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Application of the Numerical Integration Method
in a Repair Facility Using SIMAN and
FORTRAN

Won Jung*, Hahn-Kyou Rhee®*, Min-Yong Park***

This paper presents o decision model that will estimate the expected number of
failed units in a repair facility in accordance with the varying demand, and defermine
the required number of personnel for repairing components, The demand is related to
the failure process which follows o reliability growth phenomenon in service. The
information in this paper is useful for selecting appropriate scheduling rules and spares
shﬁcking poficies. SIMAN and FORTRAN were used for computing the time dependent
performance measures in the repair facility, The numerical integration method that is
presented in this paper will provide accurate performance measures with any dynamic

pattern of demand, service rates, and any number of servers.

Abstract 1

1. INTRODUCTION

When the complexity and increasing cost of
many modetn industrial or militaty systems are
considered, the importance of reliability as an
effectiveness parameter has become appatent,
Organizations such as airlines, the military and
public utilities are aware of the costs of

unreliability. Manufacturers often suffer high
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costs of failure under warranty, In the weapons
field, if an anti-airctaft missile has a less than
100 percent probability of functioning correctly
throughout its engagement sequence, operation-
al planners must consider deploying the ap-
propriate extra quantity to provide the required
level of defense.

It is common for new products to be less

reliable during eatly development than later in
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the program, when improvements have been
incorporated as a resule of failures observed
and corrected. Similatly, products in service
cften display reliability growth, The concept of
relizbility growth in service recognizes that
increased usage will identify product deficien-
cies through failures, All failures are analyzed
filly and corrective actions are taken in design
ot production to ensure that such failures do
not occur on products in the next service
period. Therefore, the failure rate of a product
15 seen to be a decreasing function of total
cperational time,

A type of reliability contract which has
rzeently attracted a lot of attention s the
reliability improvement warranty (RIW). The
RIW contract requires that the supplier pro-
vides all spares needed, and catries out all
repairs which include the growth (improve-
ment) of a system’s reliability, for an extended
petiod for a once-off fee. The fundamental
purpose of the RIW contract is to encourage
reliability growth in fielded equipment. Under
tae RIW, the faillure rate is a decreasing
fanction of time based on the growth profile
inherent in the reliability guarantee,

The problems treated here are : i) estimation
cf the expected number of failed units in the
repair depot under reliability growth, and i)
cetermination of an adequate number of repair
personnel for tepairing components. The level
of expected number of failed units in i} is
essential to characterize outstanding orders.

Variation in the level depends on demand rate

and aumber of servers. Since demand is driven

by a field failure and the failute process follows

"a reliability growth phenomenon, the personnel

tequirements for 2 depot to provide necessary
repair for a specific compoment must be
planned in accordance with the varying demand,
In fact, any actual repait depot has important
options available for temporary expansion of
capacity via over-time, additional shifts, or
subcontracting, Without making any additional
assumptions about the repair discipline, such as
deterministic repair time or ample repair
capacity, it is possible to obtain the required
number of petsonnel with the varying demand
at the depot, The following sections present a
decision model which incorporates the mechan-
ism that determines when to increase shop
capacity. This information is extremely useful
for selecting appropriate scheduling rules and

spares stocking policies.
2. EQUIPMENT FAILURE PROCESS

To model the system imptovement, it is
assumed that the expected number of failures
in any inidal interval is no less than the
expected number of failures in any interval of
the same length occurring later. One popular
stochastic process to represent this sitvation is
the nonhomogeneous Poisson process (NHPP),
The propetties of NHPP satisty all the
conditions for a Poisson process except that
the mean rate varies with time. The NHPP has

been used widely as a model for a system
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subject to improvement. Within the class of
NHPP models, the power law model is most
cominonly discussed in the literature. See
Ascher and Feingold [1] for more details. In
this model, the instantaneous failure rate at
cumulative utdlization time 7, r{7T), has a
functional form,

