Abstract
The rigid-plastic yield-line analysis of isotropically reinforced concrete slabs acting in conjunction with torsionally weak supporting beams is developed as the lower-bound form of a linear programming formulation. The analysis is extended to consider geometric variation of chosen yield-line patterns by the technique of sequential linear programming. A strategy is followed of using a fine potential yield-line mesh to identify possible collapse modes, followed by analysis using a coarser, simplified mesh to refine the investigation and for use in conjunction with geometric optimization of the yield-line system. The method is shown to be effective for the analysis of three slabs of varying complexity. The modes detected by the fine and simplified analyses are not always similar but close agreement in load factors has been consistently obtained.