g= (gl""rgj]t
J J J
= (Z‘." Tt’l Z—; #ns E))r By = (2?”@1(5),...,255{9;(5)),
J J
su(f) = (Z_:l Fo1(k, 1), .. Z_:l p1(k, 1)),
Bi(1) 6:(1) --- 8,(1) h(1) ¢(1) - ¥s(1)
oo | B B0 w@ || w0 w@) el |
6:1(J) 8(J) -+ 65(J) () ) - vilJ)
1:b1(1: 1) ¢2(ls 3) e '1!’3(11 1)
‘I‘(t) — "l’l(:?) 3) %(2: 1) "' 11{}}(2: 1) ,
d}l(‘f: 3) %(Jr 1) e ¢J(J: 1‘)
g=1(81,---,8s), 8lx)=(g(x}-...8:(x)}
W=(W1,.-.,WJ), W(5)=(W1(K),...,WJ(K)),
h(‘) = (h1(3), e :hJ(é))r h(.‘iﬁ) = (hl(ﬁ, i)a L :h-'("ca 3))1
A=diag{};:j=1,...,J}
Then we have
g = {sg +E0+Ag+ fl"g(n)} A, (5.34)
sEllg

=
I

{sw +EV+EW+ Y ﬁ"w(x)} A, (5.35)
k€Il g
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o = {Sw(z} + g (i) + ih(s) + E i*h(xk, i} ) A. (5.36)
w€llp
Let Jg be the number of the stations with exhaustive disciplines and let 7y,...,4;, denote the

stations with exhaustive disciplines. Then IIg = {i1,..., isg}. Furtherlet J* = (2+ Jg) x J

be the number of the unknowns g,1, &' (i = #1,...,4;,). We define vectors and matrices:

y= (g?ﬁlﬁil‘l' "!ﬁi}s} E RIX‘J-’

[ © v V(i) oo Pisg) \
& w h(iy}) -+ h(isg)
8= g(h) w(zl) h(ilsil) e h(f;,?:;s) = RJ-XJ.’

\g(iJE) W(iJE) h(éiasél) h(é.?s:'i.i’a))
A“‘=diag{kl!'-'s)\J'xAlr---,)kj,-..,kl,...,)\;}eRJ"‘J._

Then we arrive at an equation that determines a steady state value of the components of

the process:
¥={s+¥S} 4. (5.37)
I we assume that the inverse matrices exist, we have
g=s(ar'-s)" (5.38)

Finally, we can get steady state values fi? = (f],..., A7) of the number of customers in
the system, and steady state values W9 = (i, ...,@3) of the mean waiting times from the

arrival of a customer to the beginning of his service in every class:

A7 = A+§, (5.39)

w1 = A747L (5.40)
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6. Numerical examples

For numerical examples, we consider a system with J = 8 classes of customers. We assume

that the parameters of the arrival and service processes are given by

1. The arrival rate of each class of customers.

X =1/40.0< (j = 1,2),

A =1/45.0: (j = 3,4),

X\ =1/50.0: (j =5,6),

A =1/55.0: (j =7,8).

2. The service time distributions are the 5 stage Erlang distributions. Their mean values

increase by 0.2 from the following initial values:

o E[S,]=040: (j =1,2),
o E[S;}=0.50: ( =3,4),
s E[S5;]=0.60: (j =5,86),
o E[S]=070: (j =1,8)
The mean waiting times @}(j = 1,...,8) for each class of customers have been computed,

and plotted against p. In Figure 1, we considered a model which all stations adopt exhaus-
tive disciplines. In Figure 2, we considered a model which the stations from 1 through 4
adopt exhaustive disciplines, and from 5 through 8 adopt gated disciplines. In Figure 3, we
considered a model which the stations from 1 through 4 adopt gated disciplines, and from 5

through 8 adopt exhaustive disciplines.

7. Conclusion

We have investigated a new approach to the analysis of multiclass M/G/1 system with pri-
ority. We have treated priority scheduling algorithms where each station adopts either gated
discipline or exhaustive discipline. We first have defined states of the system and a stochas-



Analysis of Priotity Systems with a Mixed Service Discipline 285

o ————

g

50,0
40.¢ ] . o
30,0
20.0  _ " .
10.0 - . " Te L .
o § z 5 ; .
0.0 ---a-.--ll'iis'i
I I I 1
0.0 0.2 0.4 0.6 0.8 1.0 7
+ : Station 1 « : Station 2 « : Station 3
* : Station 4 * : 3tation 5 + : Station 6
o : Station 7 = : Station &

Figure 1: All stations adopt exhaustive discipline

tic process which represents an evolution of the system, and then the system performance
measures as cost functions of the states. Second, we have derived expressions of these cost
functions for every station and every service discipline. The important things to consider
about these expressions are that the component (k,x,r, g,n) of state Y € £ is sufficient to

derive them and that each function is linear with respect to {r,g,n) for any given k and
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Figure 2: The stations from 1 through 4 adopt exhaustive discipline,
and from 5 through 8 adopt gated discipline.

. Hence the system performance measures can be considered to be output processes of the
process Q. Finally, we have evaluated their steady state values by using Poisson arrivals see
time averages and the generalized Little’s formula. As we can obtain J* = (2+ Jg) x J
equations for J* unknowns, we can solve them. Since these solutions are expressed in matrix

forms, an algorithm for yielding their actual values can be easily constructed.
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Figure 3: The stations from 1 through 4 adopt gated discipline,
and from 5 through 8 adopt exhaustive discipline.
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