7{(T) = KAT?! (1)

where K is a constant value and £ is 2
growth rate,

Equation (1) shows that the furure failure
rate is a function of the udlization tme length
and the growth parameters, Estimation of the
parameters of a failure rate is presented in
Crow [4], and dependent on how well the
product development program is progressing
and how much resources and time are required
1o meet the end specified reliability target,

If we let N( TLTg) be the expected number
of failures over the time interval [T, T;], then
we would expect N( TLTZ) to be

N(T,T,) = ]:’r( T)T=KTf—KT?  (2)

Under the NHPP assumption, the probability
that exactly m units will fail in any intetval
{TLTg] has a Poisson distribution with mean
N(T\T>). That is, for all 0ST,=<T,

(T, 1) Y VO
PiX=m} = - (3)

m!

where X s the number of failures in

(T, o).

Now 1t could be show how this distribution
might be used in a typical sitvation, Suppose
that a hardware demonstrates reliability growth
with the following parameter values ©: K=
0.0079, #=0.82. Then, the mean value func-
tion is found by substitution into Equation (2)
and becomes

N(T, T.) = 0.0079( 122 — 7)) (4)

Consider a case where there are three military
sites, with the forecasted utdlizarion houts over
the first three years as given in Table 1, The
demand for repair is directly related to the
utilizaton hours which varv from site 1o site,
Since the superposition of the three indepen-
dent Poisson is also a Poisson, assume that
demand from the different sites can be
aggregated. For exzample, i a single item
operating at site 7 with known demand rate,
I\G(TI,T-Z) is considered, then the aggregated
field failures in (7, T,] follows a Poisson
distibution  with  N(T,Ty) = SIN,(T, ).
Hence, the number of aggregatem{’ =ﬁ;jlun:s is a
Poisson random variable with a mean rase
N(T,To).

In this example, for the first vear, the
aggregated utilizadon hours per month would

he
{42,000 hr + 30,800 hr + 56,800 hr) | 12
= 10,800 hr

Then, the expected number of fatures during
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the first calendar month of the program would

he
N(0, 10800 hr) = 16.03 failures

Also, as expected, the number of failures in

the second calendar month is given by
N{10800 hr, 21600 hr) = 1227 failures,
and so on,

The quantity N(T,7;) will be used in the
EXAMPLE section as demand rate for repair

through transit process,

Table 1. Utilization Statistics

Expected Utilization Hours. Aggregated
Vear] Site 1 | Site 2 | Site 3 |Util. Hrs./Month
1| 42,000 | 30,800 | 56,800 10,800
44000 | 30,800 | 57,200 11,000
3 | 50,400 | 33,600 | 58,800 11,900

3. MODELING FRAME WORK

Since the demand follows an NHPP process,
the personne! requirements for a repair depot
must be planned in accordance with the varying
demand, With general shipment times, the
transit process for the site-to-depot can be
modeled as an M{Gfoo queucing system,
Mirasol [10] showed that the output of an
M|Gfoo system is a Poisson process, regardless
nf the distribution of service times. Therefore,
nsing 2 common scenatio the repair process at
rhe depot can be modeled as a nonstationary

M/M/s system, In this modeling approach, the

probability distribution for the number of failed
units either in queue or in service is calculated
by the occupancy level of the nonstationary
M/M/s system, The nonstationary M/M/{s sys-
tem experiences time dependent Poisson arri-
vals at rate, A(#), and has a single first-in-
first-out queue feeding s(s=1) parallel servers.
Each server provides identical, exponential
service with mean service time 1fe Al
interarrival and service times are assumed to

be independent of each other,

4. IN-TRANSIT PROCESS TO THE
REPAIR FACILITY

Mirasol [10] and Newell [12] show that
the number of customers in secvice for an
M/G}oo system follows a Poisson distribution,
and that the departure process is also Poisson.
Gross and Harris [6] presented the system-
size and the departure process in the stationary
distribution for the M[G/oo system, We will
extend the results for the case whete the arrival
process is an NHPP, In this section it is our
intention to derive two results for an M/Gfoo
system, viz, the transient distribution for the
number of failed items in the system at time
{, and the transient distribution for the number
of failed items which have completed service
by time £ The latter distribution is the
departure counting process of the MJG/oo
system that will become the arrival process at
the depot,

