DOI QR코드

DOI QR Code

Analysis of the fracture of brittle elastic materials using a continuum damage model

  • Costa Mattos, Heraldo S. (Department of Mechanical Engineering, Universidade Federal Fluminense) ;
  • Sampaio, Rubens (Department of Mechanical Engineering, Pontificia Universidade Catolica do Rio de Janeiro)
  • 발행 : 1995.09.25

초록

The most known continuum damage theories for brittle structures are suitable to model the degradation of the material due to the deformation process and the consequent initiation of a macro-crack. Nevertheless, they are not able to describe the propagation of the crack that leads, eventually, to the breakage of the structure into parts that undergo rigid body motion. This paper presents a theory, formulated from formal arguments of Continuum Mechanics, that may describe not only the degradation but also the fracture of elastic structures. The modeling of such a discontinuous phenomenon through a continuous theory is possible by taking a cohesion variable, related with the links between material points, as an additional degree of kinematical freedom. The possibilities of the proposed theory are discussed through examples.

키워드

참고문헌

  1. Bazant, Z.P. and Pijaudier Cabot, G. (1988), "Nonlocal continuum damage, localization, instability and convergence", ASME J. Appl. Mech., 55, 287-293. https://doi.org/10.1115/1.3173674
  2. Boeck, D. (1974), Elementary engineering fracture mechanics, Noordhoff International Publishing.
  3. Bui, H.D., Van, K.D. and Stolz, C. (1981), "Formulations variationelles du probleme en vitesse pour le solide elastique-fragile avec zone endommagee", C. R. Acad. Sci. Paris t., 292.
  4. Cowin, S.C.and Nunziato, J.W. (1983), "Linear materials with voids", J. of Elasticity, 13, 125-147. https://doi.org/10.1007/BF00041230
  5. Costa Mattos, H., Fremond, M. and Mamiya, E.N. (1992), "A simple model of the mechanical behavior of ceramic-like materials", Int. J. Solids Structures, 24, 3185-3200.
  6. Ekeland, I. and Teman, R. (1976), Convex analysis and variational problems, North-Holland, Amsterdam.
  7. Florez, J. (1989), "Elasticite couplee a l'endomagement: formulation, analyse theorique et approximation numerique", These de Doctorat de L 'Universite' Paris 6.
  8. Fremond, M., Costa Mattos, H. and Mamyia, E.N. (1990), "A thermodynamically consistent mechanical model for damageable elastic materials", Technical Report No.7, IPRJ.
  9. Goodman, M. and Cowin, S.C. (1972), "A continuum theory for granular materials", Arch Rat. Mech. Anal., 44, 249-266.
  10. Lemaitre, J. (1984), "How to use damage mechanics", Nucl. Engrg. Design., 80, 233-245. https://doi.org/10.1016/0029-5493(84)90169-9
  11. Lemaitre, J. and Chaboche, J.L. (1990), Mechanics of solid materials, Cambridge University Press.
  12. Liebowitz, H. (1972), Fracture I, II, III, IV, V, VI, VII, Academic Press.
  13. Marigo, J.J. (1985), "Modeling of brittle and fatigue damage for elastic materials by growth of microvoids", Engrg. Fract. Mech., 21, 861-874. https://doi.org/10.1016/0013-7944(85)90093-1
  14. Mindlin, R.D. (1964), "Microstructure in linear elasticity", Arch. Rat. Mech. Anal., 16, 51-78.
  15. Needleman, A. (1987), "Material rate dependence and mesh sensitivity in localization problems", Comput. Meths. Appl. Mech. Engrg., 67, 69-87.
  16. Sampaio, R. and Martins, J.A.C. (1992), "Snap-back and tangent bifurcation phenomena in one-dimensional softening structures in tension", Journal of the Brazilian Society of Mechanical Sciences (RBCM), 14, 387-402.
  17. Simo, J.C. and Ju, J.W. (1987), "Strain and stress based continuum damage models I: Formulation. Int., J. Solids Structures, 23, 821-840. https://doi.org/10.1016/0020-7683(87)90083-7
  18. Toupin, R.A. (1964), "Theories of elasticity with couple-stress", Arch. Rat. Mech. Anal. 17, 85-112.

피인용 문헌

  1. A continuum damage model for glass/epoxy laminates in tension vol.52, 2013, https://doi.org/10.1016/j.compositesb.2013.02.004
  2. An isotropic damage model to simulate collapse in reinforced concrete elements vol.11, pp.13, 2014, https://doi.org/10.1590/S1679-78252014001300007
  3. Mixed mode fracture analysis in a polymer mortar using the Brazilian disk test vol.154, 2016, https://doi.org/10.1016/j.engfracmech.2016.01.007
  4. A One-Dimensional Theory of Solute Diffusion and Degradation in Elastic Solids vol.97, pp.1, 2009, https://doi.org/10.1007/s10659-009-9206-4
  5. Structural failure prediction of quasi-brittle structures: Modeling and simulation vol.46, pp.2, 2009, https://doi.org/10.1016/j.commatsci.2009.03.022
  6. A flexibility-based continuum damage identification approach vol.279, pp.3-5, 2005, https://doi.org/10.1016/j.jsv.2003.11.043
  7. Viscoelastic constitutive modeling of asphalt concrete with growing damage vol.7, pp.2, 1999, https://doi.org/10.12989/sem.1999.7.2.225
  8. Modelling low-cycle fatigue tests using a gradient-enhanced continuum damage model vol.26, pp.8, 2017, https://doi.org/10.1177/1056789516653244
  9. Load Rate Effects in Adhesive Single Lap Joints Bonded with Epoxy/Ceramic Composites vol.13, pp.10, 2016, https://doi.org/10.1590/1679-78252818
  10. A thermodynamically consistent modelling of stress corrosion tests in elasto-viscoplastic materials vol.80, 2014, https://doi.org/10.1016/j.corsci.2013.11.020
  11. A structural defect identification approach based on a continuum damage model vol.80, pp.5-6, 2002, https://doi.org/10.1016/S0045-7949(02)00015-9
  12. Tensile behaviour of glass fibre reinforced polyurethane at different strain rates vol.49, 2013, https://doi.org/10.1016/j.matdes.2013.01.065
  13. Necking of elasto-plastic rods under tension vol.32, pp.6, 1997, https://doi.org/10.1016/S0020-7462(96)00132-1
  14. Modelling of nonlinear damage on elastic brittle materials vol.25, pp.2, 1998, https://doi.org/10.1016/S0093-6413(98)00018-4
  15. Temperature effect on low permeability porous media filled with water at high pressures vol.83, 2015, https://doi.org/10.1016/j.advwatres.2015.05.007