DOI QR코드

DOI QR Code

The calculation of stress intensity factors by the surface integral method

  • Jin, Chi-Sub (Department of Civil Engineering, Pusan National University) ;
  • Jang, Heui-Suk (Department of Civil Engineering, Pusan National University of Technology) ;
  • Choi, Hyun-Tae (Research Institute of Industrial Technology, Pusan National University)
  • 발행 : 1995.11.25

초록

The determination of the stress intensity factors is investigated by using the surface integral defined around the crack tip of the structure. In this work, the integral method is derived naturally from the standard path integral J. But the use of the surface integral is also extended to the case where body forces act. Computer program for obtaining the stress intensity factors $K_I$ and $K_{II}$ is developed, which prepares input variables from the result of the conventional finite element analysis. This paper provides a parabolic smooth curve function. By the use of the function and conventional element meshes in which the aspect ratio (element length at the crack tip/crack length) is about 25 percent, relatively accurate $K_I$ and K_{II}$ values can be obtained for the outer integral radius ranging from 1/3 to 1 of the crack length and for inner one zero.

키워드

참고문헌

  1. Atluri, S.N. (1982), "Path independent integrals in finite elasticity and inelasticity, with body forces, inertia and arbitrary crack force conditions", Eng. Fract. Mech., 16(3), 341-364. https://doi.org/10.1016/0013-7944(82)90113-8
  2. Babuska, I. and Miller, A. (1984), "The post-processing approach in the finite element method - Part 1 : Calculation of displacements, stresses and other higher derivatives of the displacements", International Journal for Numerical Methods in Engineering, 20, 1085-1109. https://doi.org/10.1002/nme.1620200610
  3. Babuska, I. and Miller, A. (1984), "The post-processing approach in the finite element method - Part 2 : The calculation of stress intensity factors", International Journal for Numerical Methods in Engineering, 20, 1111-1129. https://doi.org/10.1002/nme.1620200611
  4. Barsoum, R.S. (1976), "On the use of isoparametric finite elements in linear fracture mechanics", International Journal for Numerical Methods in Engineering, 10, 25-37. https://doi.org/10.1002/nme.1620100103
  5. Carpinteri, A. (1985), "Scale effects in fracture of plain and reinforced concrete structures", Fracture Mechanics of Concrete (Sih,G.C. and DiTommaso,A.Ed.), Martinus Nijhoff Publishers, 95-140.
  6. Droz, P. (1987), "Modele numerique du comportement non-lineaire douvrages massifs en beton non arme", pour lobtention du grade de docteur es sciences techniques, Ecole Polytechnique Federale de Lausanne, 1-148.
  7. Ewalds, H.L. and Wanhill, R.J.H. (1984), Fracture mechanics, Edward Arnold Ltd., 97.
  8. Hellen, T.K. (1975), "On the method of virtual crack extensions", International Journal for Numerical Methods in Engineering, 9, 187-207. https://doi.org/10.1002/nme.1620090114
  9. Hillerborg, A. (1985), "Numerical methods to simulate softening and fracture of concrete", Fracture Mechanics of Concrete, (Sih. G.C. and DiTommaso, A. Ed.), Martinus Nijhoff Publishers, 141-170.
  10. Ingraffea, A.R. and Saouma, V.E. (1985), "Numerical modeling of discrete crack propagation in reinforced and plain concrete", Fracture Mechanics of Concrete (Sih. G.C. and DiTommaso, A. Ed.), Martinus Nijhoff Publishers, 171-225.
  11. Irwin, G.R. (1956), "Onset of fast crack propagation in high strength steel and aluminum alloys", Sagamore Research Conference Proceedings, 2, 289-305.
  12. Jin, C.S., Jang, H.S., Choi, H.T. and Eum, J.S. (1989), "Mixed mode crack propagation models of the concrete structures(I)", Research Paper of College of Engng., Pusan Nat'l Univ., 38, 83-91.
  13. Kaplan, M.F. (1961), "Crack Propagation and the fracture of concrete", Journal of the American Concrete Institute, 58, 591-610.
  14. Kesler, C.E., Naus, D.J. and Lott, J.L. (1972), "Fracture mechanics - Its applicability to concrete, in mechanical behaviour or materials", The Society of Materials Science, IV, Japan, 113-124.
  15. Kishimoto, K., Aoki, S.and Sakata, M. (1980), "On the path independent $integral-J^{\Lambda}$, Engineering Fracture Mechanics, 13, 841-850. https://doi.org/10.1016/0013-7944(80)90015-6
  16. Mindess, S. (1983), "The cracking and fracture of concrete: an annotated bibliography 1928-1981", Fracture Mechanics of Concrete (Wittmann F.H. Ed.) Elsevier, 539-661.
  17. Neville, A.M. (1959), "Some aspects of the strength of concrete", Civil Engineering, part I; 54, 1153-1156.
  18. Owen, D.R.J. and Fawkes, A.J. (1983), "Engineering fracture mechanics", Pinerideg Press Ltd., 1-305.
  19. Parks, D.M. (1974), "A stiffness derivative finite element technique for determination of crack tip stress intensity factors", International Journal of Fracture, 10(4), 487-502. https://doi.org/10.1007/BF00155252
  20. Rice, J.R. (1968), "A path independent integral and the approximate analysis of strain concentration by notches and cracks", Transactions of the ASME, Journal of Applied Mechanics, 379-386.
  21. Saouma, V.E.;Ingraffea, A.R. and Catalano, D.M. (1982), "Fracture toughness of concrete: revisited", Jorunall of the Engineering Mechanics Division, ASCE, 108, 1152-1166.
  22. Sih, G.C. (1984), "Mechanics of material damage in concrete", Fracture Mechanics of Concrete (A. Carpinteri and A.R. Ingreffea, Ed.), Martinus Nijhoff Publishers, 1-28.

피인용 문헌

  1. 중력식 콘크리트 댐에 작용하는 양압력이 응력확대계수에 미치는 영향 vol.16, pp.6, 1995, https://doi.org/10.4334/jkci.2004.16.6.841