We define
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S(%) probability that a failed item leaves the
transit system less than or equal to the
time length %

H(¢) probability that a failed item from site
j which was shipped at # is still in
transtt at time ¢

N;{0¢) cumulative expected number of

failures at site § by time ¢

I{t) expected number of in-transit items
from site 7 at time ¢

Dj(O‘t) cumulative expected number of arri-

vals at the depot from site 7 by time
H

Suppose the in-transit time has a distribution
function

S(h)}=Pr{transit time =< A} _

Then the ptobability of a failed item which
has been shipped from site 7 at time # still
being in service at time ¢ is given by 1-5(¢-4).
From the Poisson property, the probability of
an arbitrary failure entering the transit service
process at time £ is uniformly distributed oa
(0,t1). Therefore, the conditional probability of
a failed item from site § which was shipped at

4 for a transit service still in transit becomes
!
! [1-5(¢-4) et
Hy(t) = (5)

From (5) we see that the aumber of in-
transit items from site § at time { has a Poisson
distribution with mean rate

I{t) = H{)N,(0) (6

We also find that the cumulative distribution

of the arrival process at the depot for site § is
Dj(O,t) ={1‘Hj(t)}N,'(0,t) (7

If we consider time intervals (#,%), (£,5), ",
{1,.1t,), then the arrival rate for time interval
(¢4t} to the depot is Poisson with the mean
rate Dj(O,iﬂ)—Dj(O,f,,-l}- _

5. REPAIR PROCESS UNDER NONS-
TATIONARY DEMAND

Various papers written on queueing theory

have discussed the transient behavior of M/M/s

queueing systems, For example, Saaty [17]

obtained the Laplace transform of the transient
ptobabilities of the ordered queveing problem
for the M{M/s system. However, he was only
able to invest the transform for the two server
case, and that case still showed some computa-
tional difficulties. Kolesar et al. [8] used
numerical integration method for solving the
Chapman-Kelmogorov differential equations of
nonstationzry M/M/s queuveing problems, How-
ever, theit model was found to be cumbersome
for the large number of equations integrated
to represent congested queues. Rothkopf and
Oren [16] studied 2 computational method for
finding the time dependent mean and variance
of the number of customers in a multi-server
system, They followed an approach for the
M/M/1 queue used earlier by Clarke [3] and
generalized it to the M{M/s queue with time
varying artival and service rates, To solve a

pair of differential equations for the mean and
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variance of the number in the system, they used
the standard numerical integration method
applied piecewise over continuous segments of
the time dependent arrival and service rates,

Clark [2] presented an approximation
method to the solution of a nonstationary
M/M/s queune, He considered the Polya-
Eggenberger distribution as a surrogate for the
true distribution of the number in the queneing
svstem at time . Kelton and Law [7] studied
the transient behavior of the M/M/s queue with
an atbitrary number of customers present at
time zero. By following an approach used
earlier by Morisaku [11], they catried out their
analysis in discrete time ie, indexing by
cistomer numbet, and obtained probabilities
that can be used to evaluate several measures
of system performance, including the expected
delay in gueue of each arriving customer, Other
works in this atea can be found in Grassman
[5], Marks [9], Odoni and Roth [14], and
van Doorn [18].

Although many transient solutions exist, the
available analytical results are quite restricted
and impractical to use in our site-depot
sapport model, For example, the results ob-
tained by the existing models are approxima-
tons, and these models have no analyric
bounds on the approximations. Moreover, the
mathematics involved in solving the transient
problem are complex and intractable to use as
a part of a larger site-depot support system,

In modeling the nonstationary M{M{s system,
we implemented SIMAN for computing the

time dependent number of units in the depot
{units in gueue plus units in repair) with an
arbitrary number of units present at time zero,
SIMAN [15] uses the Runge-Kutta-Fehlberg
(RKF} procedure to integrate differential
equations numerically. This procedure provides
results for a direct numerical integration of the
Chapman-Kolmogorov Equations. These in-
tegrated values are the exact probability distri-
butions of the system state at any time { that
are founded by tracking the time dependent
arrival andfor service rates. The following is a
brief discussion on the basis of numerical
integration methods that perform in increment
of time,

A simple numerical technique for solving a
first-order ordinary differential equation is
called Euler's method, This method is based
on the first two terms of the Taylor series
expansion of fuaction about time £ Although
Euler's method is conceptually simple and
relatively easy to analyze, this method is rarely
used because of its low order of accuracy. One
method for increasing the order is to carty
more terms in the Taylor expansion from
which Buler's method is derived.

The Runge-Kutta methods use the high-
ordet local truncation error of the Taylor
methods while elimination the computation and
evaluation of the detivatives of functions, The
advantage of the high-order Runge-Kurta
methods is that they can achive higher level of
accuracy for the same number of funcrion

evaluations.
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Fehlberg presented the RKF methed in
1970. 'This algorithm uses Runge-Kutta
methods of order four and five together, and
reduces the number of evalvations per step.
SIMAN uses the RKF procedure with an
automatic reduction of step size until the
estimated truncation etror on ¢ach step is
within allowable limits,

The Chapman-Kelmogorov equations for
the birth and death process are simultancous
differentiat-difference equations involving the
time-state probabilites, P,-(t) which denotes
probability that exactly 7 failled units are in
depot at time £

These differential equations are given as

P (2) =-2p,(t) + upr(2),
P(8)=-(A{) +2) P, (1) + (i +1)
#P, () +A ()P, (1),
for 1=12,-s-1
Pty =-(A()+sp)P(t) +spP;y (8)
+A(E)P; (2), for  i=ss+1,- (8)

where P/ (%) =di[p‘(t) for all 4,

The above equations can be translated into
the continuous framework of SIMAN, Our
objective is to find the probability distribution
of the system state over time under the given
patameter values (A(¢)&x) of the system, The
calculation of A(f) and the differential equa-
tions must be coded in FORTRAN and are
coded in subroutine STATE in order to be
recognized by SIMAN, A(¢) and the derivative

values of each variable are passed between
SIMAN and the subroutine STATE using the
arrays stated in the COMMON block, This
subroutine computes either A(2) ot the detiva-
tive value of each continuous variable in the
model. With those variables defined by deriva-
tive values, SIMAN zutomatically integrates the
derivatives over time to yield values for the
state probabilities at time .

The methodology presented here will give
an accurate estimation of the dynamic disttibu-
tion of the level of failed units in the depot
repair system, and eventually provide measures
to plan the spare tequirements at the depot

and sites under relability growth,
6. ILLUSTRATIVE EXAMPLE

The following example demonstrates the
effect of time-varying demand on the expected
number of failed units, and the required
mumber of servers at the tepair depot. For this
example, we will use the mean value function
given in Equation (4) and the utilization data
given in Table 1. Further, the tranisit service
time distribution from the sites to the repair
depot is assumed to be exponential with mean
transit times 10 days, 15 days, and 10 days for
sites 1, 2, and 3 respectively.

Fot determining the required number of
servets, a planned level of the utilization factor,
u, (ie, the expected fraction of ~time the
servets ate busy) is used. In Table 2, the

required number of servers in the repair depot
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is presented for the case where 0.6<u{0.8, and
the mean service time is identically 15 days for
cach server, Figure 1 presents dynamic results
for the expected number of failed units in the
repair depot through the end of year 3. The
run started in the empty and idle condition in
year 1. Yesar 2 and year 3 are continuations of
the situation in year 1.

From Table 2, we sée an initial increase of

7 to 8 in the required number of servers at

Table 2 Required Number of Servers by

Month
112]3i4|5(6|7(8[9|10|t1}12
Year1y 7 {8 | 8 8|8 (7|77 | T |77
Y_earz 71717 T|7|6|6!6 &
Yeard3| 7|77 6 6|6 |68|6|6[6

the depot from month 1 t month 2, This
initial increase occurred even though the field
failures have decreased from 16.03 to 12.27.
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Figure 1. Month-by-Month Expected Number of Failed Units at the Repair Depot
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Much of this phenomenon is due to delay
involved in shipping the units from the site to
the depor, It is evident from Table 2 and
Figure 1 that the changing rate of demand
affects the choice of the number of required
servers, the urtilization factor, and the expected
number of failed units in the repair system,
For example, decreasing the demand rate
through year 1 allows for the removal of one
service personnel at month 7 for the choice of
uy{.6. This increases the utilization factor and
therefore increzses the expected number of
failed units in the system as shown in Figare
1. The same phenomenon is observed at month
7 in year 2 and at month 4 in year 3. The
increased number of setvers in the beginning

of year 3 is due to the increment of operating

hours at the sites and resulted in higher
number of servers for the time being,

For the numerical integration of the nonsta-
tonary M/M/s system, we formulated the
problem using a double precision version of
SIMAN implemented on a 486 PC microcom-
puter. When integrating the Chapman-Kolmo-
gorov equations, we used AERR =107, where
AERR is the Absolute single step truncation
Error for the RKF algorithm, The expected
number of failed units in the system at time ¢
was computed by sampling the process at each
integrated value of time, and the values were
plotted through the end of the planning
horizon, The running data for the SIMAN

program and frame listing are as follows;

Mode! Frame Listing of Program in SIMAN

BEGIN:

SYNONYMS; DUMMY=X(1):

"

CREAT;

ASSIGN: ‘DUMMY’=(: DISPOSE;

END;

Experimental Frame Listing of Program in SIMAN

BEGIN: ; PROJECT, DEPOT, W.JUNG, 8/24/94;
CONTINUOUS, 50, 1, 0.025, 0.25, 1.0, 0.0001, 0.0001;

¢ * Number of differential equations 50
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¢ * Number of state equation 1

¢ * Minimum allowable step size 0.025

¢ * Maximum allowable step size 0.25

¢ * Time berween save points 1.0

c * Absolute single step trunc. error (.0001

¢ * Relative single step trunc. error (.0001

INITIALIZE, S(1)=1.0, $(2)=.0, 8(3)=.0, s(4)=.0, $(5)=.0,

S(45)=.0,5(46)=0,5(47)=.0,5(48) = 0,5(49)=0:

c * System starts with the empty & idle condition

c*ie, S(1) =PR{0) = 10

REPLICATE, 1, 1, 1080:
¢ * Number of simulation runs 1
¢ * Beginning time of the first run 1
¢ * Max length of each run 1080
END;

FORTRAN subroutines for the numerical integration are as follows;
SUBROUTINE USER

COMMON;/SIM/D(50),DL{50),5(50),5L(50),X (50),DTNOW,TNOW,TFIN,] NRUN
COMMON/JUNG/M,MS, TOT,CNT,NNS,ZLAM,QLAMDA
¢ * Calculate expected number of items in the system
SUM=0.0
DO 200 N=0,46
SUM=SUM+N*S(N+2)
200 CONTINUE
IF (TSAVE.EQ.TNOW) THEN
IF (INT{TNOW/30.).EQ.(TNOW/30.})) THEN
QLAMDA = QLAMDA + ZLAM
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c

300

WRITE(* *)TNOW,M,QLAMDA,, TNOW,M,QLAMDA
QLAMDA =0
ELSE
QLAMDA =QLAMDA + ZLAM
END IF '
END IF

* Calculate average number of items for each month

IF(M.EQ.MSAVE) THEN
TOT=TOT+5UM
CNT=CNT+1

ELSE
AVG =TOT/CNT
TOT=8UM
CNT=1

‘END IF

RETURN

END

SUBROUTINE STATE

COMMON/SIM/D(50),DL(50),5(50),SL(50},X(50),DTNOW, TNOW,TFIN,],NRUN
COMMON/JUNG/M,MS, TOT,CNT,NNS,ZLAM,QLAMDA
REAL TEMP(50),RATE}(10,10), DELTA{10)
REAL DHOUR(10),cUM(10},SUBCUM(10),T(10)
REAL LAMDA, LAMDAJMU,Q,DAY,CUMFL,CUMFL1,T1,T2
INTEGER NS{50}
* DJ{])=expected transit time from site | to the depot in days
* RATEj{],])=proportion of failutes at site ] in year 1
* NS(M)=number of servers at period M
DATA DELTA())
DATA RATEJ(,j)
DATA NS(j)

CONTINUE
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e
c * Calculate arrival rate ar the depot
IF {TNOW.LE.360.) THEN
I=1
M=1+INT(TNOW/30.)
MSAVE=1+INT{({TNOW-1)/30.)
MM=M
DAY =TNOW-{M-1)*30.
DSAVE=(TNOW-1)-(MSAVE-1)*30.
DHOUR (1) =FTIME(]}/360.
T(1})={(M-1)*(FTIME(]){12.) + DAY*DHOUR(I}
T(1+5)=(MSAVE-1)*(FTIME(]){12.) + DSAVE*DHOUR(I)
ELSE
[=2
M=1+INT{{TNOW-360.)/30.)
MSAVE=1+INT({{TNOW-1)-360.)/30.)
MM=M+12
DAY =TNOW-{(M-1)*30.-360.
DSAVE=(TNOW-1)-(MSAVE-1)*30.-360.
DHOUR(I})=FTIME({]+1)/360.
T(I)=FTIME(]J)+ (M-1)*(FTIME(}+1){12.) + DAY*DHOUR({I)
T(I+5)=FTIME(]J) + (MSAVE-1)*(FTIME(]+1)/12.) + DSAVE*DHOQUR(I)
END IF
DO 150 K=13
Q=(DELTA(K)/TNOW)*{(1-EXP(-TNOW/DELTA{K)))
QQ=(DELTA(K)/(TNOW-0.9999))*(1-EXP(-{TNOW-1)/{DELTA(K))}
CUM{K)=(1-Q)*CUMFL
SUBCUM(K) = {1-QQ)*CUMFL1
LAMDA] = (CUM(K)-SUBCUM(K) }*RATE]J(L,K}
LAMDA=LAMDA+LAMDA]
150 CONTINUE

C Set state value
S(50)=LAMDA

c Calculate state probabilities
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[ —

c?* If N=0
D(1)= -S(50)*S(1}+MU*S(2)
c* If N{ NS(MM)
DO 100 N=1,46
IF(N.LTNS(MM}) THEN

D(N+1}=-(8{50) +N*MU)*S(N+1) +{(N+1)*MU*S(N+2) +S(50)*S(N) _

c* If N)=NS(MM)
ELSE

D(N+1)=-(5(50} +NS(MM }*MU)*S(N+1) + NS(MM ) *MU*S(N+2)

+8(50)*S(N)
ENDIF
100 CONTINUE
RETURN
END

7. CONCLUSION

In this paper we have discussed an applica-
tion of the numerical integration method to the
spare parts inventory model under the time
varying demand situation, Applying such a
method using SIMAN and FORTRAN is
temarkably practical since in most cases it is
extremely difficult to consider the analytical
solutions directly in the frame wotk of
nohstationary systems, In our model we also
incorporated reliability growth with repairable
items. A search was made to find all possible
implementations of repairable inventory models,
A common assumption to the literature is that
faitures are generated by a stationaty compound
Poisson process, By considering growth phe-
nomena in hardware teliability, this research

would lead to a basis for a new approach to

repairable inventory planning,

Assuming un]jﬁﬁted space at the repair
depot, the transit and repair processes in the
system are viewed as a netwotk series of
queues, ie, M{G/oo and M/M/s, For transit
process, we extended stationary results for
M|G|oo system in Gross and Harris [6] to the
case where the arrival process is nonhomogene-
ous,

The method we suggested here performs
well both for steady and for nonstationary
demand to provide approptiate scheduling rules
at the repair facility, The information can be
applied for inventory sizing needed at each
location, by month, for wvarious levels of
associated stock-out risk. A further conttibu-
tion of this research is that the developed
methodology for this situation has been fully

defined and integrated into a single compact
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- S

package. We belicve that the model could be
used by many companies that design and
develop for the industrial and military hardware

systems.
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